Looking for intuition behind discrete topologies

Thomas Lewiner

Department of Mathematics PUC - Rio. Rio de Janeiro, Brazil!

Topology-Based Methods in Data Analysis and Visualization: TopoInVis 2011: ETH, Zürich.

Acknowledgements

TopoInVis organizers!!

students and colleagues:

João Paixão, Renata Nascimento, Andrei Sharf, Daniel Cohen-Or, Arik Shamir, David Cohen-Steiner, Hélio Lopes, Geovan Tavares...

authors of the many inspirational works!

financing institute: CNPq, FAPERJ, CAPES, EDX, IMC, Matheon...

Expectations from topology

get the big picture partially self-validated $\chi = \sum (-1)^i \cdot m_i$ i=0global (high info) from local (low cost)

Applications that motivated me

reservoir characterization from huge seismic data

surface extraction and reconstruction

vector field de-noising

Intuition?

quick and ready insight immediate apprehension or cognition

© Webster

something an industry engineer accepts

Today's filtration

topological objects discrete theories some examples discussions

Topological objects

Manifolds, Subsets of \mathbb{R}^n

Submersion intuition

subset of \mathbb{R}^n respecting a condition $f \Rightarrow$ closer to real data

critical set of f (Morse lemma)

⇒ global from local function analysis

Usual critical sets

Immersion intuition

locally equivalent to \mathbb{R}^d

 \Rightarrow intuitive differential tools

Immersion Morse topology

critical set of a function on the manifold ⇒ global from local function analysis

Morse-Smale complex

relation between critical points

⇒ local function analysis + graph

Vector field

© http://www.falstad.com/vector/

sparse invariant sets

Vector field topology

© http://www.falstad.com/vector/

isolated singularities behavior

Iocal analysis (Hartman Grobman)+graph

+ closed orbits + non-generic

Gradient vector field

generic gradient

Morse-Smale structure

topology from local function analysis+ Smale complex / topological graph

Morse theory

 $\mathcal{M} \subset \mathbb{R}^n$ Manifold **Function** $f:\mathcal{M}\to\mathbb{R}$ Critical point $\mathbf{x} \in \mathcal{M}, \partial f(\mathbf{x}) = 0$ $#\{\lambda \in Eig(\partial^2 f), \lambda < 0\}$ Index $\chi = \sum (-1)^i \cdot m_i \ldots$ Topology i=0

Function analysis is intuitive

© http://www.karlscalculus.org/

© http://www.tutornext.com/

Intuition: quick and ready insight immediate apprehension or cognition

More topological objects

Local function analysis in the discrete setting???

2-cells:

1-cells:

0-cells:

Sampled function + interpolation

Weight on graph structures

Discrete function analysis?

not intuitive:

© feflow

finite difference (polynomial interpolation) Fourier derivative (harmonic interpolation) finite elements (template approximation)

on manifold?

Discrete Morse theories

piecewise-linear interpolation ⇒ Banchoff's approach

combinatorial formulation

⇒ Forman's approach

Banchoff's approach

intuition: sampling of fguarantees: Euler χ , Gauss Bonnet local linear interpolations \Rightarrow critical vertices

PL Morse-Smale complex

© Zomorodian, Edelsbrunner, Harer, Natarajan, Pascucci, Gyulassy, Bremer, Hamann...

numerical integration of streamlines

 \oplus

Morse-Smale structure

Morse theory

 $\mathcal{M} \subset \mathbb{R}^n$ Object $f: \mathcal{M} \to \mathbb{R}$ Function Critical set $\partial f^{-1}(\{0\})$ $#Eig(\partial^2 f) \cap \mathbb{R}_-$ Index $\chi = \sum (-1)^i \cdot m_i \ldots$ Topology

Forman's approach: differential topology view

Start from Morse-Smale complex Subdivide to reach your complex arrows ⇒ gradient vector field

Forman's approach, algorithmic views

combinatorial field

tree

matching along the flow
Scritical = unmatched

gradient field no closed gradient path ⇒ acyclic

Acyclic matching

Forman's approach: differential topology view

intuition without differential function?

