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Where we started

huge data
ex: seismic measures

limited resources
ex: our lab’s computers
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2n-trees

• precision only near
the region of interest
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Hierarchic representation
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Hierarchic representation
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Hierarchic representation
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Hierarchic representation
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Node’s sons: add 
n-bits suffix

Depth:
(code length - 1)/n
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• level l=3
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Pointerless 2n-trees
• less memory

• parallelizable

• direct access to leaves

100 
1110

100 
1111

11110 11111

100 
1100

100 
1101

11100 11101

10010

101

10000 10001

110

1

111

100

10011

100
11

011

1

100
01

001

100
00

000

100
10

010

111
00

100 
1100

100

100

111
01

101

100 
1101

101

111
10

110

100 
1110

110

111 
11

111

100  
1111

111

10

Hashtable



Duals
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Octree discontinuity

per-leaf interpolation not continuous
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Continuous hierarchies

Multi-triangulation
(image from V. Mello et al.)

T-Junctions
(image from T. Chen - Camino)

T. Lewiner, H. Lopes, L. Velho and V. Mello 4

Figure 5: RBMT adapted to the bold line: at each level, every triangle crossing the bold line is refined, but subdivisions in the upper–right

part of the square propagate to the lower–left part.

Figure 6: The BMT example of Figure 2 can be represented as a binary tree.

that each triangle t adjacent to e has e as a subdivision edge.
If it is not the case, a subdivision is performed on the subdi-
vision edge of t. This subdivision can require other triangles
to be subdivided if they do share their subdivision edges. The
propagation of a simplification on a vertex is done in a simi-
lar way (see Algorithm reduce).

In such a structure as the RBMT, subdividing a triangle
means subdividing its subdivision edge, while simplifying
it means simplifying its simplification vertex. Adaptive de-
composition is then achieved by performing restricted refine-
ment and simplification to strengthen and preserve a certain
criterium (see Algorithm reduce), such as topology, curva-
ture or decoding distortion as detailed in the next section
(see Figure 9).

5 Isocontour Extraction
The 2D data is given as a collection of samples vi, each

of which is associated with its isovalue f̂(vi). Those samples
are triangulated. In particular, when the samples are regularly
spaced on a 2D grid (a gray–scale image for example), this
triangulation can be automatically generated by the subdivi-
sion of a two–triangles square.

(a) Interpolation in a Triangulation
Assuming that we want to obtain the isocontour corre-

sponding to the isovalue α, a sample of the 2D data is classi-
fied as positive or negative depending whether its isovalue is
greater than α or not. An edge of the triangulation is crossing

Algorithm 1 reduce(criterion) : reduces the RBMT accord-
ing to criterion

1: repeat // until the propagation stabilizes

2: changed← false // until now unchanged

3: for all triangles t do // test the criterion on all

triangles

4: w ← t.welded vertex // used to check if t can be

simplified

5: for all triangles t� ∈ w.star do // front of the

propagation?

6: if t�.welded vertex = w then // t� must be

simplified before t
7: next t // will process t after

8: end if
9: end for

10: if criterion(w) then // t must be simplified

11: simplify(t) // simplify t
12: changed← true // unchanged the structure

13: end if
14: end for
15: until not changed // repeat until the propagation

stabilizes

The corresponding work was published in Computerized Medical Imaging and Graphics, volume 30, number 4, pp. 231-242. Elsevier 2006..

3 Extraction and compression of hierarchical isocontours

Figure 2: BMT example: T i can be transformed into T i+1 by subdividing one of the subdivision edges (in bold).

Figure 3: The BMT example of Figure 2 can be represented as a binary tree.

σ

w

subdivide

simplify

Figure 4: Subdividing an edge σ � simplifying the welded vertex
w. The two triangles on the right are the star of σ, while the four
triangles on the left are the star of w.

divided in two. Therefore, a sequence of subdivisions on
edges can be represented as a binary tree structure, where
each node represents a triangle and the two sons of a node
t are the two triangles obtained by subdividing t (see Fig-
ure 3). This binary tree (actually a forest) adapts more nicely
than the classical quad-tree for image decomposition, since
it provides twice more intermediate levels. We will call the
level of a triangle its depth in the binary tree. This property is
close to the partially ordered set representation of [7], which
provides a general framework for adaptive multiresolution
structures. Moreover this binary tree structures leads to very
simple algorithmic formulations.

The BMT is reduced or refined by walking up and down
the binary tree, creating a hierarchy of triangulations at dif-
ferent resolutions. We perform those operations efficiently
by maintaining for each triangle t, the vertex w that has been

inserted during the subdivision that created t. The vertex w
is called the simplification vertex of t, and the edge oppo-
site to w is called the subdivision edge of t. Figure 2 shows
a BMT whose root is a the two triangles of the square (T 0)
and whose leaves uniformly covers a grid (T 21). The bold
edges are the subdivision edges, and the bold vertices are the
simplification vertices.

(c) Adaptation Properties and Regularity

The adaptability of the BMT comes from the possibility to
refine and reduce the triangulation locally, while maintaining
dependencies between adjacent triangles. In particular, we
will maintain gradual transitions by preventing two adjacent
triangles from differing by more than one level. With this
restriction, the resulting structure is called a regular binary
multi–triangulation (RBMT). This type of structure is also
called a restricted hierarchy [22].

For example, Figure 5 illustrates a sequence of refine-
ments adapting the triangulation to the bold line. In order
to preserve gradual transition between resolution levels, lo-
cal refinements around the bold line propagates inside the
triangulation (in this example, far away from the bold line),
as what happens to the bottom left part. The corresponding
binary tree is represented on Figure 6.

Notice that the resulting modifications of the binary tree
are not local. Therefore, it is necessary to propagate a subdi-
vision or simplification to adjacent triangles. This propaga-
tion of a subdivision on an edge e is performed by checking

Preprint MAT. 21/05, communicated on August 15th, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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Finite Element Method
(image from A. Sharf et al.)

