
Appeared in the proceedings of IEEE Conference on Visualization, 2005

saddle-maximum cancellation simplifies the function by removing
a “bump”. Figure 4 shows how the integral lines terminating at the
two maxima flow into the remaining maximum after cancellation.
The saddle-maximum cancellation is similar to its two-

dimensional analog, which is also implemented as a merging of
three critical points. We merge neighboring cells in the ring around
the saddle-maximum arc to reconnect the complex. Therefore, be-
sides removing two critical points, this cancellation also removes
several crystals, quads, and arcs from the complex.
A saddle-maximum cancellation is legal only if the 2-saddle is

connected to two distinct maxima. If this condition is not met, then
we recognize that the cancellation causes a strangulation of the de-
scending disk that originates at the 2-saddle. Indeed, it is not pos-
sible to route the integral lines terminating at the 2-saddle if we do
cancel such a saddle-maximum pair. Figure 5 shows this configu-
ration.

Figure 5: The two integral lines beginning at a 2-saddle flow to the

same maximum. Canceling the saddle-maximum pair causes a stran-

gulation of the blue descending disk because integral lines terminating

at the 2-saddle are left without a destination.

Saddle-saddle cancellation. The saddle-saddle cancellation re-
moves a 1-saddle-2-saddle pair. This cancellation does not have an
analog in lower dimensions and therefore intuition from 2D does
not help. A 1-saddle descends to exactly two minima, and a 2-
saddle ascends to exactly two maxima. After canceling this saddle
pair, we need to ensure that the two pairs of extrema originally sep-
arated by these saddles remain that way. This necessitates the in-
troduction of new cells to fill in space between the two pairs of ex-
trema. The easiest way to think about this cancellation is to consider
what happens to the descending disk originating from the 2-saddle,
and the ascending disk originating from the 1-saddle. Upon can-
cellation, these two disks disappear and neighboring disks stretch
out and share their boundary. Figure 6 illustrates the operation by
showing the descending disks before and after cancellation. We
can no longer consider the cancellation as a merging of three crit-
ical points, as we did for the saddle-maximum cancellation. Con-
sider the descending disk that is removed by the cancellation. The
boundary of this disk consists of alternating 1-saddles and minima.
Arcs lying within the disk connect the source 2-saddle to 1-saddles
on the boundary. One of these 1-saddles is involved in the cancel-
lation. This 1-saddle and its two descending arcs are deleted by
the cancellation. Descending disks that contain the two deleted de-
scending arcs in their boundary expand to share the boundary of
the removed disk. Similarly, one ascending disk is removed and its
boundary is shared by the neighboring ascending disks.
The best way to think about how to reconnect the complex after

a saddle-saddle cancellation is, again, in terms of ascending and de-
scending disks. All surviving descending disks expand to share the
boundary of the deleted disk thereby creating connections between
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Figure 6: A saddle-saddle cancellation. (a) Descending disks affected

by the cancellation. The red arc connects the pair to be canceled. All

four disks (a,b,c, and d) have two common descending arcs (shown

in green) on their boundary, both originating from the 1-saddle to be

removed. (b) Descending disks that remain after cancellation. The

green descending arcs are deleted from the boundary of the three

surviving disks, which now extend and inherit the boundary of d.
Ascending manifolds are modified in a similar way.

surviving 2-saddles and 1-saddles on the newly inserted boundary.
Similarly, surviving 1-saddles connect to 2-saddles on the newly
inserted boundary of their ascending disks. This gives the full re-
connectivity of the complex after a cancellation.
The Morse-Smale complex actually gains cells after a saddle-

saddle cancellation because re-routing the descending disks creates
new intersections between ascending and descending disks. Fig-
ure 7 shows the cells destroyed and created by this operation. For
simplicity, these figures show only three of the twelve crystals de-
stroyed by the cancellation and the cells that reconnect this complex
within this region. Figure 8 shows how one of these newly created
crystals fills in the space occupied by the destroyed crystals. In-
troducing new cells is counter-intuitive because simplification ac-
tually does not lead to a smaller complex. Although the Morse-
Smale complex apparently gains complexity in size, the function is
smoothed by the removal of these saddle pairs. Also, note that the
cells created by the saddle-saddle cancellation are introduced into
rings around saddle-extremum pairs. A future saddle-extremum
cancellation will remove all these cells leading to a smoother Morse
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