

Simplified training for gesture recognition

Romain Faugeroux LIX, École Polytechnique Thales Vieira (presenter)

Dimas Martinez Mathematics, UFAL Thomas Lewiner Mathematics, PUC-Rio

Faugeroux et al., 2014

Faugeroux et al., 2014

Current Scenario

Popularization of real time depth sensors

Microsoft Kinect Sensor

Development of high quality Natural User Interfaces (NUI)

Faugeroux et al., 2014

Challenges

Gesture are culture specific

Gestures can be performed at different speeds or sequences of poses

Faugeroux et al., 2014

Challenges

Gesture are culture specific

Gestures can be performed at different speeds or sequences of poses

Faugeroux et al., 2014

Challenges

Gesture are culture specific

Gestures can be performed at different speeds or sequences of poses

Solution: learning!

User learns from the machine

User learns from the machine

User learns from the machine

Faugeroux et al., 2014

User learns from the machine

Machine learns from the user

User learns from the machine

Machine learns from the user

Simplified training for gesture recognition

Faugeroux et al., 2014

Related Work: global methods

space-time accumulation / spatio-temporal templates

Vieira et al (2014)

Bobick and Davis (2001)

Training phase required for gestures only

Requires more computing resources

Faugeroux et al., 2014

Related Work: global methods

space-time accumulation / spatio-temporal templates

Faugeroux et al., 2014

Related Work: local methods

Feature-based: spatiotemporal interest points / key poses

salient postures through clustering

1 1 1 1 1

Li et al (2008)

Faugeroux et al., 2014

manual key pose training

Miranda et al (2012)

Extremely fast recognition Training phase usually required for key pose learning Discriminativity not considered for trained gestures

Related Work: local methods

Feature-based: spatiotemporal interest points / key poses

Miranda et al (2012) training

I - manual key pose selection/training using SVMs

Miranda et al (2012) training

- manual key pose selection/training using SVMs

2 - gesture training through key pose detection and decision forests

Faugeroux et al., 2014

Simplified training for gesture recognition

Miranda et al (2012) training

2 - gesture training through key pose detection and decision forests

Faugeroux et al., 2014

Simplified training for gesture recognition

Contributions

Automatic gesture segmentation method

Key pose based: Extremely fast recognition!

Minimal interaction training: single record for all gestures!

Faugeroux et al., 2014

Outline

- I. Overview
- 2. Pose representation
- 3. Gesture segmentation
- 4. Discriminant key pose selection
- 5. Gesture identification
- 6. Experiments

Faugeroux et al., 2014

Overview

automatic gesture segmentation

discriminant key pose selection

gesture identification

Faugeroux et al., 2014

Overview

Overview

Pose representation

Real-time depth sensing system streaming depth data

OpenNI: public API to extract skeletons at 30fps

Faugeroux et al., 2014

Joint-angle pose descriptor

Miranda et al (2012): 9 relevant body joints converted to a list of spherical angles:

pose:
$$p \in (\mathbb{S}^2)^9$$

gesture: $\alpha \colon I \subset \mathbb{R} \mapsto (\mathbb{S}^2)^9$

Joint-angle pose descriptor

Miranda et al (2012): 9 relevant body joints converted to a list of spherical angles:

pose:
$$p \in (\mathbb{S}^2)^9$$

gesture: $lpha : I \subset \mathbb{R} \mapsto (\mathbb{S}^2)^9$

Comparing joints I in distinct poses p and p':

 $\delta(p_l, p'_l) = \arccos\left(\sin\theta_l \sin\theta'_l + \cos\theta_l \cos\theta'_l \cos|\varphi_l - \varphi'_l|\right)$

Joint-angle pose descriptor

Miranda et al (2012): 9 relevant body joints converted to a list of spherical angles:

pose: $p \in (\mathbb{S}^2)^9$ gesture: $\alpha : I \subset \mathbb{R} \mapsto (\mathbb{S}^2)^9$

Comparing joints I in distinct poses p and p':

 $\delta(p_l, p'_l) = \arccos\left(\sin\theta_l \sin\theta'_l + \cos\theta_l \cos\theta'_l \cos|\varphi_l - \varphi'_l|\right)$

Distance between poses:

$$\Delta(p, p') = \sum_{l=1}^{9} \left[\delta(p_l, p'_l) \right]^2$$

Simplified training for gesture recognition

Faugeroux et al., 2014

Gesture segmentation

Objective: avoid usual protocols requirements: neutral pose

Faugeroux et al., 2014

Gesture segmentation

Objective: avoid usual protocols requirements: neutral pose

user inserts small pauses in-between gestures

Gesture segmentation

Objective: avoid usual protocols requirements: neutral pose

user inserts small pauses in-between gestures

depth sensor's random patterns generates rapid skeleton oscillations

Objective: avoid usual protocols requirements: neutral pose

Objective: avoid usual protocols requirements: neutral pose

user inserts small pauses in-between gestures

Faugeroux et al., 2014

Pose encoded by cartesian coordinates of 9 relevant joints:

 $\alpha \colon I \subset \mathbb{R} \mapsto \mathbb{R}^{27}$

Pose encoded by cartesian coordinates of 9 relevant joints:

 $\alpha \colon I \subset \mathbb{R} \mapsto \mathbb{R}^{27}$

First curvature:

$$\kappa(t) = \frac{\langle \alpha''(t), \mathbf{e}_2(t) \rangle}{\|\alpha'(t)\|^2}$$

where $e_2(t)$ points in the direction of the first normal.

Faugeroux et al., 2014

Pose encoded by cartesian coordinates of 9 relevant joints:

 $\alpha \colon I \subset \mathbb{R} \mapsto \mathbb{R}^{27}$

First curvature:

$$\kappa(t) = \frac{\langle \alpha''(t), \mathbf{e}_2(t) \rangle}{\|\alpha'(t)\|^2}$$

where $e_2(t)$ points in the direction of the first normal.

We need to estimate $\alpha'(t)$ and $\alpha''(t)$ in real time!

Faugeroux et al., 2014

Parametric curve fitting

Lewiner et al (2005): fit a portion of the gesture curve around $\alpha(t)$ to a parabola:

$$\tilde{\alpha}(s) = \alpha(t) + \tilde{\alpha}' \cdot s + \frac{1}{2} \cdot \tilde{\alpha}'' \cdot s^2$$

where $\tilde{\alpha}'$ and $\tilde{\alpha}''$ are estimates for the derivatives $\alpha'(t)$ and $\alpha''(t)$.

Parametric curve fitting

Lewiner et al (2005): fit a portion of the gesture curve around $\alpha(t)$ to a parabola:

$$\tilde{\alpha}(s) = \alpha(t) + \tilde{\alpha}' \cdot s + \frac{1}{2} \cdot \tilde{\alpha}'' \cdot s^2$$

where $\tilde{\alpha}'$ and $\tilde{\alpha}''$ are estimates for the derivatives $\alpha'(t)$ and $\alpha''(t)$.

Parametric curve fitting

Lewiner et al (2005): fit a portion of the gesture curve around $\alpha(t)$ to a parabola:

$$\tilde{\alpha}(s) = \alpha(t) + \tilde{\alpha}' \cdot s + \frac{1}{2} \cdot \tilde{\alpha}'' \cdot s^2$$

where $\tilde{\alpha}'$ and $\tilde{\alpha}''$ are estimates for the derivatives $\alpha'(t)$ and $\alpha''(t)$.

Weighted least squares minimization: fast!

Faugeroux et al., 2014

Simple thresholding

Faugeroux et al., 2014

Faugeroux et al., 2014

Faugeroux et al., 2014

Outline

- I. Overview
- 2. Pose representation
- 3. Gesture segmentation
- 4. Discriminant key pose selection
- 5. Gesture identification
- 6. Experiments

Faugeroux et al., 2014

Gesture representation: key poses

key pose set $\mathcal{K} = \{k_1, \ldots, k_n\}$

gesture $g = (p_1, p_2, \dots)$

gesture representation $\hat{g} = (k_i, k_j, \dots)$

Simplified training for gesture recognition

Gesture representation: key poses

key pose set $\mathcal{K} = \{k_1, \ldots, k_n\}$

gesture $g = (p_1, p_2, \dots)$

gesture representation $\hat{g} = (k_i, k_j, \dots)$

Simplified training for gesture recognition

Gesture representation: key poses

 $\Delta(p,k_p) < \epsilon \quad ?$

key pose set $\mathcal{K} = \{k_1, \ldots, k_n\}$

gesture $g = (p_1, p_2, \dots)$

gesture representation $\hat{g} = (k_i, k_j, \dots)$

Simplified training for gesture recognition

Faugeroux et al., 2014

Ideal key pose set

✓ Concise (small)

Discriminative (avoid ambiguity)

Ideal key pose set

✓ Concise (small)

Discriminative (avoid ambiguity)

Ideal key pose set

✓ Concise (small)

Discriminative (avoid ambiguity)

Our solution: adaptive sampling

Faugeroux et al., 2014

I - initial / final gesture poses k_1 and k_2 must be key poses

I - initial / final gesture poses k_1 and $k_2\,$ must be key poses

I - initial / final gesture poses k_1 and k_2 must be key poses

what if initial == final?