Octree duals

octree leaf ⇔ dual vertex

leaf vertex ⇔ dual facet
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Contributions

• Efficient generation of dual

• Pointerless structure

• Average 3x faster with less memory!
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Usual Dual Generation: 
Recursive

• processes each cell of each intermediate level once
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Example
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Initial FaceProc
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Subsequent FaceProc’s
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Second level
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EdgeProc’s
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Last vertProc

●

●

● ●

● ●

●

l

j

k

i

quadtree

dual

stack

●
●

● ●

l

i

j

k

25



Proposed algorithms



/ 44

Algorithm overview

• Step 1: generate leaf vertices with deepest level

• Step 2: search for leaves around vertices
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Main issues

• Pointerless representation for 
vertices

• Efficient search for neighbors

• No duplicate vertex process

• static

• dynamic
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Pointerless leaf vertex 
representation

• Geometric Morton code from 
vertex position

• 0 padding: hash function issue

T. Lewiner & V. Mello & A. Peixoto & S. Pesco & H. Lopes / Fast Generation of Pointerless Octree Duals

Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
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Fast code conversion

T. Lewiner & V. Mello & A. Peixoto & S. Pesco & H. Lopes / Fast Generation of Pointerless Octree Duals

Algorithm leaf2vert: Morton codes for vertices (slow)
in : The Morton key k of the leaf
out: The eight codes for its vertices

1 c ← key2cube(k) ; // see Figure 4
2 for i ∈ [0 · · ·7] do

// get the vertex coordinates at maximal level
3 vert ← cube(c.[xyz]± c.side,MAX_LEV EL) ;

// overflow test
4 if vert.[xyz] /∈ [0,1]3 then output ∅ ;
5 else output cube2key(vert) ;

On the contrary to octree nodes, which have a depth limiting
the key size, the leaves’ vertices have no specific depth asso-
ciated to them. Therefore, their codes must be generated at
the maximal depth instead of � 1

3 log2 (kn)�. This requires ad-
justing the hashing of the auxiliary hash table, as detailed at
the end of this subsection. The Morton codes for the vertices
of Figure 5 are given in Table 1.

Algorithm leaf2vertopt : Morton codes for vertices
in : The Morton key k of the leaf
out: The eight codes for its vertices

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
2 lv ← key2level(k) ; lvk ← 1 � 3 · lv ;
3 for i ∈ [0 · · ·7] do

// dilated integer addition k+ i
4 vk ← { [ (k | ¬dilx) + (i & dilx) ] & dilx} |

{ [ (k | ¬dily) + (i & dily) ] & dily} |
{ [ (k | ¬dilz) + (i & dilz) ] & dilz} ;

// overflow test (repeat or for [xyz])
5 if (vk ≥ (lvk � 1)) or ¬((vk− lvk) & dil[xyz])

then output ∅ ;
6 else output vk ;

return lv ;

Algorithm vert2leafopt : Leaves’ keys from vertex code
in : The Morton-like code c of a vertex and its level lv
out: The eight codes of the adjacent leaves

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
// removes trailing 0’s

2 dc ← c � 3 · (MAX_LEV EL− lv) ;
3 for i ∈ [0 · · ·7] do

// dilated integer substraction dc− i
4 output { [ (dc | dilx) − (i & dilx) ] & dilx} |

{ [ (dc | dily) − (i & dily) ] & dily} |
{ [ (dc | dilz) − (i & dilz) ] & dilz} ;

Fast code translations. A direct implementation of the pre-
vious key generation requires translating Morton codes to
coordinates, check the validity of those integers and trans-
late back (see Algorithm leaf2vert). However, one advantage
of Morton codes is that they can be efficiently manipulated

using dilated integers [Sch92]. We therefore adapt usual di-
lated integer addition and propose overflow test for convert-
ing between Morton-like codes of vertices and Morton keys
of adjacent leaves avoiding coordinate representations in Al-
gorithms leaf2vertopt and vert2leafopt . No overflow test is
required for Algorithm vert2leafopt since all the input keys
come from Algorithm leaf2vertopt .

Optimized search for dual volume. The auxiliary hash ta-
ble stores a code of a vertex v together with the depth l of
the deepest adjacent leaf. Using Algorithm vert2leafopt , the
Morton keys ki of the eight adjacent nodes of depth l are
computed. The dual vertices (i.e. octree leaves) of the dual
volume associated to v is then retrieved performing a search
in the hash octree with those codes (see Figure 9). Observe
that some dual vertices may be repeated, which is the desired
representation of dual volumes as combinatorial cubes.

The search in hash octrees from a Morton key ki looks for
leaves at, below and above the depth of ki until the hash table
lookup returns a leaf. However, since we know the depth l
of the deepest adjacent leaf, we do not need to search deeper
than l (see Algorithm 2, lines 4,5).

Moreover, we guarantee that at least one of the hash ta-
ble lookup search will return a leaf at the first try, and 2.37
searches at least return immediatly (8 for the central vertex
of the father of a leaf, at least 4 for its 6 faces centers, at
least 2 for its 12 edges centers and at least one for its 8 ver-
tices). The other searches have an (improbable) worst-case
complexity of l, but constant in practice (see Section 5). This
leads to a total complexity of the dual generation of less than
200 bit operations per leaf and one auxiliary hash table ac-
cess for the preprocessing, and less than 100 bit operations
per dual volume plus the search accesses for the traversal.

From the outputs of Algorithm 2, the combinatorial cube
representing the dual volume has vertices keys[0] . . .keys[7],
where the indexes written in binary are the unit cubes’ co-
ordinates. The dual edges are then

�
keys[a] keys[b]

�
when

a and b differ from exactly one bit. Finally, the dual faces
are

�
keys[a] keys[b] keys[c] keys[d]

�
where a,b,c,d have only

one bit in common. The degenerated edges and faces can be
removed by testing if all their vertices have the same key.

Hash function for the leaf vertices. The auxiliary hash ta-
ble access may thus be crucial for good performance of the
preprocessing. As we mentioned earlier, the least significant
bits of Morton keys for octree nodes are good hash functions.
However, since the vertex codes must always be generated
at the maximal depth, most of the vertex codes end with a
sequence of 0. Using the least significant bits for hashing
would induce a huge collision in the auxiliary hash table.
Therefore, we use here bits starting from the median depth
of the octree. This maintains the spirit of Morton hashing by
using the least significant bits, but avoid incorporating the
final sequence of 0 for at least half of the leaf vertices. Since
we know the octree statistics before the preprocessing step,
this is easily implemented.

