
Links and critical vertices. We assume a data structure
for the triangulation of that connects neighboring sim-
plices so that a local walk can be performed in constant time
per visited simplex. An example of such a representation is
the edge-facet data structure described in [5]. It stores or-
dered triangles linked into rings around shared edges. To
illustrate the functionality of this data structure, consider the
computation of the link of a vertex . Letting be
one of the triangles that share that vertex, we use depth-first
search to traverse all triangles in the star. For each visited
triangle , the edge belongs to the link of and so do
the triangles that precede and succeed in the ring around
. Given the initial triangle , the search takes time pro-

portional to the number of edges in the link.
With an additional test of the vertex heights, we can iden-

tify the lower link as a subcomplex of the link. As discussed
in Section 3, we use the reduced Betti numbers of the lower
link to classify the vertex as regular, minimum, 1-saddle,
2-saddle, maximum or multiple saddle. We get the reduced
Betti numbers by keeping track of the components in the
lower link. If there are no components then and

for all , so is a minimum. If the lower link
is equal to the link then and for all , so
is a maximum. Otherwise, and is one less
than the number of components. We get from and the
Euler characteristic , where is the num-
ber of -simplices in the lower link of : .
According to Table 1, is regular if and it is
a multiple saddle combining 1-saddles and 2-saddles,
otherwise.

Running time. By choice of the data structure represent-
ing the triangulation of the manifold, the link of can
be computed in time proportional to its size. Similarly, the
classification of , which reduces to counting the simplices
and the components in the lower link, can be done in time
proportional to that size. By definition, the size of the link is
the number of simplices it contains, and because it is a two-
dimensional sphere, this is , where is its number
of triangles. Each triangle belongs to only two links, which
implies that the total size of all vertex links is

where is the number of vertices and is the number of tri-
angles in . As we will see later, the above time analysis
applies to most steps taken by our algorithm. Indeed, we
typically work inside a vertex link and compute simple sub-
structures, such as shortest-path trees and circles separating
oceans and continents from each other. We will see that with
the assumption of unit length edges both tasks and miscel-
laneous others can be performed in time proportional to the
size of the link and, in total, proportional to the size of .
Besides computing vertex links, the algorithm constructs

descending and ascendingmanifolds, which intersect to form

the quasi Morse-Smale complex. Even though these mani-
folds are made of simplices in , their total size can exceed
the size of by any arbitrary amount. This is because the
manifolds may fold onto themselves and onto each other. A
simplex in can therefore belong to several manifolds and it
can belong several times to a single manifold. Whatever the
situation, the time needed to add simplices to the description
of the quasi Morse-Smale complex is only proportional to
the total size of its description.
In summary, the running time of the algorithm is bounded

from above by a constant times (for sorting the ver-
tices) plus the input size (for constructing and analyzing the
vertex links) plus the output size (for describing the quasi
Morse-Smale complex).

5 Descending Manifolds
We compute the descending 1- and 2-manifolds simultane-
ously during one sweep. To simplify the presentation, we
first discuss them separately and restrict our attention to sim-
ple critical points.

Descending 1-manifolds. Each descending 1-manifold is
an open interval that belongs to a 1-saddle . It con-
sists of two descending arcs and we call the root of the
1-manifold and of its arcs. As illustrated in Figure 3, the
1-manifold descends from its root on both sides and, by sim-
ulation of the Morse-Smale condition, ends at minima of .
It is possible that the two arcs end at the same minimum,
but because they do not contain that minimum, their union is
still an open interval and not a closed circle. In the Morse-

Figure 3: The descending 1-manifold rooted at a 1-saddle. The
spheres sketch the links of the root, a regular point, and one of the
two minima.

Smale case, all vertices of the 1-manifold except for its root
are regular, but in the piecewise linear case it is also possi-
ble that the 1-manifold passes through a 2-saddle or 1-saddle
. We have because is necessarily lower than the

root. For an arc it makes little difference whether it passes
through a regular or a critical point. However, since starts
its own descending manifold, we need to make sure that the
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