
Looking for intuition
behind discrete topologies

Thomas Lewiner
Department of Mathematics

PUC - Rio. Rio de Janeiro, Brazil!

Topology-Based Methods in Data Analysis and Visualization:
TopoInVis 2011: ETH, Zürich.

Acknowledgements

• TopoInVis organizers!!

• students and colleagues:
• João Paixão, Renata Nascimento,

Andrei Sharf, Daniel Cohen-Or, Arik Shamir,
David Cohen-Steiner, Hélio Lopes, Geovan Tavares...

• authors of the many inspirational works!

• financing institute:
• CNPq, FAPERJ, CAPES, EDX, IMC, Matheon...

Expectations from topology

• get the big picture

• partially self-validated

• global (high info) from local (low cost)

χ =
d�

i=0

(−1)i ·mi

Applications that motivated me

• reservoir characterization
from huge seismic data

• surface extraction
and reconstruction

• vector field de-noising

Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo and Daniel Cohen-Or 10

Figure 11: The addition of scribbles in the weak regions allows a faithful reconstruction: the original scan (left), our FEM reconstruction

without scribble (center-left) and with four scribbles to reinforce and correct the initial reconstruction (right).

Appendix: Construction of the matrix K
The construction of K is a standard finite-elements one, based

on [14] but simplified to our particular case and made completely
explicit.

Let {(xi, yi, zi)}n
i=1 be the coordinates of the vertices of the

mesh and let {(n(1)
j , n(2)

j , n(3)
j , n(4)

j)}m
j=1 be the vertices’ indices

of the tetrahedrons in the mesh. For each tetrahedron we compute
the 4-by-4 matrix (linear tetrahedral element):

Kj =
| det(Jj)|

6
E∗

j Ej , where

Jj =

2

664

x
n
(1)
j
− x

n
(4)
j

x
n
(2)
j
− x

n
(4)
j

x
n
(3)
j
− x

n
(4)
j

y
n
(1)
j
− y

n
(4)
j

y
n
(2)
j
− y

n
(4)
j

y
n
(3)
j
− y

n
(4)
j

z
n
(1)
j
− z

n
(4)
j

z
n
(2)
j
− z

n
(4)
j

z
n
(3)
j
− z

n
(4)
j

3

775 ,

and Ej is a 3-by-4 matrix which is the solution of the following
linear system

J∗
j Ej =

2

4
1 0 0 −1
0 1 0 −1
0 0 1 −1

3

5 .

We define K̂j to be an n-by-n symmetric matrix which is
zero except for rows and columns n(1)

j , n(2)
j , n(3)

j , n(4)
j , where

K̂j(n
(a)
j , n(b)

j) = Kj(a, b). Finally, we sum the K̂j to generate
K =

Pm
j=1 K̂j .

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..

Intuition?

• something an industry engineer accepts

• quick and ready insight
• immediate apprehension or cognition

© Webster

© quipu

Today’s filtration

• topological objects

• discrete theories

• some examples

• discussions0! 1a!

1b!
2!

Topological objects

Manifolds,
Subsets of Vector fieldsRn

Submersion intuition

• subset of respecting a condition

• ➾ closer to real data

Rn f

Submersion topology

• critical set of (Morse lemma)

• ➾ global from local function analysis

f

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single
least squares optimization problem. For each constraint point
p ∈ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight ωp. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������

E
ω1 c1

ω2 c2
...

ω|P | c|P |

uM −

0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)

�����������

2

2

,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

K +
�

p∈P

ω2
p cT

p cp

 uM =
�

p∈P

t(p) ω2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ε, the u(p) − ε and
u(p) + ε level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

f

Usual critical sets

• minima

• new
component

• saddles

• joins / splits
components

• maxima

• end
component

Immersion intuition

• locally equivalent to

• ➾ intuitive differential tools

Rd
© Goce sat

telite

Immersion Morse topology

• critical set of a function on the manifold

• ➾ global from local function analysis

0! 1a!
1b!

2!
0! 1a!

1b!
2!

Morse-Smale complex

• relation between critical points

• ➾ local function analysis + graph

Vector field

• essentially tubular flow

• sparse invariant sets

© http://www.falstad.com/vector/

Vector field topology

• isolated singularities behavior

• ➾ local analysis (Hartman Grobman)+graph

• + closed orbits + non-generic

© http://www.falstad.com/vector/

Gradient vector field

• generic gradient

• ➾ Morse-Smale structure

Morse theory

• topology from local function analysis

• + Smale complex / topological graph

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single
least squares optimization problem. For each constraint point
p ∈ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight ωp. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������

E
ω1 c1

ω2 c2
...

ω|P | c|P |

uM −

0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)

�����������

2

2

,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

K +
�

p∈P

ω2
p cT

p cp

 uM =
�

p∈P

t(p) ω2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ε, the u(p) − ε and
u(p) + ε level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

χ =
d�

i=0

(−1)i ·mi

Morse theory

• Manifold

• Function

• Critical point

• Index

• Topology

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single
least squares optimization problem. For each constraint point
p ∈ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight ωp. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������

E
ω1 c1

ω2 c2
...

ω|P | c|P |

uM −

0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)

�����������

2

2

,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

K +
�

p∈P

ω2
p cT

p cp

 uM =
�

p∈P

t(p) ω2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ε, the u(p) − ε and
u(p) + ε level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

f : M → R
x ∈ M, ∂f(x) = 0

#{λ ∈ Eig(∂2f),λ < 0}
χ =

d�

i=0

(−1)i ·mi . . .

M ⊂ Rn

Function analysis is intuitive

• Intuition:
• quick and ready insight
• immediate apprehension or cognition

© http://www.karlscalculus.org/
© http://www.tutornext.com/

More topological objects

differential discrete

Local function analysis
in the discrete setting???

• Sampled function
+ interpolation

• Weight on
graph structures

Discrete function analysis?

• not intuitive:
• finite difference (polynomial interpolation)

• Fourier derivative (harmonic interpolation)

• finite elements (template approximation)

• on manifold?

© feflow

Discrete analysis?

• Intuition on graphs?

Discrete Morse theories

• piecewise-linear interpolation
• ➾ Banchoff’s approach

• combinatorial formulation
• ➾ Forman’s approach

Banchoff’s approach

• intuition: sampling of

• guarantees: Euler , Gauss Bonnet

• local linear interpolations
• ➾ critical vertices

χ

f

regular minimum saddle maximum degenerated

PL Morse-Smale complex

• numerical integration of streamlines

• ➾ Morse-Smale structure

Links and critical vertices. We assume a data structure
for the triangulation of that connects neighboring sim-
plices so that a local walk can be performed in constant time
per visited simplex. An example of such a representation is
the edge-facet data structure described in [5]. It stores or-
dered triangles linked into rings around shared edges. To
illustrate the functionality of this data structure, consider the
computation of the link of a vertex . Letting be
one of the triangles that share that vertex, we use depth-first
search to traverse all triangles in the star. For each visited
triangle , the edge belongs to the link of and so do
the triangles that precede and succeed in the ring around
. Given the initial triangle , the search takes time pro-

portional to the number of edges in the link.
With an additional test of the vertex heights, we can iden-

tify the lower link as a subcomplex of the link. As discussed
in Section 3, we use the reduced Betti numbers of the lower
link to classify the vertex as regular, minimum, 1-saddle,
2-saddle, maximum or multiple saddle. We get the reduced
Betti numbers by keeping track of the components in the
lower link. If there are no components then and

for all , so is a minimum. If the lower link
is equal to the link then and for all , so
is a maximum. Otherwise, and is one less
than the number of components. We get from and the
Euler characteristic , where is the num-
ber of -simplices in the lower link of : .
According to Table 1, is regular if and it is
a multiple saddle combining 1-saddles and 2-saddles,
otherwise.

Running time. By choice of the data structure represent-
ing the triangulation of the manifold, the link of can
be computed in time proportional to its size. Similarly, the
classification of , which reduces to counting the simplices
and the components in the lower link, can be done in time
proportional to that size. By definition, the size of the link is
the number of simplices it contains, and because it is a two-
dimensional sphere, this is , where is its number
of triangles. Each triangle belongs to only two links, which
implies that the total size of all vertex links is

where is the number of vertices and is the number of tri-
angles in . As we will see later, the above time analysis
applies to most steps taken by our algorithm. Indeed, we
typically work inside a vertex link and compute simple sub-
structures, such as shortest-path trees and circles separating
oceans and continents from each other. We will see that with
the assumption of unit length edges both tasks and miscel-
laneous others can be performed in time proportional to the
size of the link and, in total, proportional to the size of .
Besides computing vertex links, the algorithm constructs

descending and ascendingmanifolds, which intersect to form

the quasi Morse-Smale complex. Even though these mani-
folds are made of simplices in , their total size can exceed
the size of by any arbitrary amount. This is because the
manifolds may fold onto themselves and onto each other. A
simplex in can therefore belong to several manifolds and it
can belong several times to a single manifold. Whatever the
situation, the time needed to add simplices to the description
of the quasi Morse-Smale complex is only proportional to
the total size of its description.
In summary, the running time of the algorithm is bounded

from above by a constant times (for sorting the ver-
tices) plus the input size (for constructing and analyzing the
vertex links) plus the output size (for describing the quasi
Morse-Smale complex).

5 Descending Manifolds
We compute the descending 1- and 2-manifolds simultane-
ously during one sweep. To simplify the presentation, we
first discuss them separately and restrict our attention to sim-
ple critical points.

Descending 1-manifolds. Each descending 1-manifold is
an open interval that belongs to a 1-saddle . It con-
sists of two descending arcs and we call the root of the
1-manifold and of its arcs. As illustrated in Figure 3, the
1-manifold descends from its root on both sides and, by sim-
ulation of the Morse-Smale condition, ends at minima of .
It is possible that the two arcs end at the same minimum,
but because they do not contain that minimum, their union is
still an open interval and not a closed circle. In the Morse-

Figure 3: The descending 1-manifold rooted at a 1-saddle. The
spheres sketch the links of the root, a regular point, and one of the
two minima.

Smale case, all vertices of the 1-manifold except for its root
are regular, but in the piecewise linear case it is also possi-
ble that the 1-manifold passes through a 2-saddle or 1-saddle
. We have because is necessarily lower than the

root. For an arc it makes little difference whether it passes
through a regular or a critical point. However, since starts
its own descending manifold, we need to make sure that the

5

!"#$%& '#$ () *!+,"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!,
41 ., .1*$,54,6 !% 5$1*$,54,6 -."# "#." $,51 ." . 1.553$& 7$
148+3."$ "#$ 6$,$%4* *.1$ 9: $;"$,54,6 "#$ -."# 9$:!,5 "#$
1.553$& <6.4,= >$ 642$ "#$ 5$".431 4, ?$*"4!, @&

4 Computing Quasi MS-complexes
A42$, . "%4.,6+3."4!, !/ . *!8-.*" B08.,4/!35 >4"#!+"
9!+,5.%:= .,5 . () #$46#" /+,*"4!, = !+% 6!.3 41 "! *!80
-+"$ "#$ C!%1$0?8.3$ *!8-3$; /!% . 148+3."$5 +,/!354,6 !/
& D, "#41 1$*"4!,= >$ ".E$. !%1" 1"$-= *!8-+"4,6 . F+.14
C?0*!8-3$; !/ & '! !9".4, . /.1" .36!%4"#8= >$ 3484"
!+%1$32$1 "! -."#1 +14,6 "#$ $56$1 !/ & 7#43$ "#$ %$1+3"4,6
!8-3$; 41 ,+8$%4.33: 4,.**+%."$= "#$ /!*+1 41 !, *.-"+%4,6
"#$ 1"%+*"+%$!/ "#$ C!%1$0?8.3$ *!8-3$;&

G$*.33 "#." "#$ F+.14 C?0*!8-3$; >433 #.2$ "#$ *%4"40
.3 -!4,"1 !/ .1 2$%"4$1= .,5 8!,!"!,4* ,!,0*%!114,6 -."#1
.1 .%*1& '! %$1!32$ "#$ 8$%64,6 .,5 /!%E4,6 !/ -."#1= >$ /!%0
8+3."$. "#%$$01".6$.36!%4"#8& D, $.*# 1".6$= >$ *!8-+"$.
*!8-3$;>#!1$.%*1 .%$,!,0*%!114,68!,!"!,4* -."#1= 6+.%0
.,"$$4,6 "#41 -%!-$%": /!% "#$!,.3 *!8-3$;&

Complex with junctions. D, "#$!%1" 1".6$= >$ 9+435 . *!80
-3$; >4"# $;"%. 2$%"4*$1& 7$ 9$64, 9: *3.114/:4,6 .33 2$%"4*$1
.,5 *!8-+"4,6 "#$ >$56$1 !/ "#$4% 3!>$% .,5 +--$% 1".%1& 7$
5$"$%84,$ "#$ 1"$$-$1" 56 4, $.*# >$56$.,5 1".%" .10
$,54,6 .,5 5$1$,54,6 -."#1 /%!8 2%: 0/!35 1.553$&
H.*# -."# 9$64,1 4, 4"1 !>, >$56$.,5 /!33!>1 . 1$F+$,*$
!/ 1"$$-$1" $56$1 +,"43 4" #4"1

I.J . 84,48+8 !% . 8.;48+8=
I9J . -%$24!+13: "%.*$5 -."# ." . %$6+3.% -!4,"= !%
I*J .,!"#$% 1.553$=

." >#4*# -!4," "#$ -."# $,51& K.1$ I.J *!%%$1-!,51 "! "#$
6$,$%4* *.1$ /!% 18!!"# #$46#" /+,*"4!,1= K.1$ I9J *!%%$0
1-!,51 "! . 8$%64,6 !% /!%E4,6= .,5 K.1$ I*J 41 "#$ () *!+,0
"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!, 9$">$$, . 1".93$.,5
., +,1".93$ L08.,4/!35&

'! %$1!32$ K.1$ I9J= >$.33!> %$6+3.% -!4,"1 !% junctions
.1 2$%"4*$1 !/ "#$ *!8-3$;& 7$ $4"#$% *%$."$. ,$> M+,*"4!,
.,5 1-34" "#$ -%$24!+13: "%.*$5 -."#= !% >$ 4,*%$.1$ "#$ 5$0
6%$$!/ "#$ -%$24!+13: *%$."$5 M+,*"4!,& N: 5$!,4"4!,= M+,*0
"4!,1 %$8!2$.33 *%!114,61 4, "#$ *!8-3$;& 7$ >433 $3484,."$
M+,*"4!,1 .,5 %$1!32$ K.1$ I*J 4, "#$ 1$*!,5 1".6$!/ "#$.30
6!%4"#8&

7$ +1$ "#$ F+.5 56 5.". 1"%+*"+%$ OLPQ "! 1"!%$ "#$
!8-3$; 5$!,$5 9: "#$ -."#1& '#$ 2$%"4$1 !/ "#$ *!8-3$;
.%$ "#$ *%4"4*.3 -!4,"1 .,5 M+,*"4!,1= .,5 "#$.%*1 .%$ "#$ -.4%0
>41$ $56$0541M!4," -."#1 *!,,$*"4,6 "#$1$ 2$%"4*$1&

Extending paths. D, "#$ 1$*!,5 1".6$!/ !+% .36!%4"#8= >$
$;"$,5 -."#1 "! %$8!2$ M+,*"4!,1 .,5 %$5+*$ "#$,+89$% !/
.%*1 -$% 0/!35 1.553$ "! & 7#$,$2$% >$ $;"$,5 .