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

• Dilated integer sum and subtraction:

• Code of leaf vertex x10 = Morton code of leaf ⊕ 10 (with overflow test)

• Morton code of leaf  =  Code of vertex ⊖ 10

x01

x10 x11

x00

x

T. Lewiner & V. Mello & A. Peixoto & S. Pesco & H. Lopes / Fast Generation of Pointerless Octree Duals

Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄

c� 2010 The Author(s)
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Algorithm leaf2vert: Morton codes for vertices (slow)
in : The Morton key k of the leaf
out: The eight codes for its vertices

1 c ← key2cube(k) ; // see Figure 4
2 for i ∈ [0 · · ·7] do

// get the vertex coordinates at maximal level
3 vert ← cube(c.[xyz]± c.side,MAX_LEV EL) ;

// overflow test
4 if vert.[xyz] /∈ [0,1]3 then output ∅ ;
5 else output cube2key(vert) ;

On the contrary to octree nodes, which have a depth limiting
the key size, the leaves’ vertices have no specific depth asso-
ciated to them. Therefore, their codes must be generated at
the maximal depth instead of � 1

3 log2 (kn)�. This requires ad-
justing the hashing of the auxiliary hash table, as detailed at
the end of this subsection. The Morton codes for the vertices
of Figure 5 are given in Table 1.

Algorithm leaf2vertopt : Morton codes for vertices
in : The Morton key k of the leaf
out: The eight codes for its vertices

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
2 lv ← key2level(k) ; lvk ← 1 � 3 · lv ;
3 for i ∈ [0 · · ·7] do

// dilated integer addition k+ i
4 vk ← { [ (k | ¬dilx) + (i & dilx) ] & dilx} |

{ [ (k | ¬dily) + (i & dily) ] & dily} |
{ [ (k | ¬dilz) + (i & dilz) ] & dilz} ;

// overflow test (repeat or for [xyz])
5 if (vk ≥ (lvk � 1)) or ¬((vk− lvk) & dil[xyz])

then output ∅ ;
6 else output vk ;

return lv ;

Algorithm vert2leafopt : Leaves’ keys from vertex code
in : The Morton-like code c of a vertex and its level lv
out: The eight codes of the adjacent leaves

1 dilx ← 001001 ; dily ← 010010 ; dilz ← 100100 ;
// removes trailing 0’s

2 dc ← c � 3 · (MAX_LEV EL− lv) ;
3 for i ∈ [0 · · ·7] do

// dilated integer substraction dc− i
4 output { [ (dc & dilx) − (i & dilx) ] & dilx} |

{ [ (dc & dily) − (i & dily) ] & dily} |
{ [ (dc & dilz) − (i & dilz) ] & dilz} ;

Fast code translations. A direct implementation of the pre-
vious key generation requires translating Morton codes to
coordinates, check the validity of those integers and trans-
late back (see Algorithm leaf2vert). However, one advantage
of Morton codes is that they can be efficiently manipulated

using dilated integers [Sch92]. We therefore adapt usual di-
lated integer addition and propose overflow test for convert-
ing between Morton-like codes of vertices and Morton keys
of adjacent leaves avoiding coordinate representations in Al-
gorithms leaf2vertopt and vert2leafopt . No overflow test is
required for Algorithm vert2leafopt since all the input keys
come from Algorithm leaf2vertopt .

Optimized search for dual volume. The auxiliary hash ta-
ble stores a code of a vertex v together with the depth l of
the deepest adjacent leaf. Using Algorithm vert2leafopt , the
Morton keys ki of the eight adjacent nodes of depth l are
computed. The dual vertices (i.e. octree leaves) of the dual
volume associated to v is then retrieved performing a search
in the hash octree with those codes (see Figure 9). Observe
that some dual vertices may be repeated, which is the desired
representation of dual volumes as combinatorial cubes.

The search in hash octrees from a Morton key ki looks for
leaves at, below and above the depth of ki until the hash table
lookup returns a leaf. However, since we know the depth l
of the deepest adjacent leaf, we do not need to search deeper
than l (see Algorithm 2, lines 4,5).

Moreover, we guarantee that at least one of the hash ta-
ble lookup search will return a leaf at the first try, and 2.37
searches at least return immediatly (8 for the central vertex
of the father of a leaf, at least 4 for its 6 faces centers, at
least 2 for its 12 edges centers and at least one for its 8 ver-
tices). The other searches have an (improbable) worst-case
complexity of l, but constant in practice (see Section 5). This
leads to a total complexity of the dual generation of less than
200 bit operations per leaf and one auxiliary hash table ac-
cess for the preprocessing, and less than 100 bit operations
per dual volume plus the search accesses for the traversal.

From the outputs of Algorithm 2, the combinatorial cube
representing the dual volume has vertices keys[0] . . .keys[7],
where the indexes written in binary are the unit cubes’ co-
ordinates. The dual edges are then

�
keys[a] keys[b]

�
when

a and b differ from exactly one bit. Finally, the dual faces
are

�
keys[a] keys[b] keys[c] keys[d]

�
where a,b,c,d have only

one bit in common. The degenerated edges and faces can be
removed by testing if all their vertices have the same key.

Hash function for the leaf vertices. The auxiliary hash ta-
ble access may thus be crucial for good performance of the
preprocessing. As we mentioned earlier, the least significant
bits of Morton keys for octree nodes are good hash functions.
However, since the vertex codes must always be generated
at the maximal depth, most of the vertex codes end with a
sequence of 0. Using the least significant bits for hashing
would induce a huge collision in the auxiliary hash table.
Therefore, we use here bits starting from the median depth
of the octree. This maintains the spirit of Morton hashing by
using the least significant bits, but avoid incorporating the
final sequence of 0 for at least half of the leaf vertices. Since
we know the octree statistics before the preprocessing step,
this is easily implemented.

