
other. The PL counterpart of a non-transversal intersection
is an ascending or descending path that ends at a saddle. We
simulate the generic case by extending the path beyond the
saddle. Again, we give the details in Section 4.

4 Computing Quasi MS-complexes
Given a triangulation of a compact 2-manifold without
boundary, and a PL height function , our goal is to com-
pute the Morse-Smale complex for a simulated unfolding of
. In this section, we take a rst step, computing a quasi
MS-complex of . To obtain a fast algorithm, we limit
ourselves to paths using the edges of . While the resulting
complex is numerically inaccurate, the focus is on capturing
the structure of the Morse-Smale complex.

Recall that the quasi MS-complex will have the criti-
cal points of as vertices, and monotonic non-crossing paths
as arcs. To resolve the merging and forking of paths, we for-
mulate a three-stage algorithm. In each stage, we compute a
complexwhose arcs are non-crossingmonotonic paths, guar-
anteeing this property for the nal complex.

Complex with junctions. In the rst stage, we build a com-
plex with extra vertices. We begin by classifying all vertices
and computing the wedges of their lower and upper stars. We
determine the steepest edge in each wedge and start as-
cending and descending paths from every -fold saddle.
Each path begins in its own wedge and follows a sequence
of steepest edges until it hits

(a) a minimum or a maximum,
(b) a previously traced path at a regular point, or
(c) another saddle,

at which point the path ends. Case (a) corresponds to the
generic case for smooth height functions, Case (b) corre-
sponds to a merging or forking, and Case (c) is the PL coun-
terpart of a non-transversal intersection between a stable and
an unstable 1-manifold.

To resolve Case (b), we allow regular points or junctions
as vertices of the complex. We either create a new junction
and split the previously traced path, or we increase the de-
gree of the previously created junction. By denition, junc-
tions remove all crossings in the complex. We will eliminate
junctions and resolve Case (c) in the second stage of the al-
gorithm.

We use the quad edge data structure [10] to store the
complex dened by the paths. The vertices of the complex
are the critical points and junctions, and the arcs are the pair-
wise edge-disjoint paths connecting these vertices.

Extending paths. In the second stage of our algorithm, we
extend paths to remove junctions and reduce the number of
arcs per -fold saddle to . Whenever we extend a

path, we route it along and innitesimally close to an already
existing path. In practice, we simulate this extension combi-
natorially within the quad-edge data structure. In extending
paths, we may create new paths ending at other junctions
and saddles. Consequently, we must process the vertices in
a sequence that prevents cyclic dependencies. Since ascend-
ing and descending paths are extended in opposite directions,
we need two orderings and we touch every vertex twice. It
is convenient to rst extend ascending paths in the order of
increasing height, and second extend descending paths in the
order of decreasing height. We next discuss our routing pro-
cedures for junctions and saddles. In the gures that follow,
we orient paths in the direction they emanate from a saddle.

yy

Figure 6: Paths ending at junctions are extended by duplication and
concatenation.

Consider the junction in Figure 6 on the left. By def-
inition, is a regular point with lower and upper stars con-
sisting of one wedge each. The rst time we encounter ,
the path is traced right through the point. In every additional
encounter, the path ends at , as is now a junction. If the
rst path is ascending, then one ascending path leaves into
the upper star, all other ascending paths approach from the
lower star, and all descending paths approach from the up-
per star. This is the case shown in Figure 6. We duplicate
paths for all junctions using our two orderings. Note that the
new paths, shown in the middle of Figure 6, may include du-
plicates spawned by junctions that occur before this vertex
in an ordering. Finally, we concatenate the resulting paths in
pairs without creating crossings, as shown in Figure 6 to the
right.

xx x

Figure 7: Paths that end at a saddle by Case (c) are extended by
duplication and concatenation.

We next resolve Case (c), paths that have another sad-
dle as an end point. Consider the saddle in Figure 7. We
look at path extensions only within one of the sectors be-
tween two cyclically contiguous steepest edges. Within this
sector, there may be ascending paths approaching from
within the overlappingwedge of the lower star, and descend-
ing paths approaching from within the overlapping wedge
of the upper star, as shown in Figure 7 to the left. After

5