-."#= >$ %!+"$ 4" .3!,6 .,5 4,!,4"$148.33: *3!1$ "! ., .3%$.5:
$;41"4,6 -."#& D, -%.*"4*$= >$ 148+3."$ "#41 $;"$,14!, *!8940
,."!%4.33: >4"#4, "#$ F+.50$56$ 5.". 1"%+*"+%$& D, $;"$,54,6
-."#1= >$ 8.: *%$."$,$> -."#1 $,54,6 ." !"#$% M+,*"4!,1
.,5 1.553$1& K!,1$F+$,"3:= >$ 8+1" -%!*$11 "#$ 2$%"4*$1 4,
. 1$F+$,*$ "#." -%2,"1 *:*34* 5$-$,5$,*4$1& ?4,*$.1*$,50
4,6 .,5 5$1*$,54,6 -."#1 .%$ $;"$,5$5 4, !--!14"$ 54%$*"4!,1=
>$,$$5 ">! !%5$%4,61 .,5 >$ "!+*# 2%: 2$%"$; ">4*$& D"
41 *!,2$,4$," "! !%1" $;"$,5 .1*$,54,6 -."#1 4, "#$!%5$% !/
4,*%$.14,6 #$46#"= .,5 1$*!,5 $;"$,5 5$1*$,54,6 -."#1 4, "#$
!%5$% !/ 5$*%$.14,6 #$46#"& 7$,$;" 541*+11 !+% %!+"4,6 -%!0
$5+%$1 /!% M+,"4!,1 .,5 1.553$1& D, "#$!6+%$1 "#." /!33!>=
>$!%4$," -."#1 4, "#$ 54%$*"4!, "#$: $8.,."$ /%!8 . 1.553$&

yy

R46+%$ ST (."#1 $,54,6 ." M+,*"4!,1 .%$ $;"$,5$5 9: 5+-34*."4!, .,5
!,."$,."4!,&

K!,145$% "#$ M+,*"4!, 4, R46+%$ S !, "#$ 3$/"& N: 5$/0
4,4"4!,= 41 . %$6+3.% -!4," >4"# 3!>$% .,5 +--$% 1".%1 *!,0
141"4,6 !/ !,$ >56 $.*#& '#$!%1" "48$ >$ $,*!+,"$% =
"#$ -."# 41 "%.*$5 %46#" "#%!+6# "#$ -!4,"& D, 2%: .554"4!,.3
$,*!+,"$%= "#$ -."# $,51 ." = .1 41 ,!> . M+,*"4!,& D/ "#$
!%1" -."# 41 .1*$,54,6= "#$, !,$.1*$,54,6 -."# 3$.2$1 4,"!
"#$ +--$% 1".%= .33 !"#$% .1*$,54,6 -."#1 .--%!.*# /%!8 "#$
3!>$% 1".%= .,5 .33 5$1*$,54,6 -."#1 .--%!.*# /%!8 "#$ +-0
-$% 1".%& '#41 41 "#$ *.1$ 1#!>, 4, R46+%$ S& 7$ 5+-34*."$
-."#1 /!% .33 M+,*"4!,1 +14,6 !+% ">! !%5$%4,61& U!"$ "#." "#$
,$> -."#1= 1#!>, 4, "#$ 84553$!/ R46+%$ S= 8.: 4,*3+5$ 5+0
-34*."$1 1-.>,$5 9: M+,*"4!,1 "#." !**+% 9$/!%$ "#41 2$%"$;
4, ., !%5$%4,6& R4,.33:= >$ *!,*."$,."$ "#$ %$1+3"4,6 -."#1 4,
-.4%1 >4"#!+" *%$."4,6 *%!114,61= .1 1#!>, 4, R46+%$ S "! "#$
%46#"&

xx x

R46+%$ VT (."#1 "#." $,5 ." . 1.553$ 9: K.1$ I*J .%$ $;"$,5$5 9:
5+-34*."4!, .,5 *!,*."$,."4!,&

7$,$;" %$1!32$ K.1$ I*J= -."#1 "#." #.2$.,!"#$% 1.50
53$.1 ., $,5 -!4,"& K!,145$% "#$ 1.553$ 4, R46+%$ V& 7$
3!!E ." -."# $;"$,14!,1 !,3: >4"#4, !,$!/ "#$ 1$*"!%1 9$0
">$$, ">! *:*34*.33: *!,"46+!+1 1"$$-$1" $56$1& 74"#4, "#41
1$*"!%= "#$%$ 8.: 9$.1*$,54,6 -."#1 .--%!.*#4,6 /%!8
>4"#4, "#$!2$%3.--4,6>56!/ "#$ 3!>$% 1".%= .,5 5$1*$,50
4,6 -."#1 .--%!.*#4,6 /%!8 >4"#4, "#$!2$%3.--4,6 >56
!/ "#$ +--$% 1".%= .1 1#!>, 4, R46+%$ V "! "#$ 3$/"& </"$%

W

!"" #$%&'($) '* + ,$)'-."!&$)'-/"'('&0 &1 2.)&'30

&4') !)).-/&'1* (1-/.&!&'1*!""0 567+

8* ! &%'!*9."!&'1*: &4$ *!&.%!" (1*($/& 13 ! *$'94;1%411<

13 ! #$%&$= ') &4$ star: : &4!& (1*)')&) 13 &19$&4$% >'&4

&4$ <9) !*< &%'!*9"$) &4!&)4!%$!) ! #$%&$=+ ?1%-!""0:

: >4$%$ '))41%& 31% ;$'*9

! 3!($ 13 + @'*($!"" #$%&'($) 4!#$ <'33$%$*& 4$'94&): $!(4

<9 !*< &%'!*9"$ 4!) ! .*'A.$ "1>$)& !*< ! .*'A.$ 4'94$)&

#$%&$=+ ?1""1>'*9 B!*(4133 5C7: >$.)$ &4') &1 <$!*$ &4$
lower !*< upper stars 13 :

D4$)$).;)$&) 13 &4$)&!% (1*&!'* &4$)'-/"'($) &4!& 4!#$!)

&4$'% 4'94$)& 1% &4$'% "1>$)& #$%&$=+ ,$ -!0 /!%&'&'1* '*&1

! (1""$(&'1* 13 $'&4$%).;)$&): +

,$ -!0 !")1 .)$ &4$ "1>$% !*< .//$%)&!%) &1 ("!))'30 !

#$%&$= !) %$9."!% 1% (%'&'(!"+ ,$ <$!*$! wedge !) ! (1*&'9.E
1.))$(&'1* 13 &4!& ;$9'*) !*< $*<) >'&4 !* <9+ F)

)41>* '* ?'9.%$ C: &4$ "1>$%)&!% $'&4$% (1*&!'*) &4$ $*&'%$

)&!% 1%)1-$ *.-;$% 13 >$<9$): !*< &4$)!-$ ') &%.$

31% &4$.//$%)&!%+ 83 : &4$* !*< ') !

-!='-.- %$9."!%)!<<"$ -1*G$0H)!<<"$

?'9.%$ CI D4$ "'94&)4!<$< "1>$% ><9) !%$ (1**$(&$< ;0 >4'&$

&%'!*9"$) &1 &4$ <!%G)4!<$< .//$% ><9)+

-!='-.-+ @0--$&%'(!""0: '3 : &4$* !*<

') ! -'*'-.-+ J&4$%>')$: ') %$9."!% '3 : ! K)'-/"$L

)!<<"$ '3 : !*< ! -fold 1% multiple saddle '3 + F

CE31"<)!<<"$ ') 13&$* (!""$< ! monkey saddle+

Multiple saddles. ,$ (!* .*31"< ! E31"<)!<<"$ '*&1 &>1

)!<<"$) 13 -."&'/"'('&0 >'&4 ;0 &4$

31""1>'*9 /%1($<.%$+ ,$)/"'& ! ><9 13 K&4%1.94 ! &%'E

!*9"$: '3 *$($))!%0L: !*<)'-'"!%"0)/"'& ! *1*E!<2!($*& >$<9$

13 + D4$ *$> *.-;$% 13 K"1>$% !*< .//$%L ><9) ')

: !) %$A.'%$<+ B0 %$/$!&'*9

&4') /%1($)): >$ $#$*&.!""0 !%%'#$!&)'-/"$)!<<"$)+ ,$

/"!($ &4$)$)!<<"$) !& &4$)!-$ 4$'94& !) &4$ E)!<<"$ &4$0

%$/%$)$*&: !*<)'-."!&$ /$%&.%;!&'1*+ D4$ (1-;'*!&1%'!" /%1E

($)) ') !-;'9.1.): ;.& 31% 1.% /.%/1)$): '& ')).3!('$*& &1
/'(G !* !%;'&%!%0 .*31"<'*9 3%1- &4$)$& 13 /1))';'"'&'$)+ ?1%

! -1*G$0)!<<"$: &4$%$!%$ &4%$$ >!0) &1 -'*'-!""0 .*31"<:

!))41>* '* ?'9.%$ M+

Merging and forking. D4$ (1*($/& 13 !* '*&$9%!" "'*$ 31% !

NO 3.*(&'1* ') *1& >$"" <$!*$<+ 8*)&$!<: >$ (1*)&%.(& -1*1E

?'9.%$ MI F -1*G$0)!<<"$ -!0 ;$.*31"<$< '*&1 &>1)'-/"$)!<E

<"$) '* &4%$$ <'33$%$*& >!0)+ 83 ! ><9 (1*)')&) 13 !)'*9"$ <9:

&4') <9 .*31"<) '*&1 &>1 (1/'$)+

&1*'((.%#$) &4!& *$#$% (%1))+ @.(4 (.%#$) (!* -$%9$ &1E

9$&4$% !*< 31%G !3&$% ! >4'"$+ P1%$1#$%: '& ') /1))';"$ 31%

&>1 (.%#$) &1 !"&$%*!&$;$&>$$* -$%9'*9 !*< 31%G'*9 !* !%E

;'&%!%0 *.-;$% 13 &'-$)+ D1 %$)1"#$ &4'): >4$* &>1 (.%#$)

-$%9$: >$ /%$&$*< &4!& &4$0 -!'*&!'* !* '*!*'&$)'-!")$/!E
%!&'1*: %.**'*9)'<$;0)'<$ >'&41.& (%1))'*9+ ?'9.%$ Q '"".)E

?'9.%$ QI P$%9'*9 !*< 31%G'*9 NO (.%#$) !*< &4$'% (1%%$)/1*<'*9

)-11&4 "1> /'(&.%$)+

&%!&$) &4$ &>1 NO !%&'3!(&) !*< &4$ (1%%$)/1*<'*9)'-."!&$<

)-11&4 %$)1".&'1*+ D4$ (1-/.&!&'1*!")'-."!&'1* 13 <')21'*&

'*&$9%!" "'*$) ') <$"'(!&$!*< <$)(%';$< '* @$(&'1* Q+

Non-transversal intersections. D4$)&!*<!%< $=!-/"$ '*

P1%)$ &4$1%0 ') &4$ 4$'94& 3.*(&'1* 1#$% ! &1%.))&!*<'*9 1*

'&))'<$+ D4$ "1>$)& !*< 4'94$)& /1'*&) 13 &4$ '**$% %'*9 !%$

&4$ 1*"0)!<<"$): !))41>* '* ?'9.%$ R+ B1&4 &4$.*)&!;"$

?'9.%$ RI D4$.*)&!;"$ SE-!*'31"< 13 &4$ "1>$%)!<<"$!//%1!(4$)

&4$.//$%)!<<"$+

SE-!*'31"< 13 &4$ "1>$%)!<<"$!*< &4$)&!;"$ SE-!*'31"< 13

&4$.//$%)!<<"$ 31""1> &4$ '**$% %'*9:)1 &4$0 1#$%"!/ '*

&>1 1/$* 4!"3E('%("$)+ T$*$%'(!""0:).(4 *1*E&%!*)#$%)!" '*E

&$%)$(&'1*) <1 *1& 4!//$*+ D4$ (4!%!(&$%')&'(/%1/$%&0 13 !

*1*E&%!*)#$%)!" '*&$%)$(&'1* ') &4!& &4$.*)&!;"$ SE-!*'31"<

13 1*$)!<<"$!//%1!(4$) !*1&4$%)!<<"$: !*< #'($ #$%)!+ F*

!%;'&%!%'"0)-!"" /$%&.%;!&'1* 13 &4$ 4$'94& 3.*(&'1*).3!($)
&1 -!G$ &4$ &>1 SE-!*'31"<) -')) &4$ 1&4$%)!<<"$) !*< !/E

/%1!(4 ! -!='-.- !*< ! -'*'-.- >'&41.& -$$&'*9 $!(4

Q

Appeared in the proceedings of IEEE Conference on Visualization, 2005

Topology-based Simplification for Feature Extraction from 3D Scalar Fields

Attila Gyulassy
∗

Vijay Natarajan
†

Valerio Pascucci
‡

Peer-Timo Bremer
§

Bernd Hamann
¶

Figure 1: Topology simplification applied to spatial probability distribution of electrons in a hydrogen atom. The input has a large number of
critical points, several of which are identified as being insignificant and removed by repeated application of two atomic operations. Features are
identified by the surviving critical points and enhanced in a volume-rendered image, using an automatically designed transfer function.

ABSTRACT

In this paper, we present a topological approach for simplifying
continuous functions defined on volumetric domains. We introduce
two atomic operations that remove pairs of critical points of the
function and design a combinatorial algorithm that simplifies the
Morse-Smale complex by repeated application of these operations.
The Morse-Smale complex is a topological data structure that pro-
vides a compact representation of gradient flow between critical
points of a function. Critical points paired by the Morse-Smale
complex identify topological features and their importance. The
simplification procedure leaves important critical points untouched,
and is therefore useful for extracting desirable features. We also
present a visualization of the simplified topology.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.6 [Computer Graphics]: Method-
ology and Techniques;

Keywords: Morse theory, Morse-Smale complexes, computa-
tional topology, multiresolution, simplification, feature detection,
3D scalar fields.

1 INTRODUCTION

Scientific data are becoming increasingly complex and require so-
phisticated hierarchical representations for their effective explo-
ration. In the process of creating such a hierarchy, it is highly
desirable that important features be identified and preserved while

∗Institute for Data Analysis and Visualization, Dept. of Computer Sci-
ence, University of California, Davis. e-mail: aggyulassy@ucdavis.edu

†Institute for Data Analysis and Visualization, Dept. of Computer Sci-
ence, University of California, Davis. e-mail: vnatarajan@ucdavis.edu

‡Center for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory. e-mail: pascucci1@llnl.gov

§Dept. of Computer Science, University of Illinois, Urbana Champaign.
e-mail: ptbremer@acm.org

¶Institute for Data Analysis and Visualization, Dept. of Computer Sci-
ence, University of California, Davis. e-mail: hamann@cs.ucdavis.edu

insignificant features be removed early. Note that noise in the data
can also be interpreted as a feature, albeit one with relatively low
importance. A crucial ingredient of any hierarchy building process
is the ordering of features based on significance. Current methods
typically adopt a geometric approach where the numerical error as-
sociated with the simplified model is used as the measure of ap-
proximation quality. Any removal of topological features caused
by these methods is incidental and not always controlled. We adopt
a more direct approach by explicitly identifying the topological fea-
tures, ordering them, and finally removing them in order of increas-
ing significance.