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

• Ex: leave ⊖10 around j, level 2
•j  = 1.11.01.00.0-
•j2 = 1.11.01          (level 2)
•j2 ⊖10  = 1.11.01⊖10
•    = [(1.11.01 & 0101)-(10 & 0101)] & 10101 ||
         [(1.11.01 & 1010)-(10 & 1010)] & 01010
•    = [1.01.01 - 00] & 10101 ||
         [1.10.00 - 10] & 01010
•   =  [1.01.01& 10101] || [1.01.10 & 01010]
•   =  [1.01.01] || [0.00.10]  =  1.01.11
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Optimized neighbor search

• with the deepest adjacent leaf

• ⇒ look up only (less hash accesses)

• output a combinatorial cube

• ⇒ dual marching cubes 
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Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄
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Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄
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Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄
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Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.
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Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄
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Static strategy

• Good points:

• second and further generation: only second step (>2x faster)

• works with octree represented only by their leaves 

• Limitations:

• additional hash table

• second hash function to optimize

•
hash
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Dynamic strategy

• One-to-one vertex to leaf mapping

• Leaf vertex → deepest adjacent leaf
Tie breaking: first leaf in Morton order
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Dynamic strategy

• Good points:

• single pass

• no extra memory

• Limitations:

• few extra hash accesses

•
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Figure 10: Illustration of the dynamic strategy, processing leaf kn = 11100 of the quadtree of Figure 1, with the notation of Algo-
rithm 3. (left) The codes of the vertices of kn are computed: lv = 2,v_codes = {i, j,k, l} (see Table 1). (center) Processing vertex
i: the Morton keys of the nodes of level lv = 2 adjacent to vertex i are computed: keys = {11100 = kn,11001,10110,10011}.
The first key 11100 is kn itself, and is thus skipped (line 6). The second key 11001 is not a leaf (test of line 8), so vertex i will not
be processed from leaf kn: indeed it has been processed from leaf 1001111. (right) Processing vertex j: the Morton keys of the
nodes of level lv = 2 adjacent to vertex j are computed: keys = {11101,11100 = kn,10111,10110}. The first key has the same
level as kn, leading to a tie with kn. Since kn appears before in the order around j (test of line 9), vertex j will be processed from
kn. The second key is skipped since it is kn itself (line 6). The third and last keys do not correspond to existing nodes (they do not
appear in the hashtable of Figure 2), so the algorithm skips those keys (test of line 7). The two other vertices are similar to j.

4.2. Dynamic strategy
The above strategy processes each leaf vertex exactly once,

but this requires storing all the vertices, leading to more

memory operations. This extra preprocessing cost is amor-

tized if building several times the dual without modifying the

octree. However, some applications such as view-dependent

isosurface generation constantly adapt the octree before the

dual generation. Moreover, the extra memory cost of the

auxiliary hash table may be prohibitive for very large data.

We propose here a dynamic dual generation that avoids

the vertex generation as preprocessing (see Algorithm 3 and

Figure 10). Since an interior vertex is always shared by sev-

eral leaves, the main difficulty is to guarantee that each ver-

tex is processed only once. We thus define a one-to-one map-

ping from the vertices to the leaves. This would correspond

to the assignment defined in the volume octree structure of

León et al. [LTV08], with the difference that it is defined

here systematically and online, allowing for a one-pass dual

generation without preprocessing.

The mapping associates a vertex to the deepest adjacent

leaf. More precisely, for each leaf k, the eight codes vi of

its vertices are generated. For each vertex, the eight keys of

the adjacent nodes n j , i.e. neighbors of k in the direction of

vi, are computed. If k is deeper than all the adjacent nodes

n j, then it is associated to vi (lines 7,8 of Algorithm 3). In

case of tie, i.e. if k and n j have same depth, we choose the

first one in Morton order around the vertex. We can observe

from Algorithms leaf2vertopt and vert2leafopt that k is al-

ways generated as the i-th node adjacent to vi, since the first

algorithm adds i while the seconds subtracts i. This observa-

tion leads to a simple test to avoid checking k against itself

(line 6 of Algorithm 3), and to resolve ties (line 9).

Algorithm 3: Dynamic dual generation

in : The octree

out: The dual volumes

1 foreach key k of a leaf of the octree do
// get the vertex codes of the leaf

2 lv,v_codes[8]← leaf2vert(k) ;

3 for i ∈ [0 · · ·7] do
4 if v_codes[i] = ∅ then next vert i;

// get the nodes of level lv adjacent to vertex

v_codes[i], i.e. a neighbor node of leaf k
5 keys[8]← vert2leaf(v_codes[i],lv) ;

6 for j ∈ [0 · · ·7]\{i} do
// leaf k is deeper than neighborkeys[ j]: OK,

check next neighbor key

7 if ¬node_exists(keys[ j]) then next key j;

// neighbor is deeper than leaf: skip vertex

since it will be processed by that neighbor

8 if ¬is_lea f (keys[ j]) then next vertex i;

// neighbor has same level: tie, it will

process the vertex if j < i
9 if j < i then next vertex i;

// the vertex is processed as in Algorithm 2

10 for j ∈ [0 · · ·7] do
// optimized search for leaf: up from level lv

11 while keys[ j] �= 0 & ¬node_exists(keys[ j])
do keys[ j]�= 3;

12 output keys ;

c� 2010 The Author(s)

Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.
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Results: random octrees
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Table 2: Execution time and memory consumption for the dual generation of randomly generated octrees, as average on 200
runs, including the preprocessing of the static strategy. The gain for each strategy is given for comparable memory consumption.

number of nodes (millions) 0.03 0.07 0.12 0.19 0.65 1.01 3.19 13.04 24.81
number of vertices (millions) 0.05 0.14 0.22 0.33 0.22 1.87 5.69 2.23 3.18

octree maximal level M 8 10 8 8 12 10 10 12 12
subdivision probability p 30% 30% 40% 45% 30% 40% 45% 40% 45%

bits for node hashing 21 21 21 21 21 24 24 24 24
median bits used for vertex hashing 40 34 40 40 34 34 34 34 34

time (ms)

recursive with pointer 82 223 349 528 2 033 2 990 9 151 38 449 70 528
recursive pointerless 35 97 151 227 901 1 278 3 978 17 675 34 093
static 33 73 101 148 166 893 2 737 2 357 3 878
dynamic 32 79 117 176 150 1 012 3 091 1 975 3 341

pointer / static 2.5x 3.1x 3.4x 3.6x 12.2x 3.3x 3.3x 16.3x 18.2x
hash / dynamic 1.1x 1.2x 1.3x 1.3x 6.0x 1.3x 1.3x 8.9x 10.2x

memory (MB)

recursive with pointer 0.64 1.67 2.79 4.31 14.93 23.07 73.09 298.47 567.81
recursive pointerless 0.21 0.56 0.93 1.44 4.98 7.69 24.36 99.49 189.27
static 0.62 1.65 2.61 3.96 6.63 21.95 67.80 116.50 213.50
dynamic 0.21 0.55 0.93 1.43 4.97 7.68 24.36 99.48 189.26

