Looking for intuition behind discrete topologies

Thomas Lewiner
Department of Mathematics PUC - Rio. Rio de Janeiro, Brazil!

Topology-Based Methods in Data Analysis and Visualization: TopoInVis 2011: ETH, Zürich.

Acknowledgements

TopolnVis organizers!!
students and colleagues:

João Paixão, Renata Nascimento, Andrei Sharf, Daniel Cohen-Or, Arik Shamir, David Cohen-Steiner, Hélio Lopes, Geovan Tavares...
authors of the many inspirational works!
financing institute:
CNPq, FAPERJ, CAPES, EDX, IMC, Matheon...

Expectations from topology

get the big picture
partially self-validated

$$
\chi=\sum_{i=0}^{d}(-1)^{i} \cdot m_{i}
$$

global (high info) from local (low cost)

Applications that motivated me

reservoir characterization from huge seismic data

surface extraction and reconstruction

vector field de-noising

Intuition?

quick and ready insight immediate apprehension or cognition
 something an industry engineer accepts

Today's filtration

topological objects discrete theories some examples
discussions

Topological objects

Manifolds,
Subsets of \mathbb{R}^{n}

Submersion intuition

subset of \mathbb{R}^{n} respecting a condition f
\Rightarrow closer to real data

Submersion topology

critical set of f (Morse lemma)
\Rightarrow global from local function analysis

Usual critical sets

minima
new
component

saddles
maxima
joins / splits
components

end
component

Immersion intuition

locally equivalent to \mathbb{R}^{d}
\Rightarrow intuitive differential tools

Immersion Morse topology

critical set of a function on the manifold
\Rightarrow global from local function analysis

Morse-Smale complex

relation between critical points
\Rightarrow local function analysis + graph

Vector field

sparse invariant sets

Vector field topology

© http://www.falstad.com/vector/
isolated singularities behavior
\Rightarrow local analysis (Hartman Grobman)+graph

+ closed orbits + non-generic

Gradient vector field

generic gradient
\Rightarrow Morse-Smale structure

Morse theory

topology from local function analysis

+ Smale complex / topological graph

Morse theory

Manifold

$$
\mathcal{M} \subset \mathbb{R}^{n}
$$

Function

$$
f: \mathcal{M} \rightarrow \mathbb{R}
$$

Critical point

$$
\mathbf{x} \in \mathcal{M}, \partial f(\mathbf{x})=0
$$

Index
Topology

Function analysis is intuitive

© http://www.karlscalculus.org/
© http://www.tutornext.com/

Intuition:

quick and ready insight immediate apprehension or cognition

More topological objects

differential

discrete

Local function analysis
 in the discrete setting???

Sampled function + interpolation

Weight on graph structures

Discrete function analysis?

not intuitive:

© feflow
finite difference (polynomial interpolation)
Fourier derivative (harmonic interpolation)
finite elements (template approximation)
on manifold?

Discrete analysis?

Discrete Morse theories

piecewise-linear interpolation
\Rightarrow Banchoff's approach
combinatorial formulation
\Rightarrow Forman's approach

Banchoff's approach

regular

minimum

saddle

maximum

degenerated
intuition: sampling of f
guarantees: Euler χ, Gauss Bonnet local linear interpolations

\Rightarrow critical vertices

PL Morse-Smale complex

© Zomorodian, Edelsbrunner, Harer, Natarajan, Pascucci, Gyulassy, Bremer, Hamann..

numerical integration of streamlines

\Rightarrow Morse-Smale structure

Morse theory

Object $\quad \mathcal{M} \subset \mathbb{R}^{n}$
Function $\quad f: \mathcal{M} \rightarrow \mathbb{R}$
Critical set $\partial f^{-1}(\{0\})$
Index $\quad \# E i g\left(\partial^{2} f\right) \cap \mathbb{R}_{-}$
Topology $\quad \chi=\sum(-1)^{i} \cdot m_{i} \ldots$

∂, PL - Morse theories

∂

Object $\mathcal{M} \subset \mathbb{R}^{n}$

Function $\quad f: \mathcal{M} \rightarrow \mathbb{R}$ Critical set $\partial f^{-1}(\{0\})$ Index $\# \operatorname{Eig}\left(\partial^{2} f\right) \cap \mathbb{R}_{-}$ $\chi=\sum(-1)^{i} \cdot m_{i} \ldots$

PL
$|\mathcal{K}| \subset \mathbb{R}^{n}$
$f: \mathcal{K}_{0} \hookrightarrow \mathbb{R}$

0 I..n-I n
χ

Forman's approach: differential topology view

Start from Morse-Smale complex Subdivide to reach your complex arrows \Rightarrow gradient vector field

Forman's approach, algorithmic views

combinatorial field

\Rightarrow matching along the flow
\Rightarrow critical $=$ unmatched

gradient field no closed gradient path \Rightarrow acyclic

Acyclic matching

Forman's approach: differential topology view

guarantees: nD, homotopy, Witten homology...
intuition without differential function?