Related work. Scientific data is usually represented as a set of dis-
crete samples of a function defined on a two- or three-dimensional
domain. A continuous function is obtained by interpolating the
samples within an underlying mesh of the domain. In order to effi-
ciently handle the increasingly large data sets for visualization pur-
poses, several methods have been proposed to simplify them i.e.,
reduce the domain size and complexity. These methods typically
decimate the mesh by repeated application of a fundamental oper-
ation, the most successful one being edge contraction [13]. The
error introduced by edge contraction is computed as the sum of dis-
tances to planes that are associated with end points of the contracted
edge [10]. Originally developed for surface meshes, edge contrac-
tion has been successfully extended to tetrahedral meshes [4, 16]
and higher-dimensional meshes [11]. A purely geometric approach
to simplification is able to remove small features but does not pro-
vide the desired level of control and hence cannot replace topology
simplification. Naturally, there has been considerable work done
on topological simplification of scalar functions. In the case of a
real-valued function defined on a 3D domain, the topological fea-
tures are created/destroyed by critical points of the function. Two
data structures have been proposed in the literature for storing these
topological features: Reeb graphs and Morse-Smale complexes.
The Reeb graph [17] traces components of isocontours/isosurfaces
as they sweep the domain. In the case of simply connected domains,
the Reeb graph has no cycles and is called a contour tree. Reeb
graphs, contour trees, and their variants have been used quite suc-
cessfully to guide the removal of topological features [3, 12, 20, 22].
The Morse-Smale complex [19] decomposes the domain of a func-
tion into regions having uniform gradient flow behavior. It has been
used recently to perform controlled simplification of topology for
functions defined on 2-manifolds [2]. The use of Morse-Smale

1

Appeared in the proceedings of IEEE Conference on Visualization, 2005

saddle-maximum cancellation simplifies the function by removing
a “bump”. Figure 4 shows how the integral lines terminating at the
two maxima flow into the remaining maximum after cancellation.
The saddle-maximum cancellation is similar to its two-

dimensional analog, which is also implemented as a merging of
three critical points. We merge neighboring cells in the ring around
the saddle-maximum arc to reconnect the complex. Therefore, be-
sides removing two critical points, this cancellation also removes
several crystals, quads, and arcs from the complex.
A saddle-maximum cancellation is legal only if the 2-saddle is

connected to two distinct maxima. If this condition is not met, then
we recognize that the cancellation causes a strangulation of the de-
scending disk that originates at the 2-saddle. Indeed, it is not pos-
sible to route the integral lines terminating at the 2-saddle if we do
cancel such a saddle-maximum pair. Figure 5 shows this configu-
ration.

Figure 5: The two integral lines beginning at a 2-saddle flow to the
same maximum. Canceling the saddle-maximum pair causes a stran-
gulation of the blue descending disk because integral lines terminating
at the 2-saddle are left without a destination.

Saddle-saddle cancellation. The saddle-saddle cancellation re-
moves a 1-saddle-2-saddle pair. This cancellation does not have an
analog in lower dimensions and therefore intuition from 2D does
not help. A 1-saddle descends to exactly two minima, and a 2-
saddle ascends to exactly two maxima. After canceling this saddle
pair, we need to ensure that the two pairs of extrema originally sep-
arated by these saddles remain that way. This necessitates the in-
troduction of new cells to fill in space between the two pairs of ex-
trema. The easiest way to think about this cancellation is to consider
what happens to the descending disk originating from the 2-saddle,
and the ascending disk originating from the 1-saddle. Upon can-
cellation, these two disks disappear and neighboring disks stretch
out and share their boundary. Figure 6 illustrates the operation by
showing the descending disks before and after cancellation. We
can no longer consider the cancellation as a merging of three crit-
ical points, as we did for the saddle-maximum cancellation. Con-
sider the descending disk that is removed by the cancellation. The
boundary of this disk consists of alternating 1-saddles and minima.
Arcs lying within the disk connect the source 2-saddle to 1-saddles
on the boundary. One of these 1-saddles is involved in the cancel-
lation. This 1-saddle and its two descending arcs are deleted by
the cancellation. Descending disks that contain the two deleted de-
scending arcs in their boundary expand to share the boundary of
the removed disk. Similarly, one ascending disk is removed and its
boundary is shared by the neighboring ascending disks.
The best way to think about how to reconnect the complex after

a saddle-saddle cancellation is, again, in terms of ascending and de-
scending disks. All surviving descending disks expand to share the
boundary of the deleted disk thereby creating connections between

(a)

(b)

Figure 6: A saddle-saddle cancellation. (a) Descending disks affected
by the cancellation. The red arc connects the pair to be canceled. All
four disks (a,b,c, and d) have two common descending arcs (shown
in green) on their boundary, both originating from the 1-saddle to be
removed. (b) Descending disks that remain after cancellation. The
green descending arcs are deleted from the boundary of the three
surviving disks, which now extend and inherit the boundary of d.
Ascending manifolds are modified in a similar way.

surviving 2-saddles and 1-saddles on the newly inserted boundary.
Similarly, surviving 1-saddles connect to 2-saddles on the newly
inserted boundary of their ascending disks. This gives the full re-
connectivity of the complex after a cancellation.
The Morse-Smale complex actually gains cells after a saddle-

saddle cancellation because re-routing the descending disks creates
new intersections between ascending and descending disks. Fig-
ure 7 shows the cells destroyed and created by this operation. For
simplicity, these figures show only three of the twelve crystals de-
stroyed by the cancellation and the cells that reconnect this complex
within this region. Figure 8 shows how one of these newly created
crystals fills in the space occupied by the destroyed crystals. In-
troducing new cells is counter-intuitive because simplification ac-
tually does not lead to a smaller complex. Although the Morse-
Smale complex apparently gains complexity in size, the function is
smoothed by the removal of these saddle pairs. Also, note that the
cells created by the saddle-saddle cancellation are introduced into
rings around saddle-extremum pairs. A future saddle-extremum
cancellation will remove all these cells leading to a smoother Morse

4

© Zomorodian, Edelsbrunner,
Harer, Natarajan, Pascucci,

Gyulassy, Bremer, Hamann...

Morse theory

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single
least squares optimization problem. For each constraint point
p ∈ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight ωp. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������

E
ω1 c1

ω2 c2
...

ω|P | c|P |

uM −

0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)

�����������

2

2

,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

K +
�

p∈P

ω2
p cT

p cp

 uM =
�

p∈P

t(p) ω2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ε, the u(p) − ε and
u(p) + ε level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

f : M → R
M ⊂ Rn

#Eig(∂2f) ∩ R−

∂f−1({0})

χ =
�

(−1)i ·mi . . .

• Object

• Function

• Critical set

• Index

• Topology

, PL - Morse theories∂

!"#$%& '#$ () *!+,"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!,
41 ., .1*$,54,6 !% 5$1*$,54,6 -."# "#." $,51 ." . 1.553$& 7$
148+3."$ "#$ 6$,$%4* *.1$ 9: $;"$,54,6 "#$ -."# 9$:!,5 "#$
1.553$& <6.4,= >$ 642$ "#$ 5$".431 4, ?$*"4!, @&

4 Computing Quasi MS-complexes
A42$, . "%4.,6+3."4!, !/ . *!8-.*" B08.,4/!35 >4"#!+"
9!+,5.%:= .,5 . () #$46#" /+,*"4!, = !+% 6!.3 41 "! *!80
-+"$ "#$ C!%1$0?8.3$ *!8-3$; /!% . 148+3."$5 +,/!354,6 !/
& D, "#41 1$*"4!,= >$ ".E$. !%1" 1"$-= *!8-+"4,6 . F+.14
C?0*!8-3$; !/ & '! !9".4, . /.1" .36!%4"#8= >$ 3484"
!+%1$32$1 "! -."#1 +14,6 "#$ $56$1 !/ & 7#43$ "#$ %$1+3"4,6
!8-3$; 41 ,+8$%4.33: 4,.**+%."$= "#$ /!*+1 41 !, *.-"+%4,6
"#$ 1"%+*"+%$!/ "#$ C!%1$0?8.3$ *!8-3$;&

G$*.33 "#." "#$ F+.14 C?0*!8-3$; >433 #.2$ "#$ *%4"40
.3 -!4,"1 !/ .1 2$%"4$1= .,5 8!,!"!,4* ,!,0*%!114,6 -."#1
.1 .%*1& '! %$1!32$ "#$ 8$%64,6 .,5 /!%E4,6 !/ -."#1= >$ /!%0
8+3."$. "#%$$01".6$.36!%4"#8& D, $.*# 1".6$= >$ *!8-+"$.
*!8-3$;>#!1$.%*1 .%$,!,0*%!114,68!,!"!,4* -."#1= 6+.%0
.,"$$4,6 "#41 -%!-$%": /!% "#$!,.3 *!8-3$;&

Complex with junctions. D, "#$!%1" 1".6$= >$ 9+435 . *!80
-3$; >4"# $;"%. 2$%"4*$1& 7$ 9$64, 9: *3.114/:4,6 .33 2$%"4*$1
.,5 *!8-+"4,6 "#$ >$56$1 !/ "#$4% 3!>$% .,5 +--$% 1".%1& 7$
5$"$%84,$ "#$ 1"$$-$1" 56 4, $.*# >$56$.,5 1".%" .10
$,54,6 .,5 5$1$,54,6 -."#1 /%!8 2%: 0/!35 1.553$&
H.*# -."# 9$64,1 4, 4"1 !>, >$56$.,5 /!33!>1 . 1$F+$,*$
!/ 1"$$-$1" $56$1 +,"43 4" #4"1

I.J . 84,48+8 !% . 8.;48+8=
I9J . -%$24!+13: "%.*$5 -."# ." . %$6+3.% -!4,"= !%
I*J .,!"#$% 1.553$=

." >#4*# -!4," "#$ -."# $,51& K.1$ I.J *!%%$1-!,51 "! "#$
6$,$%4* *.1$ /!% 18!!"# #$46#" /+,*"4!,1= K.1$ I9J *!%%$0
1-!,51 "! . 8$%64,6 !% /!%E4,6= .,5 K.1$ I*J 41 "#$ () *!+,0
"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!, 9$">$$, . 1".93$.,5
., +,1".93$ L08.,4/!35&

'! %$1!32$ K.1$ I9J= >$.33!> %$6+3.% -!4,"1 !% junctions
.1 2$%"4*$1 !/ "#$ *!8-3$;& 7$ $4"#$% *%$."$. ,$> M+,*"4!,
.,5 1-34" "#$ -%$24!+13: "%.*$5 -."#= !% >$ 4,*%$.1$ "#$ 5$0
6%$$!/ "#$ -%$24!+13: *%$."$5 M+,*"4!,& N: 5$!,4"4!,= M+,*0
"4!,1 %$8!2$.33 *%!114,61 4, "#$ *!8-3$;& 7$ >433 $3484,."$
M+,*"4!,1 .,5 %$1!32$ K.1$ I*J 4, "#$ 1$*!,5 1".6$!/ "#$.30
6!%4"#8&

7$ +1$ "#$ F+.5 56 5.". 1"%+*"+%$ OLPQ "! 1"!%$ "#$
!8-3$; 5$!,$5 9: "#$ -."#1& '#$ 2$%"4$1 !/ "#$ *!8-3$;
.%$ "#$ *%4"4*.3 -!4,"1 .,5 M+,*"4!,1= .,5 "#$.%*1 .%$ "#$ -.4%0
>41$ $56$0541M!4," -."#1 *!,,$*"4,6 "#$1$ 2$%"4*$1&

Extending paths. D, "#$ 1$*!,5 1".6$!/ !+% .36!%4"#8= >$
$;"$,5 -."#1 "! %$8!2$ M+,*"4!,1 .,5 %$5+*$ "#$,+89$% !/
.%*1 -$% 0/!35 1.553$ "! & 7#$,$2$% >$ $;"$,5 .

-."#= >$ %!+"$ 4" .3!,6 .,5 4,!,4"$148.33: *3!1$ "! ., .3%$.5:
$;41"4,6 -."#& D, -%.*"4*$= >$ 148+3."$ "#41 $;"$,14!, *!8940
,."!%4.33: >4"#4, "#$ F+.50$56$ 5.". 1"%+*"+%$& D, $;"$,54,6
-."#1= >$ 8.: *%$."$,$> -."#1 $,54,6 ." !"#$% M+,*"4!,1
.,5 1.553$1& K!,1$F+$,"3:= >$ 8+1" -%!*$11 "#$ 2$%"4*$1 4,
. 1$F+$,*$ "#." -%2,"1 *:*34* 5$-$,5$,*4$1& ?4,*$.1*$,50
4,6 .,5 5$1*$,54,6 -."#1 .%$ $;"$,5$5 4, !--!14"$ 54%$*"4!,1=
>$,$$5 ">! !%5$%4,61 .,5 >$ "!+*# 2%: 2$%"$; ">4*$& D"
41 *!,2$,4$," "! !%1" $;"$,5 .1*$,54,6 -."#1 4, "#$!%5$% !/
4,*%$.14,6 #$46#"= .,5 1$*!,5 $;"$,5 5$1*$,54,6 -."#1 4, "#$
!%5$% !/ 5$*%$.14,6 #$46#"& 7$,$;" 541*+11 !+% %!+"4,6 -%!0
$5+%$1 /!% M+,"4!,1 .,5 1.553$1& D, "#$!6+%$1 "#." /!33!>=
>$!%4$," -."#1 4, "#$ 54%$*"4!, "#$: $8.,."$ /%!8 . 1.553$&

yy

R46+%$ ST (."#1 $,54,6 ." M+,*"4!,1 .%$ $;"$,5$5 9: 5+-34*."4!, .,5
!,."$,."4!,&

K!,145$% "#$ M+,*"4!, 4, R46+%$ S !, "#$ 3$/"& N: 5$/0
4,4"4!,= 41 . %$6+3.% -!4," >4"# 3!>$% .,5 +--$% 1".%1 *!,0
141"4,6 !/ !,$ >56 $.*#& '#$!%1" "48$ >$ $,*!+,"$% =
"#$ -."# 41 "%.*$5 %46#" "#%!+6# "#$ -!4,"& D, 2%: .554"4!,.3
$,*!+,"$%= "#$ -."# $,51 ." = .1 41 ,!> . M+,*"4!,& D/ "#$
!%1" -."# 41 .1*$,54,6= "#$, !,$.1*$,54,6 -."# 3$.2$1 4,"!
"#$ +--$% 1".%= .33 !"#$% .1*$,54,6 -."#1 .--%!.*# /%!8 "#$
3!>$% 1".%= .,5 .33 5$1*$,54,6 -."#1 .--%!.*# /%!8 "#$ +-0
-$% 1".%& '#41 41 "#$ *.1$ 1#!>, 4, R46+%$ S& 7$ 5+-34*."$
-."#1 /!% .33 M+,*"4!,1 +14,6 !+% ">! !%5$%4,61& U!"$ "#." "#$
,$> -."#1= 1#!>, 4, "#$ 84553$!/ R46+%$ S= 8.: 4,*3+5$ 5+0
-34*."$1 1-.>,$5 9: M+,*"4!,1 "#." !**+% 9$/!%$ "#41 2$%"$;
4, ., !%5$%4,6& R4,.33:= >$ *!,*."$,."$ "#$ %$1+3"4,6 -."#1 4,
-.4%1 >4"#!+" *%$."4,6 *%!114,61= .1 1#!>, 4, R46+%$ S "! "#$
%46#"&

xx x

R46+%$ VT (."#1 "#." $,5 ." . 1.553$ 9: K.1$ I*J .%$ $;"$,5$5 9:
5+-34*."4!, .,5 *!,*."$,."4!,&

7$,$;" %$1!32$ K.1$ I*J= -."#1 "#." #.2$.,!"#$% 1.50
53$.1 ., $,5 -!4,"& K!,145$% "#$ 1.553$ 4, R46+%$ V& 7$
3!!E ." -."# $;"$,14!,1 !,3: >4"#4, !,$!/ "#$ 1$*"!%1 9$0
">$$, ">! *:*34*.33: *!,"46+!+1 1"$$-$1" $56$1& 74"#4, "#41
1$*"!%= "#$%$ 8.: 9$.1*$,54,6 -."#1 .--%!.*#4,6 /%!8
>4"#4, "#$!2$%3.--4,6>56!/ "#$ 3!>$% 1".%= .,5 5$1*$,50
4,6 -."#1 .--%!.*#4,6 /%!8 >4"#4, "#$!2$%3.--4,6 >56
!/ "#$ +--$% 1".%= .1 1#!>, 4, R46+%$ V "! "#$ 3$/"& </"$%

W

|K| ⊂ Rn

f : K0 �→ Rf : M → R
M ⊂ Rn

#Eig(∂2f) ∩ R−

∂f−1({0})

χ =
�

(−1)i ·mi . . .