I - initial / final gesture poses k_1 and k_2 must be key poses

what if initial == final?

insert intermediate farthest pose:

 $k_2 = \underset{p \in g}{\operatorname{argmax}} \Delta\left(p, k_1\right)$

insert intermediate farthest pose:

$$k_2 = \underset{p \in g}{\operatorname{argmax}} \Delta\left(p, k_1\right)$$

if
$$k_1 == k_2$$
, discard. (static gesture)

Faugeroux et al., 2014

Building a good key pose set: Discriminant poses

2 - similar representations for distinct gestures g and g' must be refined.

Faugeroux et al., 2014

Building a good key pose set: Discriminant poses

2 - similar representations for distinct gestures g and g' must be refined.

Faugeroux et al., 2014

Building a good key pose set: Discriminant poses

2 - similar representations for distinct gestures g and g' must be refined.

$$k_{1+1/2} = \underset{p \in g}{\operatorname{argmax}} \min_{\substack{p' \in g'}} \Delta(p, p')$$
$$k_{1+1/2}' = \underset{p' \in g'}{\operatorname{argmax}} \min_{\substack{p \in g}} \Delta(p', p)$$

 k_2

 $k_{1.5}$

g

 $k'_{1.5}$

 k_2

Faugeroux et al., 2014

Discriminant poses: general case

Repeat the process above for every sub-sequence between successive key poses of g and g^\prime

Select the most distinctive pair

$$j = \underset{i}{\operatorname{argmax}} \left\{ \min_{p' \in g'_i} \Delta\left(k_{i+1/2}, p'\right) + \min_{p \in g_i} \Delta\left(k'_{i+1/2}, p\right) \right\}$$

If $\Delta\left(k_{j+1/2},k_{j+1/2}'\right) < \epsilon$, give gestures identical label.

Iterate until all gestures have different representations

Faugeroux et al., 2014

Discriminant poses: general case

Repeat the process above for every sub-sequence between successive key poses of g and g^\prime

Select the most distinctive pair

$$j = \underset{i}{\operatorname{argmax}} \left\{ \min_{p' \in g'_i} \Delta\left(k_{i+1/2}, p'\right) + \min_{p \in g_i} \Delta\left(k'_{i+1/2}, p\right) \right\}$$

If $\Delta\left(k_{j+1/2},k_{j+1/2}'\right) < \epsilon$, give gestures identical label.

Iterate until all gestures have different representations

Faugeroux et al., 2014

Outline

- I. Overview
- 2. Pose representation
- 3. Gesture segmentation
- 4. Discriminant key pose selection
- 5. Gesture identification
- 6. Experiments

Faugeroux et al., 2014

Transitions between gestures

Transitions between gestures

Transitions between gestures

Faugeroux et al., 2014

Transitions between gestures

Faugeroux et al., 2014
Spurious gesture elimination

Transitions between gestures

Faugeroux et al., 2014

Semiautomatic labeling

Similar gestures confirmation

"Is g_1 and g_2 performances of the same gesture?"

Semiautomatic labeling

Similar gestures confirmation

"Is g_1 and g_2 performances of the same gesture?" Negative: force key-pose subdivision (ignore ϵ)

Gesture recognition

Learning method?

Many alternatives: action graph, decision forests, bag of features, SVM, nearest neighbor classifier,...

Learning method?

Many alternatives: action graph, decision forests, bag of features, SVM, nearest neighbor classifier,...

(Miranda et al, 2012): SVM + decision forest

nearest neighbor classifier

$$\tilde{f}(p) = \begin{cases} k_p = \underset{k \in \mathcal{K}}{\operatorname{argmin}} \Delta(k, p) & \text{if } \Delta(k_p, p) < \epsilon, \\ -1 & \text{otherwise.} \end{cases}$$

Faugeroux et al., 2014

Experiments

Faugeroux et al., 2014

Experiment Setup

- ✓ Objective: comparison with Miranda et al (2012)
- \checkmark Same set of 11 gestures
- ✓ Gestures briefly described to 10 inexperienced individuals
- ✓ Users should sequentially perform each gesture in a single record
- Unsuccessfully segmented gestures exceptionally retrained

Experiment Setup

- ✓ Objective: comparison with Miranda et al (2012)
- \checkmark Same set of 11 gestures
- ✓ Gestures briefly described to 10 inexperienced individuals
- ✓ Users should sequentially perform each gesture in a single record
- Unsuccessfully segmented gestures exceptionally retrained