Morse inequalities,

Discrete Smale Compelx

from cancellations

∂, PL - Morse theories

∂

Object $\mathcal{M} \subset \mathbb{R}^{n}$

Function $\quad f: \mathcal{M} \rightarrow \mathbb{R}$ Critical set $\partial f^{-1}(\{0\})$ Index $\# \operatorname{Eig}\left(\partial^{2} f\right) \cap \mathbb{R}_{-}$
Topology $\quad \chi=\sum(-1)^{i} \cdot m_{i} \ldots \quad \chi$

PL
$|\mathcal{K}| \subset \mathbb{R}^{n}$
$f: \mathcal{K}_{0} \hookrightarrow \mathbb{R}$

∂, Forman - Morse theories

$\mathcal{M} \subset \mathbb{R}^{n}$
$f: \mathcal{M} \rightarrow \mathbb{R}$ $\partial f^{-1}(\{0\})$ $\# E i g\left(\partial^{2} f\right) \cap \mathbb{R}_{-}$cell dimension $\chi=\sum(-1)^{i} \cdot m_{i} \ldots \chi=\sum(-1)^{i} \cdot m_{i}$

Forman
CW complex \mathcal{K} acyclic matching
unmatched cells

Index
Topology
Critical set

A priori pros and cons

Banchoff's approach

+ intuitive / geometric
+ controlled critical set
+ many numerical tools
- nD guarantees?
- global robustness?

Forman's approach

+ correct global topology
+ robust (graph algorithms)
+ efficient (combinatorial)
- critical set localization?
- graph intuition?

Some monster cases

Poincaré's homological sphere (missing critical points)

Bing's
house of 2 rooms
(extra critical cell)

Learning from examples

matemática

Isosurface extraction

Isosurface extraction

Topological cases of Marching Cubes
\Rightarrow differentiable function analysis

Large isosurface topology

Topology without the isosurface
Mid-scale control and filtering
global + efficiency \Rightarrow Forman's line

Some Isosurfaces’ Topology

© L., Lopes,Vieira, Tavares

Smale complex
Reeb graph

Surface reconstruction

noisy, sparse point set
\Rightarrow correct topology?

Surface reconstruction

© Sharf, L., Shklarski, Toledo, Cohen-Or

interactive topology edition

 local critical regions
\Rightarrow Banchoff's line

Topology-aware reconstruction

© Sharf, L., Shklarski, Toledo, Cohen-Or

Vector field de-noising

Mechanical Dept, PUC-Rio

© Nascimento, Paixão, Lopes, L.
noise at the scale of the data
clean data + "important" vortices
local interpolation analysis

Interactive de-noising

Original field

Filtering

Scale-dependent singularity

Topology-aware de-noising

Impinging plate

Smoothed

Reconstructed
matemática
puc-rio

Some common points

singular points only

\Rightarrow several applications

topology: intuitive interfaces
noise / scale problems

A note on noise / resolution

© Klein, Ertl

Persistence approach:

Usual in Morse theory
Smale used it for optimal Morse functions
Keep singularities in place

Persistence is universal?

© Reininghaus, Guenther, Hotz, Prohaska, Hege

+ smooth and both discrete settings
- noise has a complex impact on topology
- discrete setting intrinsically resolution dependent on image and domain

$$
f: \mathcal{M} \subset \mathbb{R}_{\substack{n \\ \text { pucuction }}}^{n} \mathbb{R}
$$

Scale-dependent critical set

© Reininghaus, Guenther, Hotz, Prohaska, Hege
Forman's critical set results from global construction:
number of critical cells quality of the field approximation

Partial conclusion

Banchoff

+ good critical points
+ intuitive!
- globally stable?

Forman

+ good global behavior
+ flexible discretization
- local precision?

Recent improvements

© Reinighaus, Hotz

In-between both worlds

On triangulated surface, greedy construction of Forman's vector field keeps Banchoff's critical set for slowly varying function $f: \mathcal{K}_{0} \hookrightarrow \mathbb{R}$

Next challenges

Higher dimension (besides NP)
L., Lopes, Tavares, Joswig, Pfetsch...
More general cases (infinite complexes)
Ayala, Vilches...
More complex objects (tensors, $\left\{f_{i}\right\}$)
Forman, Tricoche,Tong, Desbrun...
More theoretical guarantees
L., Zhang, Mischaikow.

Global from local?

© visualfunhouse
(c) Escher

Thank you

for your attention!

Thomas Lewiner
PUC - Rio. Rio de Janeiro, Brazil!
http://thomas.lewiner.org/