• Object

• Function

• Critical set

• Index

• Topology

∂ PL

0 1..n-1 n

χ

Forman’s approach:
differential topology view

• Start from Morse-Smale complex
• Subdivide to reach your complex
• arrows ➾ gradient vector field

• combinatorial field
• ➾ matching along the flow
• ➾ critical = unmatched
• gradient field
• no closed gradient path ➾ acyclic

matc
hin

g

tree

Forman’s approach,
algorithmic views

Acyclic matching

matching tree

Forman’s approach:
differential topology view

• guarantees: Morse inequalities,
 nD, homotopy, Witten homology...

• intuition without differential function?

Discrete Smale Compelx

• from critical cells • from cancellations

© Gyulassy, Bremer, Pascucci, Hamann© Cazals, Chazal, L.

6.3. Related Methods in Discrete Morse Theory 88

(a) (b)

Figure 6.2.1: The circled arc connects a saddle l to a maximum u (a). Cancellation of (l,u) removes

all arcs attached to l or u, and creates new arcs from the lower neighbors of u to the upper neighbors

of l (b). In the two-dimensional case, this connects all the saddles neighboring u to the maximum

neighboring l, in effect, merging l and u with the maximum).

6.3 Related Methods in Discrete Morse Theory

In our approach, we utilize discrete Morse theory as presented by Forman [18, 19]. Lewiner et

al. [30, 31] showed how a discrete gradient field can be constructed and used to identify the Morse-

Smale complex. However, complications arise in this method due to the fact that the gradient is

constructed by creating acyclic hypergraphs. This is resolved using Union-Find, however, this kind

of approach requires a hypergraph representation of the gradient, limiting its applicability to small

data. Furthermore, the function value assigned to each cell is the average of its vertices, which

does not necessarily define a discrete Morse function, and this leads to complications in ensuring

the correct number and location of critical cells. Resolving this can even require modification of

the input mesh. King et al. [28] presented a method for constructing a discrete gradient field that

agrees with the large-scale flow behavior of the data defined at vertices of the input mesh, but again,

this requires an explicit representation of the Hasse diagram. These discrete Morse theory based

algorithms for constructing the discrete Morse-Smale complex have a critical shortcoming: they

require processing of the entire dataset and a representation of the complex at the finest level of

detail before any simplification can be done. In practice, this imposes limits on both the size, and

the complexity of the data that can be handled.

, PL - Morse theories∂

!"#$%& '#$ () *!+,"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!,
41 ., .1*$,54,6 !% 5$1*$,54,6 -."# "#." $,51 ." . 1.553$& 7$
148+3."$ "#$ 6$,$%4* *.1$ 9: $;"$,54,6 "#$ -."# 9$:!,5 "#$
1.553$& <6.4,= >$ 642$ "#$ 5$".431 4, ?$*"4!, @&

4 Computing Quasi MS-complexes
A42$, . "%4.,6+3."4!, !/ . *!8-.*" B08.,4/!35 >4"#!+"
9!+,5.%:= .,5 . () #$46#" /+,*"4!, = !+% 6!.3 41 "! *!80
-+"$ "#$ C!%1$0?8.3$ *!8-3$; /!% . 148+3."$5 +,/!354,6 !/
& D, "#41 1$*"4!,= >$ ".E$. !%1" 1"$-= *!8-+"4,6 . F+.14
C?0*!8-3$; !/ & '! !9".4, . /.1" .36!%4"#8= >$ 3484"
!+%1$32$1 "! -."#1 +14,6 "#$ $56$1 !/ & 7#43$ "#$ %$1+3"4,6
!8-3$; 41 ,+8$%4.33: 4,.**+%."$= "#$ /!*+1 41 !, *.-"+%4,6
"#$ 1"%+*"+%$!/ "#$ C!%1$0?8.3$ *!8-3$;&

G$*.33 "#." "#$ F+.14 C?0*!8-3$; >433 #.2$ "#$ *%4"40
.3 -!4,"1 !/ .1 2$%"4$1= .,5 8!,!"!,4* ,!,0*%!114,6 -."#1
.1 .%*1& '! %$1!32$ "#$ 8$%64,6 .,5 /!%E4,6 !/ -."#1= >$ /!%0
8+3."$. "#%$$01".6$.36!%4"#8& D, $.*# 1".6$= >$ *!8-+"$.
*!8-3$;>#!1$.%*1 .%$,!,0*%!114,68!,!"!,4* -."#1= 6+.%0
.,"$$4,6 "#41 -%!-$%": /!% "#$!,.3 *!8-3$;&

Complex with junctions. D, "#$!%1" 1".6$= >$ 9+435 . *!80
-3$; >4"# $;"%. 2$%"4*$1& 7$ 9$64, 9: *3.114/:4,6 .33 2$%"4*$1
.,5 *!8-+"4,6 "#$ >$56$1 !/ "#$4% 3!>$% .,5 +--$% 1".%1& 7$
5$"$%84,$ "#$ 1"$$-$1" 56 4, $.*# >$56$.,5 1".%" .10
$,54,6 .,5 5$1$,54,6 -."#1 /%!8 2%: 0/!35 1.553$&
H.*# -."# 9$64,1 4, 4"1 !>, >$56$.,5 /!33!>1 . 1$F+$,*$
!/ 1"$$-$1" $56$1 +,"43 4" #4"1

I.J . 84,48+8 !% . 8.;48+8=
I9J . -%$24!+13: "%.*$5 -."# ." . %$6+3.% -!4,"= !%
I*J .,!"#$% 1.553$=

." >#4*# -!4," "#$ -."# $,51& K.1$ I.J *!%%$1-!,51 "! "#$
6$,$%4* *.1$ /!% 18!!"# #$46#" /+,*"4!,1= K.1$ I9J *!%%$0
1-!,51 "! . 8$%64,6 !% /!%E4,6= .,5 K.1$ I*J 41 "#$ () *!+,0
"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!, 9$">$$, . 1".93$.,5
., +,1".93$ L08.,4/!35&

'! %$1!32$ K.1$ I9J= >$.33!> %$6+3.% -!4,"1 !% junctions
.1 2$%"4*$1 !/ "#$ *!8-3$;& 7$ $4"#$% *%$."$. ,$> M+,*"4!,
.,5 1-34" "#$ -%$24!+13: "%.*$5 -."#= !% >$ 4,*%$.1$ "#$ 5$0
6%$$!/ "#$ -%$24!+13: *%$."$5 M+,*"4!,& N: 5$!,4"4!,= M+,*0
"4!,1 %$8!2$.33 *%!114,61 4, "#$ *!8-3$;& 7$ >433 $3484,."$
M+,*"4!,1 .,5 %$1!32$ K.1$ I*J 4, "#$ 1$*!,5 1".6$!/ "#$.30
6!%4"#8&

7$ +1$ "#$ F+.5 56 5.". 1"%+*"+%$ OLPQ "! 1"!%$ "#$
!8-3$; 5$!,$5 9: "#$ -."#1& '#$ 2$%"4$1 !/ "#$ *!8-3$;
.%$ "#$ *%4"4*.3 -!4,"1 .,5 M+,*"4!,1= .,5 "#$.%*1 .%$ "#$ -.4%0
>41$ $56$0541M!4," -."#1 *!,,$*"4,6 "#$1$ 2$%"4*$1&

Extending paths. D, "#$ 1$*!,5 1".6$!/ !+% .36!%4"#8= >$
$;"$,5 -."#1 "! %$8!2$ M+,*"4!,1 .,5 %$5+*$ "#$,+89$% !/
.%*1 -$% 0/!35 1.553$ "! & 7#$,$2$% >$ $;"$,5 .

-."#= >$ %!+"$ 4" .3!,6 .,5 4,!,4"$148.33: *3!1$ "! ., .3%$.5:
$;41"4,6 -."#& D, -%.*"4*$= >$ 148+3."$ "#41 $;"$,14!, *!8940
,."!%4.33: >4"#4, "#$ F+.50$56$ 5.". 1"%+*"+%$& D, $;"$,54,6
-."#1= >$ 8.: *%$."$,$> -."#1 $,54,6 ." !"#$% M+,*"4!,1
.,5 1.553$1& K!,1$F+$,"3:= >$ 8+1" -%!*$11 "#$ 2$%"4*$1 4,
. 1$F+$,*$ "#." -%2,"1 *:*34* 5$-$,5$,*4$1& ?4,*$.1*$,50
4,6 .,5 5$1*$,54,6 -."#1 .%$ $;"$,5$5 4, !--!14"$ 54%$*"4!,1=
>$,$$5 ">! !%5$%4,61 .,5 >$ "!+*# 2%: 2$%"$; ">4*$& D"
41 *!,2$,4$," "! !%1" $;"$,5 .1*$,54,6 -."#1 4, "#$!%5$% !/
4,*%$.14,6 #$46#"= .,5 1$*!,5 $;"$,5 5$1*$,54,6 -."#1 4, "#$
!%5$% !/ 5$*%$.14,6 #$46#"& 7$,$;" 541*+11 !+% %!+"4,6 -%!0
$5+%$1 /!% M+,"4!,1 .,5 1.553$1& D, "#$!6+%$1 "#." /!33!>=
>$!%4$," -."#1 4, "#$ 54%$*"4!, "#$: $8.,."$ /%!8 . 1.553$&

yy

R46+%$ ST (."#1 $,54,6 ." M+,*"4!,1 .%$ $;"$,5$5 9: 5+-34*."4!, .,5
!,."$,."4!,&

K!,145$% "#$ M+,*"4!, 4, R46+%$ S !, "#$ 3$/"& N: 5$/0
4,4"4!,= 41 . %$6+3.% -!4," >4"# 3!>$% .,5 +--$% 1".%1 *!,0
141"4,6 !/ !,$ >56 $.*#& '#$!%1" "48$ >$ $,*!+,"$% =
"#$ -."# 41 "%.*$5 %46#" "#%!+6# "#$ -!4,"& D, 2%: .554"4!,.3
$,*!+,"$%= "#$ -."# $,51 ." = .1 41 ,!> . M+,*"4!,& D/ "#$
!%1" -."# 41 .1*$,54,6= "#$, !,$.1*$,54,6 -."# 3$.2$1 4,"!
"#$ +--$% 1".%= .33 !"#$% .1*$,54,6 -."#1 .--%!.*# /%!8 "#$
3!>$% 1".%= .,5 .33 5$1*$,54,6 -."#1 .--%!.*# /%!8 "#$ +-0
-$% 1".%& '#41 41 "#$ *.1$ 1#!>, 4, R46+%$ S& 7$ 5+-34*."$
-."#1 /!% .33 M+,*"4!,1 +14,6 !+% ">! !%5$%4,61& U!"$ "#." "#$
,$> -."#1= 1#!>, 4, "#$ 84553$!/ R46+%$ S= 8.: 4,*3+5$ 5+0
-34*."$1 1-.>,$5 9: M+,*"4!,1 "#." !**+% 9$/!%$ "#41 2$%"$;
4, ., !%5$%4,6& R4,.33:= >$ *!,*."$,."$ "#$ %$1+3"4,6 -."#1 4,
-.4%1 >4"#!+" *%$."4,6 *%!114,61= .1 1#!>, 4, R46+%$ S "! "#$
%46#"&

xx x

R46+%$ VT (."#1 "#." $,5 ." . 1.553$ 9: K.1$ I*J .%$ $;"$,5$5 9:
5+-34*."4!, .,5 *!,*."$,."4!,&

7$,$;" %$1!32$ K.1$ I*J= -."#1 "#." #.2$.,!"#$% 1.50
53$.1 ., $,5 -!4,"& K!,145$% "#$ 1.553$ 4, R46+%$ V& 7$
3!!E ." -."# $;"$,14!,1 !,3: >4"#4, !,$!/ "#$ 1$*"!%1 9$0
">$$, ">! *:*34*.33: *!,"46+!+1 1"$$-$1" $56$1& 74"#4, "#41
1$*"!%= "#$%$ 8.: 9$.1*$,54,6 -."#1 .--%!.*#4,6 /%!8
>4"#4, "#$!2$%3.--4,6>56!/ "#$ 3!>$% 1".%= .,5 5$1*$,50
4,6 -."#1 .--%!.*#4,6 /%!8 >4"#4, "#$!2$%3.--4,6 >56
!/ "#$ +--$% 1".%= .1 1#!>, 4, R46+%$ V "! "#$ 3$/"& </"$%

W

|K| ⊂ Rn

f : K0 �→ Rf : M → R
M ⊂ Rn

#Eig(∂2f) ∩ R−

∂f−1({0})

χ =
�

(−1)i ·mi . . .

• Object

• Function

• Critical set

• Index

• Topology

∂ PL

0 1..n-1 n

χ

•CW complex

•acyclic matching

•unmatched cells

•cell dimension

•

, Forman - Morse theories

f : M → R
M ⊂ Rn

#Eig(∂2f) ∩ R−

∂f−1({0})

χ =
�

(−1)i ·mi . . .

• Object

• Function

• Critical set

• Index

• Topology

∂ Forman

K

χ =
�

(−1)i ·mi . . .

∂

Banchoff ’s approach
+ intuitive / geometric

+ controlled critical set

+ many numerical tools

- nD guarantees?

- global robustness?

• Forman’s approach
+ correct global topology

+ robust (graph algorithms)

+ efficient (combinatorial)

- critical set localization?

- graph intuition?