The resulting association is the one actually illustrated in
Figure 8, although the volume octree structure assignment
may be different. Observe that this strategy does not use any
extra memory, and performs only a few more memory ac-
cesses per leaf than the static approach (tests of lines 7 and
8 of Algorithm 3 can be done with the same access).

5. Experiments

We experimented on random octrees and octrees adapted to
isosurfaces, on a 3GHz MacPro with 18GB of RAM.

Random octrees. We first tested on random octrees, with
different maximal levels M and Bernouilli probabilities p for
a node to be subdivided. We compared the execution time
and memory consumption of our static and dynamic strate-
gies with the usual recursive implementation on pointer and
pointerless octrees (see Table 2 and Figure 11). The average
gain in memory consumption of the pointerless representa-
tions is a factor 3x, which is preserved in the dynamic strat-
egy. For the static strategy, the extra memory of the auxiliary
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Figure 11: Execution time, in milliseconds, versus the octree
size, in millions of nodes / logarithmic scale (see Table 2).

hashtable reduces this average memory gain to a factor 1.5x.
Both the static and dynamic strategies speeds up the execu-
tion by an average factor above 3.3x on the recursive imple-
mentation with hashtable, and above 7.3x over the recursive
algorithm with the octree representation with eight pointers
per node. Note that this includes the preprocessing time for
the static strategy, which represents 53% of the total execu-
tion time. This means that, for the second and further runs
on the same octree, the gain of the static strategy is doubled.

Octrees adapted to isosurface. We compared the gain of
our dynamic dual generation over the recursive generation
on the total time of an isosurface extraction application. We
experimented on Dual Marching Cubes [SW04] using robust
adaptation [PLLdF06]. We generated results from 24 differ-
ent implicit functions in the unit cube, refined to maximal
depth 9 and with curvature threshold 0.6 (see Table 3 and
Figure 12). Since the timings include the octree adaptation
and Marching Cubes calls on the dual volumes, the total gain
is in average 30%, and 64% if we weight by the number of
nodes. The two methods compared use hashtables with the
same parameters, leading to the same memory consumption.

Limitation. We can observe on Table 2 that the gain ob-
tained by the proposed algorithms varies brutally when the
number of bits b used for the hashing function is changed
to cope with the size of the data. Actually, the speed of
hashtable manipulation is a crucial ingredient in pointer-
less representations. In particular, increasing b size may
be delicate in the static strategy, since it would require
two large blocks (of size 2b) of data for the hashtable. A
solution to optimize the hashing is to use perfect hash-
ing techniques, which are already used for pointerless oc-
trees [LH06, BC08, CJC∗09].

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

Execution time
  7x over pointer-based recursive
  3x over pointerless recursive
  6x for the static strategy, 2nd run
  faster on larger model

Memory
  1.5x less for static over pointer
  3x less for dynamic over pointer
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Application: Robust Dual 
Marching Cubes
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Figure 12: Total execution time of robust DMC, in seconds,
versus the number of octree nodes, in millions (see Table 3).

Table 3: Total execution time for the robust generation of
implicit surfaces using a robust Dual Marching Cubes.

Implicit nodes verts hash dyn gain
function x106 x106 sec sec %

Torus 0.00 1 0.1 0.3 -67
Blob 0.03 4 0.1 0.4 -65
Cross cap 0.05 10 0.2 0.4 -53
Spheres in 1.0 85 1.8 1.8 2
Cylinders 1.3 159 2.5 2.3 6
2 Spheres 2.0 105 2.9 2.6 11
Glob tear 2.9 24 3.8 3.2 17
Weird cube 3.8 3 4.8 4.0 21
Lemniscate 7.8 140 10.4 8.3 25
Clebsch cubic 9.2 225 12.6 10.0 25
Cayley cubic 9.7 119 12.8 10.2 26
Steiner relative 27.1 39 34.9 26.4 33
Mitre 56.0 158 75.7 54.5 39
Bifolia 72.1 310 101.0 70.2 44
Chair 72.5 966 105.0 72.9 44
Gumdrop torus 92.0 1159 136.5 92.0 48
Bretzel 123.4 15 193.5 117.0 65
Klein bottle 147.7 1195 246.3 144.6 70
Smile 147.9 727 243.8 143.3 70
Heart 148.6 998 246.7 144.7 71
2 Torii 148.7 67 243.3 140.7 73
Hunt’s surface 148.8 1128 247.6 144.8 71
Barth sextic 150.2 561 248.8 144.1 73
Spheres dif 152.6 1165 254.2 149.2 70

6. Conclusions
In this work, we introduced efficient algorithms for dual gen-
eration of pointerless octrees. We proposed two strategies,
one using a preprocessing, which requires an extra hashtable,
doubling the memory, but achieving, after preprocessing,
and average speedup of factor 7x compared to pointerless
representation and 15x compared to the usual pointer repre-
sentation. The second strategy does not require preprocess-
ing nor extra memory, and achieves an average speedup of a
factor above 3x compared to pointerless representation, and
almost 8x compared to pointer octrees.

