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Camera Placement Problem:

Non-linear
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Camera Placement Problem:

Subjectivity

Designer Best View Fluid Specialist Best View



Our Approach:
Learning
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Exploring multidimensional
view space

Design Galleries (Marks et al., 1997)

Image / Amimation Gallery

Thumbnail
Display Panel
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Learning + Design Galleries =
Intelligent Galleries
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Related Work

Main trend: Optimize a single criteria

Viewpoint Entropy Mesh Saliency
Vdzquez et al (2001) Lee et al (2005)

o O X

Visibility Ratio  Curvature Entropy  Silhouette length
Polonsky et al (2005)

Vieira et al., 2009 Learning good views through intelligent galleries



Future Work in Previous Work

Saliency

Saliency

“No one descriptor does a perfect job....”

“...since each descriptor does a reasonably good job on a majority
of inputs, we are confident that it is possible to combine them to

amplify the advantage that each has.”

Polonsky et al. (2005)

Vieira et al., 2009
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Learning|+ Design Galleries =
Intelligent Galleries
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View Descriptors

* Mean Curvature ﬁ@
* Visible 3D Surface * Viewpoints
 Foreground Alignment ‘

e Silhouette Complexity

Descriptors
Extraction

e
v

Object Space Image Space
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Supervised Learning Machine

@ (v1,v2, ..., vi) € R”
9 — | Machine | —> |I >

Training Set /
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Support Vector Machines (SVM)

Binary classifier
§g:RF - {-1,1}
v — sign (f(v)) = {-1,1}
ZO@ si{e (v;) 0 () ) +b
MAX ¥ —CZSZ.
subject to y, (w,®(x,)) 2y —¢, , &, 20, ||w||2 =1

i=1,...,/

e Non-linear classification

e Efficiently computed for small training sets

e Optimalin the sense of VC statistical learning theory
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Ordering views with SVM

SVM binary classifier

v — Sign (f(v)) e {—1,1]

SVM adaptation

v— f(v) €R
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Learning + Design Galleries =
Intelligent Galleries
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Intelligent Galleries

Learning through design galleries
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Results
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Automatic Selection for

Similar Models

# of galleries: 4

lrained view
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Designer
Selection

Fluid Specialist
Selection

Vieira et al., 2009

Subjectivity

E

# of galleries: 2

# of galleries: 4

:
|

Machine Selection
from Designer
Experience

Machine Selection
from Fluid Specialist
Experience
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Challenging Scenes: 3D Knots

# of galleries: 2

o @f@%@@

Increasing View Quality
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High Depth / Occlusion Scenes

Trained Best View
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Automatically Selected Best Views
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 Models Size: 10k~100k triangles

 Average Preprocessing time: 2~4 seconds

 Average Processing
time per view:

~0.15 seconds

Vieira et al., 2009

Timings

ﬁg 1. Rendering

A w 2. View Descriptors
- Extraction

|I ?| 3.SVM Classification
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Comparison
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Limitations: Number of Parameters

. Position
Direction

. Up Vector
Field of View

. Near/Far Clipping Plane '
= k=9 = 512 initial views! ,

At least 2¥ views in the initial gallery!
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Similar Objectives Restriction
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Application to 3D Video

Trained Views

‘ Trained

Automatically
Positioned

Timeline A Interpolated
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Future Work

e Greater set of descriptors
* Intelligent Galleries for other applications
 Enforce explicit design rules
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Thank you for your attention!

Learning good views through intelligent galleries
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SVM Analysis

e Descriptor Influence: g igh lance
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SVM Minimization

S={(x,»);i=1...1}

MIN L(w,S) =y - Xw|
aL(w,S)

ow

X Xyw=X"Ty = w=X"X)"'X"y

= 2X"y+2X " Xw=0
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Kernels

®:R*— R
(x,2) ® (x,z,x°,2°,xz2)
K(x,z) = (@(x), D(2))
K(x,z)=K,(x,z)+ K, (x,z)
K(x,z)=cK,(x,2)
K(x,z)=K,(x,2)K,(x,z)
K(x,z)=K,(x,2)"
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Kernels

Linear Kernel: K(x,z)= <x,z>

z .
Polynomial Kernel:  K(x,z) = E a,(x,z)

Gaussian Kernel:  K(x,z)=e

Anova Kernel: K (x,z) =(®,(x),®,(z))
b, :x— ((I)A(x))|A|=d

D, (x)=]|]|x =xA4

=
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SVM

* Convex Optimization (Stability)

* Quadratic Problem (Precision)
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SVM Solution

subject to y, (w,®(x,)) =y —¢, , €, 20, ||w||2 =1

i=1,.../

Q, [yl.<w*,(I>(xl.)>—(y —81.)] =0 — o,=0ViesSV
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