!"#$%& '#$ () *!+,"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!,
41 ., .1*$,54,6 !% 5$1*$,54,6 -."# "#." $,51 ." . 1.553$& 7$
148+3."$ "#$ 6$,$%4* *.1$ 9: $;"$,54,6 "#$ -."# 9$:!,5 "#$
1.553$& <6.4,= >$ 642$ "#$ 5$".431 4, ?$*"4!, @&

4 Computing Quasi MS-complexes
A42$, . "%4.,6+3."4!, !/ . *!8-.*" B08.,4/!35 >4"#!+"
9!+,5.%:= .,5 . () #$46#" /+,*"4!, = !+% 6!.3 41 "! *!80
-+"$ "#$ C!%1$0?8.3$ *!8-3$; /!% . 148+3."$5 +,/!354,6 !/
& D, "#41 1$*"4!,= >$ ".E$. !%1" 1"$-= *!8-+"4,6 . F+.14
C?0*!8-3$; !/ & '! !9".4, . /.1" .36!%4"#8= >$ 3484"
!+%1$32$1 "! -."#1 +14,6 "#$ $56$1 !/ & 7#43$ "#$ %$1+3"4,6
!8-3$; 41 ,+8$%4.33: 4,.**+%."$= "#$ /!*+1 41 !, *.-"+%4,6
"#$ 1"%+*"+%$!/ "#$ C!%1$0?8.3$ *!8-3$;&

G$*.33 "#." "#$ F+.14 C?0*!8-3$; >433 #.2$ "#$ *%4"40
.3 -!4,"1 !/ .1 2$%"4$1= .,5 8!,!"!,4* ,!,0*%!114,6 -."#1
.1 .%*1& '! %$1!32$ "#$ 8$%64,6 .,5 /!%E4,6 !/ -."#1= >$ /!%0
8+3."$. "#%$$01".6$.36!%4"#8& D, $.*# 1".6$= >$ *!8-+"$.
*!8-3$;>#!1$.%*1 .%$,!,0*%!114,68!,!"!,4* -."#1= 6+.%0
.,"$$4,6 "#41 -%!-$%": /!% "#$!,.3 *!8-3$;&

Complex with junctions. D, "#$!%1" 1".6$= >$ 9+435 . *!80
-3$; >4"# $;"%. 2$%"4*$1& 7$ 9$64, 9: *3.114/:4,6 .33 2$%"4*$1
.,5 *!8-+"4,6 "#$ >$56$1 !/ "#$4% 3!>$% .,5 +--$% 1".%1& 7$
5$"$%84,$ "#$ 1"$$-$1" 56 4, $.*# >$56$.,5 1".%" .10
$,54,6 .,5 5$1$,54,6 -."#1 /%!8 2%: 0/!35 1.553$&
H.*# -."# 9$64,1 4, 4"1 !>, >$56$.,5 /!33!>1 . 1$F+$,*$
!/ 1"$$-$1" $56$1 +,"43 4" #4"1

I.J . 84,48+8 !% . 8.;48+8=
I9J . -%$24!+13: "%.*$5 -."# ." . %$6+3.% -!4,"= !%
I*J .,!"#$% 1.553$=

." >#4*# -!4," "#$ -."# $,51& K.1$ I.J *!%%$1-!,51 "! "#$
6$,$%4* *.1$ /!% 18!!"# #$46#" /+,*"4!,1= K.1$ I9J *!%%$0
1-!,51 "! . 8$%64,6 !% /!%E4,6= .,5 K.1$ I*J 41 "#$ () *!+,0
"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!, 9$">$$, . 1".93$.,5
., +,1".93$ L08.,4/!35&

'! %$1!32$ K.1$ I9J= >$.33!> %$6+3.% -!4,"1 !% junctions
.1 2$%"4*$1 !/ "#$ *!8-3$;& 7$ $4"#$% *%$."$. ,$> M+,*"4!,
.,5 1-34" "#$ -%$24!+13: "%.*$5 -."#= !% >$ 4,*%$.1$ "#$ 5$0
6%$$!/ "#$ -%$24!+13: *%$."$5 M+,*"4!,& N: 5$!,4"4!,= M+,*0
"4!,1 %$8!2$.33 *%!114,61 4, "#$ *!8-3$;& 7$ >433 $3484,."$
M+,*"4!,1 .,5 %$1!32$ K.1$ I*J 4, "#$ 1$*!,5 1".6$!/ "#$.30
6!%4"#8&

7$ +1$ "#$ F+.5 56 5.". 1"%+*"+%$ OLPQ "! 1"!%$ "#$
!8-3$; 5$!,$5 9: "#$ -."#1& '#$ 2$%"4$1 !/ "#$ *!8-3$;
.%$ "#$ *%4"4*.3 -!4,"1 .,5 M+,*"4!,1= .,5 "#$.%*1 .%$ "#$ -.4%0
>41$ $56$0541M!4," -."#1 *!,,$*"4,6 "#$1$ 2$%"4*$1&

Extending paths. D, "#$ 1$*!,5 1".6$!/ !+% .36!%4"#8= >$
$;"$,5 -."#1 "! %$8!2$ M+,*"4!,1 .,5 %$5+*$ "#$,+89$% !/
.%*1 -$% 0/!35 1.553$ "! & 7#$,$2$% >$ $;"$,5 .

-."#= >$ %!+"$ 4" .3!,6 .,5 4,!,4"$148.33: *3!1$ "! ., .3%$.5:
$;41"4,6 -."#& D, -%.*"4*$= >$ 148+3."$ "#41 $;"$,14!, *!8940
,."!%4.33: >4"#4, "#$ F+.50$56$ 5.". 1"%+*"+%$& D, $;"$,54,6
-."#1= >$ 8.: *%$."$,$> -."#1 $,54,6 ." !"#$% M+,*"4!,1
.,5 1.553$1& K!,1$F+$,"3:= >$ 8+1" -%!*$11 "#$ 2$%"4*$1 4,
. 1$F+$,*$ "#." -%2,"1 *:*34* 5$-$,5$,*4$1& ?4,*$.1*$,50
4,6 .,5 5$1*$,54,6 -."#1 .%$ $;"$,5$5 4, !--!14"$ 54%$*"4!,1=
>$,$$5 ">! !%5$%4,61 .,5 >$ "!+*# 2%: 2$%"$; ">4*$& D"
41 *!,2$,4$," "! !%1" $;"$,5 .1*$,54,6 -."#1 4, "#$!%5$% !/
4,*%$.14,6 #$46#"= .,5 1$*!,5 $;"$,5 5$1*$,54,6 -."#1 4, "#$
!%5$% !/ 5$*%$.14,6 #$46#"& 7$,$;" 541*+11 !+% %!+"4,6 -%!0
$5+%$1 /!% M+,"4!,1 .,5 1.553$1& D, "#$!6+%$1 "#." /!33!>=
>$!%4$," -."#1 4, "#$ 54%$*"4!, "#$: $8.,."$ /%!8 . 1.553$&

yy

R46+%$ ST (."#1 $,54,6 ." M+,*"4!,1 .%$ $;"$,5$5 9: 5+-34*."4!, .,5
!,."$,."4!,&

K!,145$% "#$ M+,*"4!, 4, R46+%$ S !, "#$ 3$/"& N: 5$/0
4,4"4!,= 41 . %$6+3.% -!4," >4"# 3!>$% .,5 +--$% 1".%1 *!,0
141"4,6 !/ !,$ >56 $.*#& '#$!%1" "48$ >$ $,*!+,"$% =
"#$ -."# 41 "%.*$5 %46#" "#%!+6# "#$ -!4,"& D, 2%: .554"4!,.3
$,*!+,"$%= "#$ -."# $,51 ." = .1 41 ,!> . M+,*"4!,& D/ "#$
!%1" -."# 41 .1*$,54,6= "#$, !,$.1*$,54,6 -."# 3$.2$1 4,"!
"#$ +--$% 1".%= .33 !"#$% .1*$,54,6 -."#1 .--%!.*# /%!8 "#$
3!>$% 1".%= .,5 .33 5$1*$,54,6 -."#1 .--%!.*# /%!8 "#$ +-0
-$% 1".%& '#41 41 "#$ *.1$ 1#!>, 4, R46+%$ S& 7$ 5+-34*."$
-."#1 /!% .33 M+,*"4!,1 +14,6 !+% ">! !%5$%4,61& U!"$ "#." "#$
,$> -."#1= 1#!>, 4, "#$ 84553$!/ R46+%$ S= 8.: 4,*3+5$ 5+0
-34*."$1 1-.>,$5 9: M+,*"4!,1 "#." !**+% 9$/!%$ "#41 2$%"$;
4, ., !%5$%4,6& R4,.33:= >$ *!,*."$,."$ "#$ %$1+3"4,6 -."#1 4,
-.4%1 >4"#!+" *%$."4,6 *%!114,61= .1 1#!>, 4, R46+%$ S "! "#$
%46#"&

xx x

R46+%$ VT (."#1 "#." $,5 ." . 1.553$ 9: K.1$ I*J .%$ $;"$,5$5 9:
5+-34*."4!, .,5 *!,*."$,."4!,&

7$,$;" %$1!32$ K.1$ I*J= -."#1 "#." #.2$.,!"#$% 1.50
53$.1 ., $,5 -!4,"& K!,145$% "#$ 1.553$ 4, R46+%$ V& 7$
3!!E ." -."# $;"$,14!,1 !,3: >4"#4, !,$!/ "#$ 1$*"!%1 9$0
">$$, ">! *:*34*.33: *!,"46+!+1 1"$$-$1" $56$1& 74"#4, "#41
1$*"!%= "#$%$ 8.: 9$.1*$,54,6 -."#1 .--%!.*#4,6 /%!8
>4"#4, "#$!2$%3.--4,6>56!/ "#$ 3!>$% 1".%= .,5 5$1*$,50
4,6 -."#1 .--%!.*#4,6 /%!8 >4"#4, "#$!2$%3.--4,6 >56
!/ "#$ +--$% 1".%= .1 1#!>, 4, R46+%$ V "! "#$ 3$/"& </"$%

W

A priori pros and cons

Some monster cases

• Poincaré’s
homological sphere
(missing critical points)

• Bing’s
house of 2 rooms
(extra critical cell)

© Hashimori

Learning from examples

Isosurface extraction

© Petrobras

Isosurface extraction

• Topological cases of Marching Cubes

• ➾ differentiable function analysis

© L., Lopes, Vieira, Tavares

Large isosurface topology

• Topology without the isosurface

• Mid-scale control and filtering

• global + efficiency ➾ Forman’s line

Some Isosurfaces’ Topology

• Smale complex • Reeb graph

Efficient implementation of Marching Cubes’ cases with topological guarantees

THOMAS LEWINER1,2 , HÉLIO LOPES1 , ANTÔNIO WILSON VIEIRA1,3 AND GEOVAN TAVARES1

1 Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
2 Géométrica Project — INRIA – Sophia Antipolis — France

3 CCET — Universidade de Montes Claros — Brazil
{tomlew, lopes, awilson, tavares}@mat.puc--rio.br.

Abstract. Marching Cubes’ methods first offered visual access to experimental and theoretical data. The imple-
mentation of this method usually relies on a small lookup table. Many enhancements and optimizations of Marching
Cubes still use it. However, this lookup table can lead to cracks and inconsistent topology. This paper introduces
a full implementation of Chernyaev’s technique to ensure a topologically correct result, i.e. a manifold mesh, for
any input data. It completes the original paper for the ambiguity resolution and for the feasibility of the implemen-
tation. Moreover, the cube interpolation provided here can be used in a wider range of methods. The source code
is available online.
Keywords: Marching Cubes. Isosurface extraction. Implicit surface tiler. Topological guarantees.

Figure 1: Implicit surface of linked tori generated by the classical Marching Cubes algorithm, and ours.

1 Introduction
Isosurface extractors and implicit surface tilers opened up

visual access to experimental and theoretical data, such as
medical images, mechanical pieces, sculpture scans, mathe-
matical surfaces, and physical simulation by finite elements
methods. Among those techniques, the Marching Cubes [5]
produces a surface out of a sampling of a scalar field f :
R3 → R. It has been enhanced to a wide range of applica-
tions, from geological reconstruction [10], medical images
to 3D scanning (see [4] for an original use in the Digital
Michelangelo Project). Although this paper focuses on sur-
face reconstruction from sampled data, the tilings of cubes
introduced here can be used in simple reconstruction meth-

Preprint MAT. 05/03, communicated on December 3rd, 2002 to the Depart-
ment of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro,
Brazil. The corresponding work was published in the Journal of Graphics
Tools, volume 8, number 2, pp. 1–15. ACM Press, 2003..

ods for synthetic data [2, 13] in order to guarantee the topo-
logical consistency of the result when the precision of the
result is limited.

Marching Cubes [5] has become the reference method
when the sampled scalar field is structured on a cuberille
grid. It classifies vertices as positive or negative, according
to their comparison with a given isovalue. Then, it uses a
lookup table to tile the surface inside the cube. This method
has been enhanced and generalized in various directions,
especially to reduce the number of cubes to be evaluated.
However, most of those modern techniques still use a simple
lookup table, which does not ensure the topological consis-
tency of the result.

Prior work. The main obstacles of the Marching Cubes’
derived methods are the ambiguities inherent to data sam-
pling. Those ambiguities can appear on the faces of a cube,

© L., Lopes, Vieira, Tavares

© Petrobras

Surface reconstruction

• noisy, sparse point set
• ➾ correct topology?

To appear in the ACM SIGGRAPH conference proceedings

(a) (b) (c) (d)
Figure 10: Editing the topology of the Hip model with different targets (a,c) results in the removal of different handles. Each handle is
removed by breaking the handle ring (b) or filling the handle hole (d), whichever involves less modification to the model.

(a) (b) (c) (d)
Figure 11: Editing the topology of the Mother model (a) with the target (b) selectively removes handles that user desires. Without the target,
a typical topology repair method would identify thin handles to be removed (d), yielding an undesirable result.

the screen. Last but not least, we are planning to design user-tests
to see how well novice users understand and perform the task.

Shape control in topology editing In our current algorithm, the
resulting shape change is automatically determined with the goal
of minimizing the amount of volume added or removed. However,
it may be desirable to have the user control the shape change. For
example, the user may desire to use addition in certain places even
if subtraction would induce smaller volume change, to create a new
tunnel with a certain width (instead of a thin hole in Figure 12 (b)),
or to replace small handles by a smooth surface. Such shape control
can be made possible by associating sketches with shape properties.
For example, a colored sketch can be used to indicate desired solid
thickness or surface smoothness. The current guided topology edit-
ing algorithm will be modified to minimize a weighted sum of the
modified volume and deviation from the sketch shape.

Geometric fidelity To process triangular meshes, we currently re-
quire the meshes to be converted to and from a volumetric grid,
which may result in loss of geometric details. Using feature-
sensitive scan-conversion [Ju 2004] and iso-surfacing techniques
[Ju et al. 2002], we are able to retain features (e.g., sharp edges and
corners) on the original mesh in an accurate manner, as shown in the
example of Figure 12. Note that our method can be easily extended
to further preserve the tessellation on the original mesh. In partic-
ular, we note that our guided topology editing algorithm works on
cell complexes defined in any structured or unstructured 3D grids.
As a result, application onto a tetrahedral grid that contains both the
triangles of the original mesh and the lines in the target shape would
retain the original triangles as part of the resulting edited mesh.

7 Acknowledgement
We would like to thank the anonymous reviewers for their valuable
comments. The models used in this paper are courtesy of the Stan-
ford 3D Scanning Repository (Figure 14 (a,c,d,e)), Aim@Shape
Digital ShapeWorkBench (Figures 11, 13, 14 (b)), Cyberware (Fig-

ure 10) and 3DM3.com (Figure 1). This work was supported in
part by the National Basic Research Project of China (Project Num-
ber 2006CB303106) and the Natural Science Foundation of China
(Project Number 60673004, 60333010).

References

AKTOUF, Z., BERTRAND, G., AND PERROTON, L. 1996. A 3d-
hole closing algorithm. In 6th International Workshop on Dis-
crete Geometry for Computer Imagery, 36–47.

ANDUJAR, C., BRUNET, P., AND AYALA, D. 2002. Topology-
reducing surface simplification using a discrete solid representa-
tion. ACM Trans. Graph. 21, 2, 88–105.

BISCHOFF, S., AND KOBBELT, L. 2002. Isosurface reconstruc-
tion with topology control. In Pacific Conference on Computer
Graphics and Applications, 246–255.

BISCHOFF, S., PAVIC, D., AND KOBBELT, L. 2005. Automatic
restoration of polygon models. ACM Trans. Graph. 24, 4, 1332–
1352.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVI;, Z., AND
SALESIN, D. 2003. A sketching interface for articulated figure
animation. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
320–328.

DIEFENBACH, P. J. 1996. Pipeline rendering: interaction and re-
alism through hardware-based multi-pass rendering. PhD thesis,
Philadelphia, PA, USA.

EL-SANA, J., AND VARSHNEY, A. 1997. Controlled simplification
of genus for polygonal models. In IEEE Visualization, 403–412.

GUSKOV, I., AND WOOD, Z. J. 2001. Topological noise removal.
In Graphics Interface, 19–26.