Discrete Smale Compelx

© Cazals, Chazal, L.

© Gyulassy, Bremer, Pascucci, Hamann

from critical cells

from cancellations

∂ , Forman - Morse theories

Object

Function

Critical set

Index

Topology

 $\mathcal{M} \subset \mathbb{R}^n$ CW complex \mathcal{K} $f: \mathcal{M} \to \mathbb{R}$ acyclic matching $\partial f^{-1}(\{0\})$ unmatched cells $#Eig(\partial^2 f) \cap \mathbb{R}_$ cell dimension $\chi = \sum (-1)^i \cdot m_i \dots \chi = \sum (-1)^i \cdot m_i \dots$

Forman

A priori pros and cons

Banchoff's approach

- + intuitive / geometric
- controlled critical set
- + many numerical tools
- nD guarantees?
 - global robustness?

Forman's approach

- + correct global topology
- + robust (graph algorithms)
- + efficient (combinatorial)
- critical set localization?
- graph intuition?

Some monster cases

Poincaré's homological sphere (missing critical points) Bing's house of 2 rooms (extra critical cell)

Learning from examples

Isosurface extraction

Isosurface extraction

© L., Lopes, Vieira, Tavares

Topological cases of Marching Cubes ⇒ differentiable function analysis

Large isosurface topology

Topology without the isosurface Mid-scale control and filtering global + efficiency ⇒ Forman's line

Some Isosurfaces' Topology

Smale complex

Reeb graph

mater

PUC-

Surface reconstruction

© Ju, Zhou, Hu

mate

© Sharf, L., Shamir, Kobbelt, Cohen-Or

noisy, sparse point set

 \Rightarrow correct topology?

Surface reconstruction

Topology-aware reconstruction

mater

© Sharf, L., Shklarski, Toledo, Cohen-Or

Vector field de-noising

Impinging plate

Mechanical Dept, PUC-Rio

© Nascimento, Paixão, Lopes, L.

noise at the scale of the data clean data + "important" vortices local interpolation analysis

Interactive de-noising

Scale-dependent singularity

Topology-aware de-noising

some common points

© Gyulassy, Natarajan, Pascucci, Bremer, Hamann

ations

topology: intuitive interfaces

A note on noise / resolution

Persistence approach:

Usual in Morse theory

Smale used it for optimal Morse functions

Keep singularities in place

Persistence is universal?

- + smooth and both discrete settings
- noise has a complex impact on topology
- discrete setting intrinsically resolution dependent on image and domain

Scale-dependent critical set

© Reininghaus, Guenther, Hotz, Prohaska, Hege

Forman's critical set results from global construction: maximum maximum weisht weishing matching

number of critical cells

quality of the field approximation

Partial conclusion

Banchoff

- + good critical points+ intuitive!
- globally stable?

Forman

matemáti

- + good global behavior
- + flexible discretization
 - local precision?

Recent improvements

© Gyulassy, Natarajan, Pascucci, Bremer, Hamann

© Reinighaus, Hotz

global stability of PL computations (persistence and Morse-Smale)

control of critical cells in Forman's (matching and localization)

for an and for

In-between both worlds

On triangulated surface, greedy construction of Forman's vector field keeps Banchoff's critical set for slowly varying function $f : \mathcal{K}_0 \hookrightarrow \mathbb{R}$

 \bigcirc

Next challenges

Higher dimension (besides NP)

L., Lopes, Tavares, Joswig, Pfetsch...

More general cases (infinite complexes)

Ayala, Vilches...

More complex objects (tensors, $\{f_i\}$)

Forman, Tricoche, Tong, Desbrun...

More theoretical guarantees

L., Zhang, Mischaikow...

Global from local?

DUr

matemática puc-rio

Thank you for your attention!

Thomas Lewiner PUC - Rio. Rio de Janeiro, Brazil! http://thomas.lewiner.org/