Acknowledgements The authors would like to thank
FAPERJ, FAPEAL and CNPq for financing this research.
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Figure 3: The effect of the geometric criterion on the smile surface (y − x2 − y2 + 1)4 + (x2 + y2 + z2)4 − 1 = 0. The mesh is uniform

without this criterion (left), while it tracks regions of higher curvature when kmax increases, here from kmax = 0.5 (middle) to kmax = 0.95
(right).

recover tunnels. However, combined with the topology crite-

rion, it can safely discard the empty parts of these tunnels. If

a box B contains a tunnel, then the gradient of f varies inside

B from one vector (nx, ny, nz) at point (x, y, z) to its oppo-

site (−nx,−ny,−nz) on the facing point [4]. Therefore, the

coordinates Ix, Iy, Iz of the interval estimation of ∇f con-

tain opposite values. Since Ix, Iy, Iz are intervals, 0 ∈ Ix,y,z .

The topology criterion is thus:

if (0, 0, 0) ∈ ∇F (Bn) then subdivide(n)

Geometry criterion. To approximate correctly the geom-

etry of the implicit surface with a reduced number of tri-

angles, we need to allow small triangles only in regions of

high curvature. The curvature can actually be estimated from

∇F (Bn): the curvature reflects the variation of the gradi-

ent. Therefore, high curvatures implies that the coordinates

(Ix, Iy, Iz) of ∇F (Bn) are wide intervals. Given a user

defined threshold kmax and choosing Diam(Ix, Iy, Iz) =
max {|Ix|, |Iy|, |Iz|} for measuring the gradient variation,

the geometry criterion is:

if Diam
�

∇F (Bn)
�∇F (Bn)�

�
> kmax then subdivide(n)

Note that the topology criterion guarantees that 0 /∈
�∇F (Bn)�, which validates the above expression. The pa-

rameter kmax actually weights the geometric adaptation, as

illustrated on Figure 3.

Algorithm end. The above criteria may induce a large

number of subdivisions, even infinite if the implicit surface

has infinite genus (which is a highly non generic case). More-

over, since the interval evaluation F (B) only contains the

exact image f(B) with conservative rounding error, subdivi-

sions may be required on empty areas when numerical pre-

cision decreases. In practice, the algorithm subdivides the

octree until a given maximal level, which may correspond to

the size of the pixel for rendering applications, minimal size

of the triangles for geometry processing, or numerical pre-

cision for simulation. However, the above criteria still point

out which parts of the implicit surface are not guaranteed,

while guaranteeing the approximation of the others. This ro-

bust behaviour allows stopping the subdivision of the octree

before the given maximal level if the approximation is al-

ready validated (see Figure 4).

(b) From octree to dual grid

To generate the mesh we use an enhanced version of the

Schaefer–Warren method [21]. Like them, we first create the

dual grid of the octree, which is the topological dual of the

octree: the vertices of the dual grid are the centre points of

the octree cells, and the edges correspond to the adjacency

between these cells. This way the each volumetric cell of

the dual grid is associated with an interior vertex of the

octree. Figure 5 illustrate this duality in the simpler case of

quadtrees.

Figure 5: A primal quadtree (thin black) and its dual grid (thick

green).

In our method dual grid creation does not require any

explicit neighbour representation in the octree data structure.

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 205–212. IEEE Press, 2006.

Robust adaptive meshes for implicit surfaces
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Abstract. This work introduces a robust algorithm for computing good polygonal approximations of implicit sur-
faces, where robustness entails recovering the exact topology of the implicit surface. Furthermore, the approximate
triangle mesh adapts to the geometry and to the topology of the real implicit surface. This method generates an
octree subdivided according to the interval evaluation of the implicit function in order to guarantee the robustness,
and to the interval automatic differentiation in order to adapt the octree to the geometry of the implicit surface. The
triangle mesh is then generated from that octree through an enhanced dual marching.
Keywords: Implicit Surface. Dual Marching Cubes. Robust Algorithms. Geometric Modelling.

Figure 1: Toric isosurface extraction: our algorithm extracts a valid surface with adaptive triangulation. It guarantees the green parts of the
surface, and the ambiguity of the other parts is resolved with a small number of refinements.

1 Introduction
Implicit surfaces provide powerful primitives for geomet-

ric modelling. However, computing good polygonal approx-
imations remains an important problem. An implicit surface
is the set of solutions of an equation f(x, y, z) = 0, where
f : Ω ⊆ R3 → R. For well-behaved functions f , this set is
indeed a manifold surface.

The simplest and most flexible polygonal approximation
abides triangle meshes, since they are easy to represent ef-
ficiently and they suit also well for rendering with current
graphics hardware. The criteria for good approximations in-
volve robustness and adaptation. Robustness means that the
mesh captures exactly the topology of the surface, guaran-
teeing the representation of each connected component in Ω
and their genus. Adaptation means that, with a reduced num-
ber of triangles, the geometry of the surface is described

Preprint MAT. 14/06, communicated on May 14th, 2006 to the Department
of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
The corresponding work was published in the proceedings of the Sibgrapi
2006, pp. 205–212. IEEE Press, 2006.

efficiently. In particular, the mesh should place large trian-
gles in regions of low surface curvature and smaller trian-
gles in regions of high surface curvature. Moreover, the tri-
angles should have a good aspect ratio since thin triangles
(also known as slivers) induce numerical instability for geo-
metric processing, in particular for rendering and derivative
estimations.

In this paper, we describe an algorithm that computes a
robust and adaptive triangular approximation for an implicit
surface given by a formula. The algorithm combines interval
arithmetic and automatic differentiation to ensure both ro-
bustness and adaptation. The algorithm first explores the do-
main Ω adaptively using an octree to locate the surface. This
exploration uses interval arithmetic to eliminate octree cells
that are guaranteed not to intersect the surface, driving the
octree towards identifying all connected components. Com-
bined with automatic differentiation, interval arithmetic pro-
vides interval estimates for the gradient, which allows locat-
ing regions of low curvature and detecting topological am-
biguities. A triangle mesh is extracted from the dual of the
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Limitations

• Hashing

• Hash function for vertex codes

• Hash efficiency crucial: large hash tables

T. Lewiner & V. Mello & A. Peixoto & S. Pesco & H. Lopes / Fast Generation of Pointerless Octree Duals

Our proposal also builds the dual cells from the octree
vertices. However, it optimizes the final search, simplifies
the assignment and is able to avoid the preprocessing and
the extra memory used for it.