7

To appear in the ACM SIGGRAPH conference proceedings

(a) (b) (c) (d)
Figure 10: Editing the topology of the Hip model with different targets (a,c) results in the removal of different handles. Each handle is
removed by breaking the handle ring (b) or filling the handle hole (d), whichever involves less modification to the model.

(a) (b) (c) (d)
Figure 11: Editing the topology of the Mother model (a) with the target (b) selectively removes handles that user desires. Without the target,
a typical topology repair method would identify thin handles to be removed (d), yielding an undesirable result.

the screen. Last but not least, we are planning to design user-tests
to see how well novice users understand and perform the task.

Shape control in topology editing In our current algorithm, the
resulting shape change is automatically determined with the goal
of minimizing the amount of volume added or removed. However,
it may be desirable to have the user control the shape change. For
example, the user may desire to use addition in certain places even
if subtraction would induce smaller volume change, to create a new
tunnel with a certain width (instead of a thin hole in Figure 12 (b)),
or to replace small handles by a smooth surface. Such shape control
can be made possible by associating sketches with shape properties.
For example, a colored sketch can be used to indicate desired solid
thickness or surface smoothness. The current guided topology edit-
ing algorithm will be modified to minimize a weighted sum of the
modified volume and deviation from the sketch shape.

Geometric fidelity To process triangular meshes, we currently re-
quire the meshes to be converted to and from a volumetric grid,
which may result in loss of geometric details. Using feature-
sensitive scan-conversion [Ju 2004] and iso-surfacing techniques
[Ju et al. 2002], we are able to retain features (e.g., sharp edges and
corners) on the original mesh in an accurate manner, as shown in the
example of Figure 12. Note that our method can be easily extended
to further preserve the tessellation on the original mesh. In partic-
ular, we note that our guided topology editing algorithm works on
cell complexes defined in any structured or unstructured 3D grids.
As a result, application onto a tetrahedral grid that contains both the
triangles of the original mesh and the lines in the target shape would
retain the original triangles as part of the resulting edited mesh.

7 Acknowledgement
We would like to thank the anonymous reviewers for their valuable
comments. The models used in this paper are courtesy of the Stan-
ford 3D Scanning Repository (Figure 14 (a,c,d,e)), Aim@Shape
Digital ShapeWorkBench (Figures 11, 13, 14 (b)), Cyberware (Fig-

ure 10) and 3DM3.com (Figure 1). This work was supported in
part by the National Basic Research Project of China (Project Num-
ber 2006CB303106) and the Natural Science Foundation of China
(Project Number 60673004, 60333010).

References

AKTOUF, Z., BERTRAND, G., AND PERROTON, L. 1996. A 3d-
hole closing algorithm. In 6th International Workshop on Dis-
crete Geometry for Computer Imagery, 36–47.

ANDUJAR, C., BRUNET, P., AND AYALA, D. 2002. Topology-
reducing surface simplification using a discrete solid representa-
tion. ACM Trans. Graph. 21, 2, 88–105.

BISCHOFF, S., AND KOBBELT, L. 2002. Isosurface reconstruc-
tion with topology control. In Pacific Conference on Computer
Graphics and Applications, 246–255.

BISCHOFF, S., PAVIC, D., AND KOBBELT, L. 2005. Automatic
restoration of polygon models. ACM Trans. Graph. 24, 4, 1332–
1352.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVI;, Z., AND
SALESIN, D. 2003. A sketching interface for articulated figure
animation. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
320–328.

DIEFENBACH, P. J. 1996. Pipeline rendering: interaction and re-
alism through hardware-based multi-pass rendering. PhD thesis,
Philadelphia, PA, USA.

EL-SANA, J., AND VARSHNEY, A. 1997. Controlled simplification
of genus for polygonal models. In IEEE Visualization, 403–412.

GUSKOV, I., AND WOOD, Z. J. 2001. Topological noise removal.
In Graphics Interface, 19–26.

7

© Ju, Zhou, Hu

© Sharf, L., Shamir, Kobbelt, Cohen-Or

Surface reconstruction

• interactive topology edition

• local critical regions
• ➾ Banchoff’s line

5 Interactive topology-aware surface reconstruction

In this context, the finite-element method is essentially a
recipe for constructing a matrix K given an integral expres-
sion such as (2) and a finite-dimensional set of admissible
functions, such that K satisfies (3). The recipe is based on
computing the integral (2) on a set of basis functions that
span the space of admissible functions. Here, we use a tetra-
hedral mesh and define the admissible functions as piecewise
tri-linear, interpolated from vertices’ values on each tetrahe-
dron of the mesh. The matrix K is sparse and easy to com-
pute tetrahedron by tetrahedron (see Appendix).

The literature contains many methods, often referred to
as Laplacian approximations, for constructing similar matri-
ces from 2D meshes. The main advantage of our FEM-based
approach is that the smoothness penalty formulation is inde-
pendent of the mesh, since the left-hand side of Equation (3)
is mesh free. Therefore it extends naturally to 3D meshes.
Our method automatically adapts to functions interpolated
on meshes with tetrahedrons of widely different size and as-
pect ratio, common in our data structure (see Figure 5).

We sum Ψsmoothness and Ψpoint constraints to form a single
least squares optimization problem. For each constraint point
p ∈ P , we define cp such that cp uM = u(p). The row cp

represents a linear interpolation operator on M . It has at most
four non-zero values for a tetrahedral mesh. The constraint
for point p now writes cp uM = t(p), and we weight this
constraint with weight ωp. The smoothness constraint can
be incorporated to the least squares formulation using any
matrix E such that ET E = K as follows:

min
uM

�����������

E
ω1 c1

ω2 c2
...

ω|P | c|P |

uM −

0
ω1 t(p1)
ω2 t(p2)

...
ω|P | t(p|P |)

�����������

2

2

,

The matrix E is never computed explicitly. Instead, we solve
the least-squares problem using its normal equation:

K +
�

p∈P

ω2
p cT

p cp

 uM =
�

p∈P

t(p) ω2
p cT

p . (4)

We construct the coefficient matrix of this linear system
of equations by constructing K using the finite-element
method, and then adding to it the sparse matrices cT

i ci. We
solve these equations using a fast sparse Cholesky factoriza-
tion.

Adding and removing constraints. One aspect of this nu-
merical approach allows real-time interaction in our surface
reconstruction application. The structure of Equation (4) al-
lows the method to incrementally update the linear system
factorization when the user adds or removes inside/outside
constraints. We compute the additional rows cp and target
values t(p) for each new point p, and add the new cT

p cp ma-
trices and cT

p t(p) vectors to left and right hand side of Equa-
tion (4). To update the sparse Cholesky factorization we use

CHOLMOD [10]. Thus, the system factorizes the initial ma-
trix only once. In most cases, updating this factorization is
faster than factoring again.

5 Detection of Topological Stability
The computation of the implicit function described above

is designed to incorporate user information through in-
side/outside constraints. To avoid the laborious task of defin-
ing constraints everywhere, the system automatically detects
weak regions of unstable topology. The definition of a weak
region is quite intuitive. Its theoretical foundation and its
computation are described next.

Weak regions. We define a weak region as part of the
implicit function’s domain Ω where the local topology of
the object is unstable. That is, little perturbations of the data
lead to change in the local surface topology. This instability
implies ambiguities that need to be solved by the user. These
weak regions are generally due to the low resolution of
the underlying structure [26] (like the hummingbird head
on Figures 3, 4 and 6), to missing parts or to the intrinsic
complexity of the shape (like in the head of the elephant on
Figure 2).

To build a computable definition, we say that a point p
is critical if, for an arbitrarily small ε, the u(p) − ε and
u(p) + ε level-set surfaces have different topologies in a
neighborhood of p (see Figure 7). The weak regions are the
regions of these topological changes. For small values of
|u(p)| they mark topological instabilities in the reconstructed
surface (zero level-set of u) induced by small level shifts.
Moreover, this definition addresses the small gradient issue
discussed in the Section 4.

A direct computation of weak regions by applying more
complex random perturbations may generate critical regions
everywhere, which would require stochastic simulations to
select between them. Our approach uses a deterministic de-
tection of the local stability by analyzing the topology un-

Figure 7: Weak region for a 2D field: the red (resp. blue) line is the
+ε (resp. −ε) level-set for u: this small level perturbation changes
the level set connectivity, characterizing a critical point.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

© Sharf, L., Shklarski, Toledo, Cohen-Or

http://www.tau.ac.il/~stoledo/students.html
http://www.tau.ac.il/~stoledo/students.html

Topology-aware
reconstruction

7 Interactive topology-aware surface reconstruction

Figure 8: In complex shapes automatic detection of weak regions is necessary to guide the user: original scan with the weak regions (left),
reconstruction without scribbles generates some spurious connections (center), which are removed after the user adds scribbles (right).

inside/outside constraints. The location and the sign of these
initial automatic constraints can be computed heuristically.
In this work we simply compute an unsigned distance trans-
form from the data points by fast marching over the hierar-
chy. We use local maxima, detected by examining field gra-
dients in the neighborhood of an octree cell, as automatic
constrains (in Figure 3(left) automatic constraints were ex-
tracted from the 2D medial-axis for illustration purposes).
We automatically classify constraints as inside/outside ap-
plying a simplified space carving method [8]. Although this
process is prone to errors, it serves only as an initial coarse
guess for the function u as described in Section 4. This tech-
nique actually performs an initial reconstruction similar to
automatic reconstruction based on global optimizations such
as [7, 22, 15] (see Figure 9), without using the normals of the
input scan. In our experiments, this process could be easily
skipped using only manual scribbles.

User interaction. The user can visualize arbitrary 2D cross
sections of the implicit function using a pseudo-color map
(see Figure 1 (center-left)). The user picks one of the cross
sections which are displayed at the weak regions (see Sec-
tion 5). This cross section of the field is reproduced in a sep-
arate window, which we call a tablet, over which the user
draws the scribbles. The user is not required to precisely
position the scribbles, but rather loosely define inside and
outside relations locally at the weak regions. These in/out
scribbles are inserted as constraints to the FEM system, with
negative/positive sign and value according the distance field.

With each additional constraint, the field and the weak re-
gions are updated within less than a second. This interactiv-
ity relies on Equation (4), which allows a pre-factorization of
the FEM matrix. As the user adds more scribbles, the topo-
logical stability of the implicit function locally increases. Af-
ter the user’s validation, the octree is locally refined close
to the zero level-set of the implicit function, and the FEM
matrix is pre-factorized again. Our non-smoothness penalty
constraint avoids spurious topological instabilities (as also
observed in [21]), while incorporating the scribbles con-
straints. The whole process takes between a few seconds and
a few minutes, depending on the octree depth and the shape

complexity.
Note that except for the scribbles drawing, the user is

not required for any parameter tuning. The critical points
filtering is determined by the octree depth (|u(v)| < 8 ·
2−depth), and the relative weights ωp in Equation (4) are
fixed to a low value (0.01) for the initial constraints, medium
(1) for the data points and high (1000) for the user scribbles.

Final surface reconstruction. Once the implicit function
achieves the expected topology, a final mesh is extracted
from its zero level-set. Since the field is smooth everywhere
(see Figure 10), we can use any isosurfacing method. We
choose the dual marching cubes method [24] since it guar-
antees the resulting topology, and since it works on the same
data structure as our octree dual. We further improve mesh
quality using standard mesh optimization techniques (edge
flips/collapse and normal smoothing) that do not alter the
shape topology.

7 Results
To demonstrate the effectiveness of the proposed method,

we focused on complex objects, such as the riding monk
(Figure 1), which we acquired with few structured light
scans. This relatively inexpensive technology has the advan-

Auto- Inter-
points shots matic action scribbles

Riding Monk 469 k 10 130 s. 3 min 9
Elephant 217 k 6 88 s. 2 min 7
Knot 497 k 15 206 s. 4 min 10
Hand 259 k 8 92 s. 30 s. 2
Saddle 284 k 11 118 s. 0 min 0
Hip 222 k 9 109 s. 30 s. 4
Tiger 340 k 10 157 s. 6 min 12
Woman 333 k 9 116 s. 5 min 12
Camel 282 k 12 128 s. 3 min 6

Table 1: Reconstruction timings for our scanned models. From left
to right: the number of data points, the number of structured light
shots, the time of the automatic FEM reconstruction, the interaction
time of the reconstruction session and the number of scribbles used.

Preprint MAT. 02/07, communicated on January 24th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo and Daniel Cohen-Or 2

Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose, automatic

inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-left), where the user

can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations at finer resolutions lead to a

complete reconstruction of the model (right).

One of the major difficulties is the coverage of the
scanned model: As a result of physical inaccessibility, poor
visibility and material properties, the coverage is often im-
perfect and significant portions of the surface are either
under-sampled or completely missing. The problem is more
acute for complex shapes with deep cavities and bifurcations
(e.g., Figure 1). While it is reasonable to assume that scan-
ning hardware will advance, future reconstruction systems
will still need to employ algorithms that reconstruct under-
sampled areas. Systems that reconstruct poorly-sampled ar-
eas merely based on priors, without any user intervention,
fail in many cases to faithfully reconstruct the expected
shape. At the other extreme, systems that rely only on ex-
plicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the re-
construction problem is ill posed; an infinite number of sur-
faces pass through or near the data points. Smoothness and
watertight constraints usually regularize the problem and re-
move the ill posedness. Nevertheless, even if the problem is
successfully transformed into a well conditioned one, the re-
constructed object is not necessarily the expected one. Our
method is based on the observation that it is often possi-
ble to detect the ill conditioning and to ask the user for in-
side/outside constraints to locally resolve them and achieve
the expected shape.

In this paper we present a topology-aware reconstruction
technique that requires minimal user input to make correct
decisions at critical regions, where the topology of the shape
cannot be induced automatically with a reasonable degree of
confidence. Our method uses priors to reconstruct the sur-
face, but it also allows the user to influence the prior dis-
tribution. Two aspects of the prior distribution are fixed: we
assume that the surface is smooth almost everywhere, and
that it should be watertight. Other aspects of the prior dis-
tribution are controlled by the user who specifies constraint
points that should be inside or outside the surface.

To reconstruct a watertight surface given raw scans with-
out normals, and possibly the user’s inside/outside con-
straints, we first construct a continuous function over a three-
dimensional domain. The zero level-set of this function ap-

proximates the data points. We construct this function by
minimizing a penalty that measures its non-smoothness, the
deviation of its zero level-set from the data points, and its
deviations from prescribed positive/negative values at the in-
side/outside constraints. Our function optimization problem
is formulated in a mesh-independent manner, and mapped
onto a specific mesh using the finite-element method. Com-
putationally, the function is constructed by solving a large
sparse linear system. However, at complex under-sampled
regions these constraints might be insufficient. Therefore, we
analyze the local topological stability of the zero level-set to
detect weak regions of the surface. These regions are sug-
gested to the user for adding local inside/outside constraints
by merely scribbling over a 2D tablet corresponding to a
cross section of the field (see Figure 2). The new user input
augments the linear system with additional constrains, im-
proving the reconstruction. The stability analysis is then re-
peated. If the surface is still topologically unstable, the user
is prompted for additional constraints. This incremental pro-
cess refines the surface until it is topologically stable.

2 Related Works
The problem of reconstructing a surface from scans has

been researched extensively for almost two decades [12, 18].
Many different techniques have been developed, based on
signed distance functions [12, 8], Voronoı̈ diagrams [2, 6,
11], radial basis functions and local implicit functions [7, 22,
23], moving least square approximation [1, 3], or wrapping
techniques [5], to mention a few. Nevertheless, these tech-
niques are concerned with a faithful reconstruction of the
local structure of the surface, whereas we also focus on its
global structure.

