

Learning good views through intelligent galleries

Thales Vieira
Alex Bordignon
Adelailson Peixoto
Geovan Tavares

Hélio Lopes Luiz Velho Thomas Lewiner

Camera Placement Problem: Non-linear

Camera Placement Problem: Subjectivity

Designer Best View

Fluid Specialist Best View

Our Approach: Learning

Exploring multidimensional view space

Design Galleries (Marks et al., 1997)

Learning + Design Galleries = Intelligent Galleries

Summary

- 1. Related Work
- 2. Supervised Learning
- 3. Intelligent Galleries
- 4. Results

Related Work

Main trend: Optimize a single criteria

Viewpoint Entropy *Vázquez et al (2001)*

Mesh Saliency Lee et al (2005)

Visibility Ratio

Curvature Entropy
Polonsky et al (2005)

Silhouette length

Future Work in Previous Work

"No one descriptor does a perfect job...."

"...since each descriptor does a reasonably good job on a majority of inputs, we are confident that it is possible to combine them to amplify the advantage that each has."

Polonsky et al. (2005)

Learning + Design Galleries = Intelligent Galleries

View Descriptors

- Mean Curvature
- Visible 3D Surface
- Foreground Alignment
- Silhouette Complexity

Supervised Learning Machine

Support Vector Machines (SVM)

Binary classifier

$$\hat{g}: \mathbb{R}^k \to \{-1, 1\}$$

$$v \to sign\left(\hat{f}(v)\right) = \{-1, 1\}$$

$$\hat{f}(v) = \sum_{j} \alpha_j \ s_j \langle \varphi\left(v_j\right), \varphi\left(v\right) \rangle + b$$

$$\underset{w, \gamma}{\text{MAX}} \quad \gamma - C \sum_{i=1}^l \varepsilon_i$$
subject to $y_i \langle w, \Phi(x_i) \rangle \ge \gamma - \varepsilon_i \ , \varepsilon_i \ge 0 \ , \quad \|w\|^2 = 1$

- Non-linear classification
- Efficiently computed for small training sets
- Optimal in the sense of VC statistical learning theory

Ordering views with SVM

SVM binary classifier

$$v \to sign\left(\hat{f}(v)\right) \in \{-1,1\}$$

SVM adaptation

$$v \to \hat{f}(v) \in \mathbb{R}$$

Learning + Design Galleries = Intelligent Galleries

Intelligent Galleries

Learning through design galleries

Automatricog dering

Results

Automatic Selection for Similar Models

Subjectivity

Designer Selection

Machine Selection from Designer Experience

Fluid Specialist Selection

Machine Selection from Fluid Specialist Experience

Challenging Scenes: 3D Knots

High Depth / Occlusion Scenes

Trained Best View

Automatically Selected Best Views

Timings

- Models Size: 10k~100k triangles
- Average Preprocessing time: 2~4 seconds

 Average Processing time per view:

~0.15 seconds

1. Rendering

2. View Descriptors Extraction

3. SVM Classification

Learning Curve

- ◆ intelligent gallery
- blender

Comparison

Limitations: Number of Parameters

- 1. Position
- 2. Direction
- 3. Up Vector
- 4. Field of View
- 5. Near/Far Clipping Plane

 \Rightarrow k=9 \Rightarrow 512 initial views!

At least 2^k views in the initial gallery!

Similar Objectives Restriction

Application to 3D Video

Future Work

- Greater set of descriptors
- Intelligent Galleries for other applications
- Enforce explicit design rules

Thank you for your attention!

Learning good views through intelligent galleries

Thales Vieira

Alex Bordignon

Adelailson Peixoto

Geovan Tavares

Thomas Lewiner

Luiz Velho

Hélio Lopes

SVM Analysis

Descriptor Influence:

Correlation between descriptor values and SVM classification on the training set

Sigma Optimization:

Maximization of descriptors influence

SVM Minimization

$$S = \{(x_i, y_i) ; i = 1, ..., l\}$$

$$MIN L(w, S) = ||y - Xw||^2$$

$$\frac{\partial L(w, S)}{\partial w} = -2X^T y + 2X^T X w = 0$$

$$(X^T X) w = X^T y \implies w = (X^T X)^{-1} X^T y$$

Kernels

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^5$$

$$(x,z) \ \mathbb{R} \quad (x,z,x^2,z^2,xz)$$

$$K(x,z) = \langle \Phi(x), \Phi(z) \rangle$$

$$K(x,z) = K_1(x,z) + K_2(x,z)$$

$$K(x,z) = cK_1(x,z)$$

$$K(x,z) = K_1(x,z)K_2(x,z)$$

$$K(x,z) = K_1(x,z)^d$$

Kernels

Linear Kernel:
$$K(x,z) = \langle x,z \rangle$$

Polynomial Kernel:
$$K(x,z) = \sum_{i=1}^{l} a_i \langle x, z \rangle^i$$

Gaussian Kernel:
$$K(x,z) = e^{\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)}$$

Anova Kernel:
$$K(x,z) = \langle \Phi_d(x), \Phi_d(z) \rangle$$

$$\Phi_d: x \to (\Phi_A(x))_{|A|=d}$$

$$\Phi_A(x) = \prod_{i \in A} x_i = x_i A$$

Kernels

Linear Kernel:
$$K(x,z) = \langle x,z \rangle$$

Polynomial Kernel:
$$K(x,z) = \sum_{i=1}^{l} a_i \langle x, z \rangle^i$$

Gaussian Kernel:
$$K(x,z) = e^{\left(-\frac{\|x-z\|^2}{2\sigma^2}\right)}$$

Anova Kernel:
$$K(x,z) = \langle \Phi_d(x), \Phi_d(z) \rangle$$

$$\Phi_d: x \to (\Phi_A(x))_{|A|=d}$$

$$\Phi_A(x) = \prod_{i \in A} x_i = x_i A$$

SVM

- Convex Optimization (Stability)
- Quadratic Problem (Precision)

SVM Solution

MAX
$$\gamma - C \sum_{i=1}^{l} \varepsilon_i$$

subject to $y_i \langle w, \Phi(x_i) \rangle \ge \gamma - \varepsilon_i$, $\varepsilon_i \ge 0$, $\|w\|^2 = 1$

$$\alpha_i \left[y_i \left\langle w^*, \Phi(x_i) \right\rangle - (\gamma - \varepsilon_i) \right] = 0 \implies \alpha_i \neq 0 \ \forall i \in SV$$