● ●

● ●

● ●
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●

●
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●

Figure 9: Computing the dual volume from a vertex by
searching for leaves at the four (eight for octree) adjacent
positions, here marked as orange dot for two of the vertices.
For the upper right vertex, the four searches returns imme-
diately. For the lower left one, one of the searches returns
immediately, and the three others must look one level up in
the quadtree, two of them eventually leading to the same leaf.

4. Optimized Dual Generation

The use of keys and hash table to represent octrees al-
lows bypassing the hierarchic traversal. We propose here a
scheme to enjoy this aspect in the dual generation with two
different strategies. The first one uses Morton-like codes to
represent the vertices of the octree, permitting to store all the
octree vertices at preprocessing and efficiently search for the
dual vertices from the Morton-like codes. It suits for appli-
cations where the octree is static, factoring on the prepro-
cessing time. The second strategy avoids the extra storage
of the octree vertices, but with a small execution overhead.
It suits for dynamic octrees. Both strategies support parallel
implementations.

4.1. Static strategy

This strategy consists in a preprocessing step, required only
when the octree structure is modified, which generates a
code for each leaf’s vertex; and a dual traversal step which
generates the dual volumes by fast local searches (see Algo-
rithms 1 and 2).

The preprocessing step traverses all the octree leaves
stored in the hash table, and generates Morton-like codes
for all the vertices of those leaves that are in the interior of

Algorithm 1: Preprocessing step: vertex generation
in : The octree
out: Auxiliary hash table aux with the vertices

1 foreach key k of the octree’s leaves do

// codes for k’s vertices, see Algorithm leaf2vertopt
2 level,v_codes[8]← leaf2vert(k) ;
3 for i ∈ [0 · · ·7] do

4 if v_codes[i] = ∅ then next vert i ;
// get current vertex/level data of aux

5 v, lv ← aux[ v_codes[i] ] ;
6 if v = ∅ then aux[ v_codes[i] ] ← level ;
7 else lv ← min(level, lv) ;

Algorithm 2: Traversal step: dual generation
in : The octree and the auxiliary hash table
out: The dual volumes

1 foreach vertex code / level v, lv in aux do

// node keys at level lv, see Algorithm vert2leafopt
2 keys[8]← vert2leaf(v,lv) ;
3 for j ∈ [0 · · ·7] do

// optimized search for leaf: up from level lv
4 while keys[ j] �= ∅ & ¬node_exists(keys[ j]) do

5 keys[ j]�= 3;
6 output keys ;

the octree. Those codes are stored in an auxiliary hash table
aux, together with the depth of the leaf. When two leaves
share a vertex, the deepest depth is retained. The structure of
those Morton-like codes is described in the next paragraph.
Those codes can be computed efficiently from the Morton
key of the leaf, as described in the subsequent paragraph.
The dual traversal step then reads the auxiliary hash table
and, for each dual vertex / leaf depth pair, searches for the
eight octree leaves associated to that vertex. Since the depth
of the deepest leaf is known, the search can be optimized
further than generic optimized searches [CLL∗08].

Morton-like codes for vertices. The Morton key of an oc-
tree node corresponds to the geometric position of its center.
The centers of all the possible nodes of depth l form a regular
grid of 2l units per side. The interior vertices of those nodes
actually form a similar grid, obtained from the previous one
by a translation of vector (2−l−1,2−l−1,2−l−1) and remov-
ing the vertices on the boundary. Since those are binary posi-
tions, they can be represented directly by Morton codes, us-
ing the geometric key generation (see Algorithm leaf2vert).

Table 1: Morton codes for the vertices of Figure 5.

a: 10011000̄ e: 10011110̄ i : 11100000̄
b: 10011010̄ f: 10110100̄ j : 11101000̄
c: 10110000̄ g: 11001000̄ k: 11110000̄
d: 10011100̄ h: 11001010̄ l : 11111000̄

c� 2010 The Author(s)
Journal compilation c� 2010 The Eurographics Association and Blackwell Publishing Ltd.

● ●

● ●

● ●

● ●

●

●

● ●

●

e

g h

d f

i

cba

k l

j

41

T. Lewiner & V. Mello & A. Peixoto & S. Pesco & H. Lopes / Fast Generation of Pointerless Octree Duals

Table 2: Execution time and memory consumption for the dual generation of randomly generated octrees, as average on 200
runs, including the preprocessing of the static strategy. The gain for each strategy is given for comparable memory consumption.

number of nodes (millions) 0.03 0.07 0.12 0.19 0.65 1.01 3.19 13.04 24.81
number of vertices (millions) 0.05 0.14 0.22 0.33 0.22 1.87 5.69 2.23 3.18

octree maximal level M 8 10 8 8 12 10 10 12 12
subdivision probability p 30% 30% 40% 45% 30% 40% 45% 40% 45%

bits for node hashing 21 21 21 21 21 24 24 24 24
median bits used for vertex hashing 40 34 40 40 34 34 34 34 34

time (ms)

recursive with pointer 82 223 349 528 2 033 2 990 9 151 38 449 70 528
recursive pointerless 35 97 151 227 901 1 278 3 978 17 675 34 093
static 33 73 101 148 166 893 2 737 2 357 3 878
dynamic 32 79 117 176 150 1 012 3 091 1 975 3 341

pointer / static 2.5x 3.1x 3.4x 3.6x 12.2x 3.3x 3.3x 16.3x 18.2x
hash / dynamic 1.1x 1.2x 1.3x 1.3x 6.0x 1.3x 1.3x 8.9x 10.2x

memory (MB)

recursive with pointer 0.64 1.67 2.79 4.31 14.93 23.07 73.09 298.47 567.81
recursive pointerless 0.21 0.56 0.93 1.44 4.98 7.69 24.36 99.49 189.27
static 0.62 1.65 2.61 3.96 6.63 21.95 67.80 116.50 213.50
dynamic 0.21 0.55 0.93 1.43 4.97 7.68 24.36 99.48 189.26

The resulting association is the one actually illustrated in
Figure 8, although the volume octree structure assignment
may be different. Observe that this strategy does not use any
extra memory, and performs only a few more memory ac-
cesses per leaf than the static approach (tests of lines 7 and
8 of Algorithm 3 can be done with the same access).