Some related works are concerned with the reconstruction
of a surface from inhomogeneous sample density or missing
data [9, 11, 16, 25, 13]. These techniques use some heuristics
to define the locus of the surface in under-sampled or noisy
data. Our technique is similar to the works of [16, 13] in that
we use a global optimization technique and that we guaran-
tee a continuous watertight surface reconstruction. However,
the method of Kolluri et al. [16], requires filtering of the

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..

© Sharf, L., Shklarski, Toledo, Cohen-Or

http://www.tau.ac.il/~stoledo/students.html
http://www.tau.ac.il/~stoledo/students.html

Vector field de-noising

• noise at the scale of the data

• clean data + “important” vortices

• local interpolation analysis

Mechanical Dept, PUC-Rio
© Nascimento, Paixão, Lopes, L.

Interactive de-noising

Scale space

Original field

User

Reconstruction

Final field

Local
singularities

Filtering

Scale-dependent singularity
s}

User

�v(s(x),x)�v(s,x)

s(x)
s0

s1

Topology-aware de-noising

Original

Smoothed Reconstructed

©
 N

as
ci

m
en

to
, P

ai
xã

o,
 L

op
es

, L
.

Some common points

• singular points only
• ➾ several applications

• topology: intuitive interfaces

• noise / scale problems

© Gyulassy, Natarajan, Pascucci, Bremer, Hamann

Appeared in the proceedings of IEEE Conference on Visualization, 2005

Figure 11: Features extracted from the fuel data set (maximum persistence = 255): the input data is shown on the left. The middle figure
shows the Morse-Smale complex after performing cancellations that remove all critical points with persistence value lower than 1. The figure
on right shows features represented by critical points with persistence value greater than 7.4.

Figure 12: Features extracted from the neghip data set (maximum persistence = 255): the input data has over a thousand critical points, many
of which have low persistence values and are removed. The middle figure shows the complex after all critical points with persistence value lower
than 1 are canceled. Canceling critical points with persistence value lower than 36 isolates the various clusters of atoms present in this protein.

Figure 13: Features extracted from the bonsai tree data set (maximum persistence = 255): topology-based simplification applied to the CT
scan of a bonsai tree identifies important features. The input data (left) is a down sampled version and has noisy regions which manifest as
clusters of critical points (middle). Removing all critical points with persistence value lower than 19 makes these regions smooth resulting in a
better identification of features using volume rendering (right).

Figure 14: Noise in a synthetic function is detected as features with negligible persistence and removed. Left: the function consists of various
spikes with the central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: all nine spikes are
clearly visible after removing noise that created the thin shells surrounding the spheres. Right: further simplification destroys all maxima except
the one representing the central feature.

8

Appeared in the proceedings of IEEE Conference on Visualization, 2005

Figure 11: Features extracted from the fuel data set (maximum persistence = 255): the input data is shown on the left. The middle figure
shows the Morse-Smale complex after performing cancellations that remove all critical points with persistence value lower than 1. The figure
on right shows features represented by critical points with persistence value greater than 7.4.

Figure 12: Features extracted from the neghip data set (maximum persistence = 255): the input data has over a thousand critical points, many
of which have low persistence values and are removed. The middle figure shows the complex after all critical points with persistence value lower
than 1 are canceled. Canceling critical points with persistence value lower than 36 isolates the various clusters of atoms present in this protein.

Figure 13: Features extracted from the bonsai tree data set (maximum persistence = 255): topology-based simplification applied to the CT
scan of a bonsai tree identifies important features. The input data (left) is a down sampled version and has noisy regions which manifest as
clusters of critical points (middle). Removing all critical points with persistence value lower than 19 makes these regions smooth resulting in a
better identification of features using volume rendering (right).

Figure 14: Noise in a synthetic function is detected as features with negligible persistence and removed. Left: the function consists of various
spikes with the central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: all nine spikes are
clearly visible after removing noise that created the thin shells surrounding the spheres. Right: further simplification destroys all maxima except
the one representing the central feature.

8

Appeared in the proceedings of IEEE Conference on Visualization, 2005

Figure 11: Features extracted from the fuel data set (maximum persistence = 255): the input data is shown on the left. The middle figure
shows the Morse-Smale complex after performing cancellations that remove all critical points with persistence value lower than 1. The figure
on right shows features represented by critical points with persistence value greater than 7.4.

Figure 12: Features extracted from the neghip data set (maximum persistence = 255): the input data has over a thousand critical points, many
of which have low persistence values and are removed. The middle figure shows the complex after all critical points with persistence value lower
than 1 are canceled. Canceling critical points with persistence value lower than 36 isolates the various clusters of atoms present in this protein.

Figure 13: Features extracted from the bonsai tree data set (maximum persistence = 255): topology-based simplification applied to the CT
scan of a bonsai tree identifies important features. The input data (left) is a down sampled version and has noisy regions which manifest as
clusters of critical points (middle). Removing all critical points with persistence value lower than 19 makes these regions smooth resulting in a
better identification of features using volume rendering (right).

Figure 14: Noise in a synthetic function is detected as features with negligible persistence and removed. Left: the function consists of various
spikes with the central one being the largest. Each spike is visualized as a sphere in the volume-rendered image. Middle: all nine spikes are
clearly visible after removing noise that created the thin shells surrounding the spheres. Right: further simplification destroys all maxima except
the one representing the central feature.

8

Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo and Daniel Cohen-Or 2

Figure 2: Reconstruction pipeline for a scanned elephant model. An initial coarse function is automatically computed from loose, automatic

inside/outside (blue/red balls) constraints (left). The topological analysis of this function selects weak regions (center-left), where the user

can make local decisions by scribbling over 2D tablets at a coarse resolution (center-right). Further iterations at finer resolutions lead to a

complete reconstruction of the model (right).

One of the major difficulties is the coverage of the
scanned model: As a result of physical inaccessibility, poor
visibility and material properties, the coverage is often im-
perfect and significant portions of the surface are either
under-sampled or completely missing. The problem is more
acute for complex shapes with deep cavities and bifurcations
(e.g., Figure 1). While it is reasonable to assume that scan-
ning hardware will advance, future reconstruction systems
will still need to employ algorithms that reconstruct under-
sampled areas. Systems that reconstruct poorly-sampled ar-
eas merely based on priors, without any user intervention,
fail in many cases to faithfully reconstruct the expected
shape. At the other extreme, systems that rely only on ex-
plicit manual surface editing are too tedious.

Without prior assumptions and user constraints, the re-
construction problem is ill posed; an infinite number of sur-
faces pass through or near the data points. Smoothness and
watertight constraints usually regularize the problem and re-
move the ill posedness. Nevertheless, even if the problem is
successfully transformed into a well conditioned one, the re-
constructed object is not necessarily the expected one. Our
method is based on the observation that it is often possi-
ble to detect the ill conditioning and to ask the user for in-
side/outside constraints to locally resolve them and achieve
the expected shape.

In this paper we present a topology-aware reconstruction
technique that requires minimal user input to make correct
decisions at critical regions, where the topology of the shape
cannot be induced automatically with a reasonable degree of
confidence. Our method uses priors to reconstruct the sur-
face, but it also allows the user to influence the prior dis-
tribution. Two aspects of the prior distribution are fixed: we
assume that the surface is smooth almost everywhere, and
that it should be watertight. Other aspects of the prior dis-
tribution are controlled by the user who specifies constraint
points that should be inside or outside the surface.

To reconstruct a watertight surface given raw scans with-
out normals, and possibly the user’s inside/outside con-
straints, we first construct a continuous function over a three-
dimensional domain. The zero level-set of this function ap-

proximates the data points. We construct this function by
minimizing a penalty that measures its non-smoothness, the
deviation of its zero level-set from the data points, and its
deviations from prescribed positive/negative values at the in-
side/outside constraints. Our function optimization problem
is formulated in a mesh-independent manner, and mapped
onto a specific mesh using the finite-element method. Com-
putationally, the function is constructed by solving a large
sparse linear system. However, at complex under-sampled
regions these constraints might be insufficient. Therefore, we
analyze the local topological stability of the zero level-set to
detect weak regions of the surface. These regions are sug-
gested to the user for adding local inside/outside constraints
by merely scribbling over a 2D tablet corresponding to a
cross section of the field (see Figure 2). The new user input
augments the linear system with additional constrains, im-
proving the reconstruction. The stability analysis is then re-
peated. If the surface is still topologically unstable, the user
is prompted for additional constraints. This incremental pro-
cess refines the surface until it is topologically stable.

2 Related Works
The problem of reconstructing a surface from scans has

been researched extensively for almost two decades [12, 18].
Many different techniques have been developed, based on
signed distance functions [12, 8], Voronoı̈ diagrams [2, 6,
11], radial basis functions and local implicit functions [7, 22,
23], moving least square approximation [1, 3], or wrapping
techniques [5], to mention a few. Nevertheless, these tech-
niques are concerned with a faithful reconstruction of the
local structure of the surface, whereas we also focus on its
global structure.

Some related works are concerned with the reconstruction
of a surface from inhomogeneous sample density or missing
data [9, 11, 16, 25, 13]. These techniques use some heuristics
to define the locus of the surface in under-sampled or noisy
data. Our technique is similar to the works of [16, 13] in that
we use a global optimization technique and that we guaran-
tee a continuous watertight surface reconstruction. However,
the method of Kolluri et al. [16], requires filtering of the

The corresponding work was published in the proceedings of Siggraph 2007. Transactions on Graphics, volume 26, number 3, pp. 43.1–43.9. ACM, 2007..

A note on noise / resolution

• Persistence approach:

• Usual in Morse theory

• Smale used it for optimal Morse functions

• Keep singularities in place

Scale-Space Tracking of Critical Points in 3D Vector Fields 11

6 Results

In this section we will present results of the above described scale-space track-
ing approach applied both to a generated test dataset as well as to a real flow
dataset.

Our first dataset is an artificial test dataset. It was created by resampling
a random generated 103 vector field to a 503 grid using tricubic filtering. In
this dataset 16 first-order critical points (3 saddles, 3 focus saddles and 10
foci) have been detected. The original 16 critical points in combination with
streamlines seeded in their vicinity are shown in Fig. 1a. The same dataset
after adding some noise is shown in Fig. 1b. In this case, normal-distributed
noise was added to 20% of the vector components of the field, which leads to
a rather high signal-to-noise ratio of approximately 11dB for this dataset.

The number of critical points that can be detected now is 1307 and the
topology is much too complex to be of any practical use. Applying the pro-
posed scale-space tracking scheme, enables us to distinguish between critical
points that have been solely introduced due to noise and critical points that
represent the dominating flow behavior.

For this test, the points were traced using the scheme derived in Sec. 5.2
over the scales from τ = 0 to τ = 1.5. The computation took approximately
70 second on a machine equipped with an AMD Opteron 2.0GHz processor
and 8GB of main memory. 8.5 seconds were spent for computing the scale-
space representation and 61 second for the actual streamline integration. The
numbers for the feature flow field based method of Sec 5.1 are comparable and
identical results are produced for both methods. Fig. 2a shows the result of

(a) (b)

Fig. 1. A random generated test dataset. Critical points are color coded according
to their classification. Foci are shown in red and green hues, while saddles are colored
in blue tones. (a) Original data. (b) Data with noise added.

12 Thomas Klein and Thomas Ertl

(a) (b)

Fig. 2. The same test dataset as shown in Fig. 1. (a) Scale-space lifetime of the
critical points in the interval τ = 0 . . . 1.5 computed by our algorithm. Red color
indicates stable critical points, while gray colored points are very short-lived. (b)
Critical points filtered by their lifetime. Only points that persist at τmin = 1.0 are
shown.

this computation. A gray to red color-coding is applied to indicate the scale-
space lifetime of the critical points. Gray points are very short lived while
bright red points could be traced over the whole scale interval. The actual
scale-space traces of the critical points are not shown in the images, since
they do not provide much of additional information. They may only serve to
identify pairs of critical points that participate in annihilation events.

Last, in Fig. 2b the result of filtering the points according to their scale-
space lifetime is shown. Only points that have a lifetime larger than τmin = 1.0
are shown. Note that the streamlines have been integrated starting from the
remaining points in the original noisy field not in a smoothed representation.
The same holds for the classification of the critical points. Of course, it is
not possible to recover the original topology of the noise-free dataset but the
overall behavior is much more apparent.

As a second example we present the application of the scale-space tracking
to a real CFD dataset–a simulation of the flow past a circular cylinder. There
are 141 critical points that can be detected in this dataset which account for
the complex flow topology in the wake behind the cylinder. Fig. 3a shows
the critical points detected in the flow field. Only the lower half of the 1803

data set is shown in this image since there were no critical points detected
in the upper part of the dataset. For both images of Fig. 3 the same type
of color-coding as for those in Fig. 1 has been used. Computing the scale-
space lifetime of the critical points for this dataset took approximately 4:58
minutes using the same machine as for the first example. Since this dataset

12 Thomas Klein and Thomas Ertl

(a) (b)

Fig. 2. The same test dataset as shown in Fig. 1. (a) Scale-space lifetime of the
critical points in the interval τ = 0 . . . 1.5 computed by our algorithm. Red color
indicates stable critical points, while gray colored points are very short-lived. (b)
Critical points filtered by their lifetime. Only points that persist at τmin = 1.0 are
shown.

this computation. A gray to red color-coding is applied to indicate the scale-
space lifetime of the critical points. Gray points are very short lived while
bright red points could be traced over the whole scale interval. The actual
scale-space traces of the critical points are not shown in the images, since
they do not provide much of additional information. They may only serve to
identify pairs of critical points that participate in annihilation events.

Last, in Fig. 2b the result of filtering the points according to their scale-
space lifetime is shown. Only points that have a lifetime larger than τmin = 1.0
are shown. Note that the streamlines have been integrated starting from the
remaining points in the original noisy field not in a smoothed representation.
The same holds for the classification of the critical points. Of course, it is
not possible to recover the original topology of the noise-free dataset but the
overall behavior is much more apparent.

As a second example we present the application of the scale-space tracking
to a real CFD dataset–a simulation of the flow past a circular cylinder. There
are 141 critical points that can be detected in this dataset which account for
the complex flow topology in the wake behind the cylinder. Fig. 3a shows
the critical points detected in the flow field. Only the lower half of the 1803

data set is shown in this image since there were no critical points detected
in the upper part of the dataset. For both images of Fig. 3 the same type
of color-coding as for those in Fig. 1 has been used. Computing the scale-
space lifetime of the critical points for this dataset took approximately 4:58
minutes using the same machine as for the first example. Since this dataset

© Klein, Ertl

© Weinkauf, Gingold, Sorkine

Persistence is universal?

+ smooth and both discrete settings
- noise has a complex impact on topology
- discrete setting intrinsically resolution

dependent on image and domain
f : M ⊂ Rn → R

8 TADD: Topological Analysis of Discrete Data

a) b) c)

Fig. 2. Synthetic noisy scalar field. Extremal structure of a) V φ
k0

, b) V φ
kn−23 and c)

V φ
kn−11. Minima, saddles and maxima are depicted as blue, yellow and red spheres,

while 0-separatrices and 1-separatrices are shown as blue and red lines.

and compute the incident p-separatrices.

In the vector case, we also need to extract all periodic orbits. Due to the 2D
manifold structure, p-streamlines can not split when the first node is a 1-node.
Therefore, the extraction of periodic orbits is quite simple. First, we iterate over
all 1-nodes. Given a node u1, we start the computation of the p-streamlines that
emanates at u1. Each streamline is continued as long as the following node w1

is not yet labeled, in which case it is labeled with u1. If the label of w1 equals
u1 we add w1 to a set of seed points. We then iterate over all seed points to
compute all periodic orbits.