Segmentation robustness

From 10 users recordings:

gesture	id	segmentation accuracy
Turn Next Page	\hat{g}_A	10
Turn Previous Page	\hat{g}_B	10
Raise Right Arm	\hat{g}_C	10
Raise Left Arm	\hat{g}_D	10
Open Clap	\hat{g}_E	8
Open Arms	\hat{g}_F	9
Put Hands Up Lat.	\hat{g}_G	9
Put Hands Up Front	\hat{g}_{H}	10
Lower Right Arm	\hat{g}_I	8
Bow	\hat{g}_J	6
Goodbye	\hat{g}_K	(7)
average (%)		88

over-segmentation:

Segmentation robustness

Simplified training for gesture recognition

example: online segmentation and key pose selection

Faugeroux et al., 2014

Segmentation robustness

Simplified training for gesture recognition

example: online segmentation and key pose selection

Faugeroux et al., 2014

Discriminant key pose selection

10 to 12 key poses per set

Key poses similar to manually designed key poses from Miranda *et al* (2012)

Miranda et al (2012) uses 11 key poses!

Bigger ϵ : less key poses, less accurate executions needed Smaller ϵ : more key poses, more accurate executions needed

Faugeroux et al., 2014

Discriminant key pose selection

Gesture recognition

Each user executed each gesture 10 times

aesture	id	segmentation			reco	ognize	ed ge	sture	s per	user			ours	[14]
gesture	IU	accuracy	$ u_1 $	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	(%)	(%)
Turn Next Page	\hat{g}_A	10	10	8	10	10	9	9	10	9	9	9	93	95
Turn Previous Page	\hat{g}_B	10	10	9	10	10	9	6	9	9	9	10	91	95
Raise Right Arm	\hat{g}_C	10	9	8	9	8	7	10	9	10	8	10	88	94
Raise Left Arm	\hat{g}_D	10	10	10	9	10	9	9	10	9	10	9	95	94
Open Clap	\hat{g}_E	8	10	10	10	9	9	8	10	9	8	10	93	99
Open Arms	\hat{g}_F	9	9	9	10	8	9	10	10	9	8	9	91	97
Put Hands Up Lat.	\hat{g}_G	9	10	10	10	10	10	9	10	10	10	10	99	100
Put Hands Up Front	\hat{g}_H	10	10	9	7	9	10	9	10	10	10	9	93	96
Lower Right Arm	\hat{g}_I	8	8	7	6	8	7	8	8	8	8	7	75	82
Bow	\hat{g}_J	6	10	10	10	9	10	10	10	9	10	10	98	100
Goodbye	\hat{g}_K	7	9	9	10	7	9	10	9	10	8	7	88	92
average (%)		88	90	92	89	89	91	89	93	89	91	92		

Faugeroux et al., 2014

Gesture recognition

Each user executed each gesture 10 times

aesture	id	segmentation			reco	ognize	ed ge	sture	s per	user			ours	[14]
gesture	Iu	accuracy	$ u_1 $	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	(%)	(%)
Turn Next Page	\hat{g}_A	10	10	8	10	10	9	9	10	9	9	9	93	95
Turn Previous Page	\hat{g}_B	10	10	9	10	10	9	6	9	9	9	10	91	95
Raise Right Arm	\hat{g}_C	10	9	8	9	8	7	10	9	10	8	10	88	94
Raise Left Arm	\hat{g}_D	10	10	10	9	10	9	9	10	9	10	9	95	94
Open Clap	\hat{g}_E	8	10	10	10	9	9	8	10	9	8	10	93	99
Open Arms	\hat{g}_F	9	9	9	10	8	9	10	10	9	8	9	91	97
Put Hands Up Lat.	\hat{g}_G	9	10	10	10	10	10	9	10	10	10	10	99	100
Put Hands Up Front	\hat{g}_H	10	10	9	7	9	10	9	10	10	10	9	93	96
Lower Right Arm	\hat{g}_I	8	8	7	6	8	7	8	8	8	8	7	(75)	82
Bow	\hat{g}_J	6	10	10	10	9	10	10	10	9	10	10	98	100
Goodbye	\hat{g}_K	7	9	9	10	7	9	10	9	10	8	7	88	92
average (%)		88	90	92	89	89	91	89	93	89	91	92		

 k_A k_B Faugeroux et al., 2014

 k_C

 k_D

 k_E

 k_F

 k_G

Simplified training for gesture recognition

 k_1

 k_H

Performance

Real time training:

Segmentation + computing key pose representations

Real time gesture recognition.

Offline experiment:

Segmentation + computing key pose representations:

1239 frames (44.3 secs)

20 gestures

Total time: 0.33 secs

Limitations & Future work Execution speed not considered k_1 g_2 \checkmark Fixed threshold ϵ k_3 g_1 k_2

 \checkmark Only the first curvature is used for segmentation

Faugeroux et al., 2014

Thank you for your attention!

Questions?

Thank you for your attention!

Questions?