4 Examples

In this section, we present three applications of the computational framework
presented in Section 3. The framework was implemented as a module in the vi-
sualization and data analysis software Amira [17]. The integrated visualization
capability of this software framework was used to assess the relevance of the
computed extremal structures and the practical quality of the approximation
Algorithm 1. The visualization of the abstract representation of the input data
as a matching in an edge weighted graph proved to be very useful in the devel-
opment of correct and efficient algorithms.

We first illustrate the ability to extract the extremal structure of a scalar field
where noise is present. We then apply our framework to a vector field on a 2D
manifold to show the physical relevance of the hierarchy of extremal structures
(3). The paper is concluded with an application to extremal lines of curvature
fields of a discrete 2D manifold.

4.1 A Synthetic Noisy Scalar Field

To illustrate the robustness of our data analysis framework, we applied it to
a synthetic data set depicted as a height field in Figure 2. The data set was
produced by sampling the analytic function f : [−1, 1]2 → R

8 TADD: Topological Analysis of Discrete Data

a) b) c)

Fig. 2. Synthetic noisy scalar field. Extremal structure of a) V φ
k0

, b) V φ
kn−23 and c)

V φ
kn−11. Minima, saddles and maxima are depicted as blue, yellow and red spheres,

while 0-separatrices and 1-separatrices are shown as blue and red lines.

and compute the incident p-separatrices.

In the vector case, we also need to extract all periodic orbits. Due to the 2D
manifold structure, p-streamlines can not split when the first node is a 1-node.
Therefore, the extraction of periodic orbits is quite simple. First, we iterate over
all 1-nodes. Given a node u1, we start the computation of the p-streamlines that
emanates at u1. Each streamline is continued as long as the following node w1

is not yet labeled, in which case it is labeled with u1. If the label of w1 equals
u1 we add w1 to a set of seed points. We then iterate over all seed points to
compute all periodic orbits.

4 Examples

In this section, we present three applications of the computational framework
presented in Section 3. The framework was implemented as a module in the vi-
sualization and data analysis software Amira [17]. The integrated visualization
capability of this software framework was used to assess the relevance of the
computed extremal structures and the practical quality of the approximation
Algorithm 1. The visualization of the abstract representation of the input data
as a matching in an edge weighted graph proved to be very useful in the devel-
opment of correct and efficient algorithms.

We first illustrate the ability to extract the extremal structure of a scalar field
where noise is present. We then apply our framework to a vector field on a 2D
manifold to show the physical relevance of the hierarchy of extremal structures
(3). The paper is concluded with an application to extremal lines of curvature
fields of a discrete 2D manifold.

4.1 A Synthetic Noisy Scalar Field

To illustrate the robustness of our data analysis framework, we applied it to
a synthetic data set depicted as a height field in Figure 2. The data set was
produced by sampling the analytic function f : [−1, 1]2 → R

© Reininghaus, Guenther, Hotz, Prohaska, Hege

Scale-dependent critical set

• Forman’s critical set results from
global construction:

• number of critical cells

• quality of the field approximation

© Reininghaus, Guenther, Hotz, Prohaska, Hege

maxi
mum

weig
ht

matc
hin

g

Partial conclusion

Banchoff
+ good critical points
+ intuitive!
 - globally stable?

Forman
+ good global behavior
+ flexible discretization
 - local precision?

!"#$%& '#$ () *!+,"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!,
41 ., .1*$,54,6 !% 5$1*$,54,6 -."# "#." $,51 ." . 1.553$& 7$
148+3."$ "#$ 6$,$%4* *.1$ 9: $;"$,54,6 "#$ -."# 9$:!,5 "#$
1.553$& <6.4,= >$ 642$ "#$ 5$".431 4, ?$*"4!, @&

4 Computing Quasi MS-complexes
A42$, . "%4.,6+3."4!, !/ . *!8-.*" B08.,4/!35 >4"#!+"
9!+,5.%:= .,5 . () #$46#" /+,*"4!, = !+% 6!.3 41 "! *!80
-+"$ "#$ C!%1$0?8.3$ *!8-3$; /!% . 148+3."$5 +,/!354,6 !/
& D, "#41 1$*"4!,= >$ ".E$. !%1" 1"$-= *!8-+"4,6 . F+.14
C?0*!8-3$; !/ & '! !9".4, . /.1" .36!%4"#8= >$ 3484"
!+%1$32$1 "! -."#1 +14,6 "#$ $56$1 !/ & 7#43$ "#$ %$1+3"4,6
!8-3$; 41 ,+8$%4.33: 4,.**+%."$= "#$ /!*+1 41 !, *.-"+%4,6
"#$ 1"%+*"+%$!/ "#$ C!%1$0?8.3$ *!8-3$;&

G$*.33 "#." "#$ F+.14 C?0*!8-3$; >433 #.2$ "#$ *%4"40
.3 -!4,"1 !/ .1 2$%"4$1= .,5 8!,!"!,4* ,!,0*%!114,6 -."#1
.1 .%*1& '! %$1!32$ "#$ 8$%64,6 .,5 /!%E4,6 !/ -."#1= >$ /!%0
8+3."$. "#%$$01".6$.36!%4"#8& D, $.*# 1".6$= >$ *!8-+"$.
*!8-3$;>#!1$.%*1 .%$,!,0*%!114,68!,!"!,4* -."#1= 6+.%0
.,"$$4,6 "#41 -%!-$%": /!% "#$!,.3 *!8-3$;&

Complex with junctions. D, "#$!%1" 1".6$= >$ 9+435 . *!80
-3$; >4"# $;"%. 2$%"4*$1& 7$ 9$64, 9: *3.114/:4,6 .33 2$%"4*$1
.,5 *!8-+"4,6 "#$ >$56$1 !/ "#$4% 3!>$% .,5 +--$% 1".%1& 7$
5$"$%84,$ "#$ 1"$$-$1" 56 4, $.*# >$56$.,5 1".%" .10
$,54,6 .,5 5$1$,54,6 -."#1 /%!8 2%: 0/!35 1.553$&
H.*# -."# 9$64,1 4, 4"1 !>, >$56$.,5 /!33!>1 . 1$F+$,*$
!/ 1"$$-$1" $56$1 +,"43 4" #4"1

I.J . 84,48+8 !% . 8.;48+8=
I9J . -%$24!+13: "%.*$5 -."# ." . %$6+3.% -!4,"= !%
I*J .,!"#$% 1.553$=

." >#4*# -!4," "#$ -."# $,51& K.1$ I.J *!%%$1-!,51 "! "#$
6$,$%4* *.1$ /!% 18!!"# #$46#" /+,*"4!,1= K.1$ I9J *!%%$0
1-!,51 "! . 8$%64,6 !% /!%E4,6= .,5 K.1$ I*J 41 "#$ () *!+,0
"$%-.%" !/ . ,!,0"%.,12$%1.3 4,"$%1$*"4!, 9$">$$, . 1".93$.,5
., +,1".93$ L08.,4/!35&

'! %$1!32$ K.1$ I9J= >$.33!> %$6+3.% -!4,"1 !% junctions
.1 2$%"4*$1 !/ "#$ *!8-3$;& 7$ $4"#$% *%$."$. ,$> M+,*"4!,
.,5 1-34" "#$ -%$24!+13: "%.*$5 -."#= !% >$ 4,*%$.1$ "#$ 5$0
6%$$!/ "#$ -%$24!+13: *%$."$5 M+,*"4!,& N: 5$!,4"4!,= M+,*0
"4!,1 %$8!2$.33 *%!114,61 4, "#$ *!8-3$;& 7$ >433 $3484,."$
M+,*"4!,1 .,5 %$1!32$ K.1$ I*J 4, "#$ 1$*!,5 1".6$!/ "#$.30
6!%4"#8&

7$ +1$ "#$ F+.5 56 5.". 1"%+*"+%$ OLPQ "! 1"!%$ "#$
!8-3$; 5$!,$5 9: "#$ -."#1& '#$ 2$%"4$1 !/ "#$ *!8-3$;
.%$ "#$ *%4"4*.3 -!4,"1 .,5 M+,*"4!,1= .,5 "#$.%*1 .%$ "#$ -.4%0
>41$ $56$0541M!4," -."#1 *!,,$*"4,6 "#$1$ 2$%"4*$1&

Extending paths. D, "#$ 1$*!,5 1".6$!/ !+% .36!%4"#8= >$
$;"$,5 -."#1 "! %$8!2$ M+,*"4!,1 .,5 %$5+*$ "#$,+89$% !/
.%*1 -$% 0/!35 1.553$ "! & 7#$,$2$% >$ $;"$,5 .

-."#= >$ %!+"$ 4" .3!,6 .,5 4,!,4"$148.33: *3!1$ "! ., .3%$.5:
$;41"4,6 -."#& D, -%.*"4*$= >$ 148+3."$ "#41 $;"$,14!, *!8940
,."!%4.33: >4"#4, "#$ F+.50$56$ 5.". 1"%+*"+%$& D, $;"$,54,6
-."#1= >$ 8.: *%$."$,$> -."#1 $,54,6 ." !"#$% M+,*"4!,1
.,5 1.553$1& K!,1$F+$,"3:= >$ 8+1" -%!*$11 "#$ 2$%"4*$1 4,
. 1$F+$,*$ "#." -%2,"1 *:*34* 5$-$,5$,*4$1& ?4,*$.1*$,50
4,6 .,5 5$1*$,54,6 -."#1 .%$ $;"$,5$5 4, !--!14"$ 54%$*"4!,1=
>$,$$5 ">! !%5$%4,61 .,5 >$ "!+*# 2%: 2$%"$; ">4*$& D"
41 *!,2$,4$," "! !%1" $;"$,5 .1*$,54,6 -."#1 4, "#$!%5$% !/
4,*%$.14,6 #$46#"= .,5 1$*!,5 $;"$,5 5$1*$,54,6 -."#1 4, "#$
!%5$% !/ 5$*%$.14,6 #$46#"& 7$,$;" 541*+11 !+% %!+"4,6 -%!0
$5+%$1 /!% M+,"4!,1 .,5 1.553$1& D, "#$!6+%$1 "#." /!33!>=
>$!%4$," -."#1 4, "#$ 54%$*"4!, "#$: $8.,."$ /%!8 . 1.553$&

yy

R46+%$ ST (."#1 $,54,6 ." M+,*"4!,1 .%$ $;"$,5$5 9: 5+-34*."4!, .,5
!,."$,."4!,&

K!,145$% "#$ M+,*"4!, 4, R46+%$ S !, "#$ 3$/"& N: 5$/0
4,4"4!,= 41 . %$6+3.% -!4," >4"# 3!>$% .,5 +--$% 1".%1 *!,0
141"4,6 !/ !,$ >56 $.*#& '#$!%1" "48$ >$ $,*!+,"$% =
"#$ -."# 41 "%.*$5 %46#" "#%!+6# "#$ -!4,"& D, 2%: .554"4!,.3
$,*!+,"$%= "#$ -."# $,51 ." = .1 41 ,!> . M+,*"4!,& D/ "#$
!%1" -."# 41 .1*$,54,6= "#$, !,$.1*$,54,6 -."# 3$.2$1 4,"!
"#$ +--$% 1".%= .33 !"#$% .1*$,54,6 -."#1 .--%!.*# /%!8 "#$
3!>$% 1".%= .,5 .33 5$1*$,54,6 -."#1 .--%!.*# /%!8 "#$ +-0
-$% 1".%& '#41 41 "#$ *.1$ 1#!>, 4, R46+%$ S& 7$ 5+-34*."$
-."#1 /!% .33 M+,*"4!,1 +14,6 !+% ">! !%5$%4,61& U!"$ "#." "#$
,$> -."#1= 1#!>, 4, "#$ 84553$!/ R46+%$ S= 8.: 4,*3+5$ 5+0
-34*."$1 1-.>,$5 9: M+,*"4!,1 "#." !**+% 9$/!%$ "#41 2$%"$;
4, ., !%5$%4,6& R4,.33:= >$ *!,*."$,."$ "#$ %$1+3"4,6 -."#1 4,
-.4%1 >4"#!+" *%$."4,6 *%!114,61= .1 1#!>, 4, R46+%$ S "! "#$
%46#"&

xx x

R46+%$ VT (."#1 "#." $,5 ." . 1.553$ 9: K.1$ I*J .%$ $;"$,5$5 9:
5+-34*."4!, .,5 *!,*."$,."4!,&

7$,$;" %$1!32$ K.1$ I*J= -."#1 "#." #.2$.,!"#$% 1.50
53$.1 ., $,5 -!4,"& K!,145$% "#$ 1.553$ 4, R46+%$ V& 7$
3!!E ." -."# $;"$,14!,1 !,3: >4"#4, !,$!/ "#$ 1$*"!%1 9$0
">$$, ">! *:*34*.33: *!,"46+!+1 1"$$-$1" $56$1& 74"#4, "#41
1$*"!%= "#$%$ 8.: 9$.1*$,54,6 -."#1 .--%!.*#4,6 /%!8
>4"#4, "#$!2$%3.--4,6>56!/ "#$ 3!>$% 1".%= .,5 5$1*$,50
4,6 -."#1 .--%!.*#4,6 /%!8 >4"#4, "#$!2$%3.--4,6 >56
!/ "#$ +--$% 1".%= .1 1#!>, 4, R46+%$ V "! "#$ 3$/"& </"$%

W

Recent improvements

• global stability of PL computations
(persistence and Morse-Smale)

• control of critical cells in Forman’s
(matching and localization)

© Gyulassy, Natarajan, Pascucci,
Bremer, Hamann Fig. 6. Top-left: topological skeleton of a vector field on a cerebral aneurysm given

by a blood flow simulation; top-right: zoom in of an area exhibiting recurrent flow
behavior indicated by attracting periodic orbits (red) and repelling periodic orbits
(blue); bottom-left: simplified topological skeleton with 1 saddle, 2 sinks and 1 source;
bottom-right: simplified topological skeleton with 2 sinks and 1 repelling orbit

Example 3 This real world example depicts the surface velocity field of a
simulation of blood flow through a cerebral aneurysm done by the Biofluid Me-
chanics Lab of the Charité - Universitätsmedizin Berlin. The simplicial graph
of the triangulation consists of 60, 000 nodes. The computation time for the
construction, simplification and topology extraction is 29 minutes on a 3 GHz
CPU with our current implementation. Almost all time is spent in the maximum
weighted bipartite matching code that solves (4).

The critical points in this vector field are stagnation points and thus of inter-
est for the flow analysis. While standard vector field topology is able to reliably
extract these critical points too, our algorithm delivers a hierarchy of topological
skeletons which captures the dominant nature of the flow (see Figure 6 bottom-
left). The blood enters the aneurysm at the bottom, and leaves it horizontally.
This behavior is found by our algorithm and the global separation on the surface
is extracted. This reduced flow structure may serve as a basis when comparing
different cerebral aneurysms.

© Reinighaus, Hotz

In-between both worlds

• On triangulated surface, greedy construction of
Forman’s vector field keeps Banchoff’s critical set
for slowly varying function f : K0 �→ R

© L.

Next challenges

• Higher dimension (besides NP)

• More general cases (infinite complexes)

• More complex objects (tensors,)

• More theoretical guarantees

{fi}

L., Lopes, Tavares, Joswig, Pfetsch...

Ayala, Vilches...

Forman, Tricoche, Tong, Desbrun...

L., Zhang, Mischaikow...

Global from local?

© Escher © visualfunhouse

Thank you
for your attention!

Thomas Lewiner
PUC - Rio. Rio de Janeiro, Brazil!

http://thomas.lewiner.org/

http://thomas.lewiner.org
http://thomas.lewiner.org