5. Experiments

We experimented on random octrees and octrees adapted to
isosurfaces, on a 3GHz MacPro with 18GB of RAM.

Random octrees. We first tested on random octrees, with
different maximal levels M and Bernouilli probabilities p for
a node to be subdivided. We compared the execution time
and memory consumption of our static and dynamic strate-
gies with the usual recursive implementation on pointer and
pointerless octrees (see Table 2 and Figure 11). The average
gain in memory consumption of the pointerless representa-
tions is a factor 3x, which is preserved in the dynamic strat-
egy. For the static strategy, the extra memory of the auxiliary
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Figure 11: Execution time, in milliseconds, versus the octree
size, in millions of nodes / logarithmic scale (see Table 2).

hashtable reduces this average memory gain to a factor 1.5x.
Both the static and dynamic strategies speeds up the execu-
tion by an average factor above 3.3x on the recursive imple-
mentation with hashtable, and above 7.3x over the recursive
algorithm with the octree representation with eight pointers
per node. Note that this includes the preprocessing time for
the static strategy, which represents 53% of the total execu-
tion time. This means that, for the second and further runs
on the same octree, the gain of the static strategy is doubled.

Octrees adapted to isosurface. We compared the gain of
our dynamic dual generation over the recursive generation
on the total time of an isosurface extraction application. We
experimented on Dual Marching Cubes [SW04] using robust
adaptation [PLLdF06]. We generated results from 24 differ-
ent implicit functions in the unit cube, refined to maximal
depth 9 and with curvature threshold 0.6 (see Table 3 and
Figure 12). Since the timings include the octree adaptation
and Marching Cubes calls on the dual volumes, the total gain
is in average 30%, and 64% if we weight by the number of
nodes. The two methods compared use hashtables with the
same parameters, leading to the same memory consumption.

Limitation. We can observe on Table 2 that the gain ob-
tained by the proposed algorithms varies brutally when the
number of bits b used for the hashing function is changed
to cope with the size of the data. Actually, the speed of
hashtable manipulation is a crucial ingredient in pointer-
less representations. In particular, increasing b size may
be delicate in the static strategy, since it would require
two large blocks (of size 2b) of data for the hashtable. A
solution to optimize the hashing is to use perfect hash-
ing techniques, which are already used for pointerless oc-
trees [LH06, BC08, CJC∗09].
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Figure 8, although the volume octree structure assignment
may be different. Observe that this strategy does not use any
extra memory, and performs only a few more memory ac-
cesses per leaf than the static approach (tests of lines 7 and
8 of Algorithm 3 can be done with the same access).

5. Experiments

We experimented on random octrees and octrees adapted to
isosurfaces, on a 3GHz MacPro with 18GB of RAM.

Random octrees. We first tested on random octrees, with
different maximal levels M and Bernouilli probabilities p for
a node to be subdivided. We compared the execution time
and memory consumption of our static and dynamic strate-
gies with the usual recursive implementation on pointer and
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gain in memory consumption of the pointerless representa-
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Figure 11: Execution time, in milliseconds, versus the octree
size, in millions of nodes / logarithmic scale (see Table 2).

hashtable reduces this average memory gain to a factor 1.5x.
Both the static and dynamic strategies speeds up the execu-
tion by an average factor above 3.3x on the recursive imple-
mentation with hashtable, and above 7.3x over the recursive
algorithm with the octree representation with eight pointers
per node. Note that this includes the preprocessing time for
the static strategy, which represents 53% of the total execu-
tion time. This means that, for the second and further runs
on the same octree, the gain of the static strategy is doubled.

Octrees adapted to isosurface. We compared the gain of
our dynamic dual generation over the recursive generation
on the total time of an isosurface extraction application. We
experimented on Dual Marching Cubes [SW04] using robust
adaptation [PLLdF06]. We generated results from 24 differ-
ent implicit functions in the unit cube, refined to maximal
depth 9 and with curvature threshold 0.6 (see Table 3 and
Figure 12). Since the timings include the octree adaptation
and Marching Cubes calls on the dual volumes, the total gain
is in average 30%, and 64% if we weight by the number of
nodes. The two methods compared use hashtables with the
same parameters, leading to the same memory consumption.

Limitation. We can observe on Table 2 that the gain ob-
tained by the proposed algorithms varies brutally when the
number of bits b used for the hashing function is changed
to cope with the size of the data. Actually, the speed of
hashtable manipulation is a crucial ingredient in pointer-
less representations. In particular, increasing b size may
be delicate in the static strategy, since it would require
two large blocks (of size 2b) of data for the hashtable. A
solution to optimize the hashing is to use perfect hash-
ing techniques, which are already used for pointerless oc-
trees [LH06, BC08, CJC∗09].
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The resulting association is the one actually illustrated in
Figure 8, although the volume octree structure assignment
may be different. Observe that this strategy does not use any
extra memory, and performs only a few more memory ac-
cesses per leaf than the static approach (tests of lines 7 and
8 of Algorithm 3 can be done with the same access).

5. Experiments

We experimented on random octrees and octrees adapted to
isosurfaces, on a 3GHz MacPro with 18GB of RAM.

Random octrees. We first tested on random octrees, with
different maximal levels M and Bernouilli probabilities p for
a node to be subdivided. We compared the execution time
and memory consumption of our static and dynamic strate-
gies with the usual recursive implementation on pointer and
pointerless octrees (see Table 2 and Figure 11). The average
gain in memory consumption of the pointerless representa-
tions is a factor 3x, which is preserved in the dynamic strat-
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size, in millions of nodes / logarithmic scale (see Table 2).

hashtable reduces this average memory gain to a factor 1.5x.
Both the static and dynamic strategies speeds up the execu-
tion by an average factor above 3.3x on the recursive imple-
mentation with hashtable, and above 7.3x over the recursive
algorithm with the octree representation with eight pointers
per node. Note that this includes the preprocessing time for
the static strategy, which represents 53% of the total execu-
tion time. This means that, for the second and further runs
on the same octree, the gain of the static strategy is doubled.

Octrees adapted to isosurface. We compared the gain of
our dynamic dual generation over the recursive generation
on the total time of an isosurface extraction application. We
experimented on Dual Marching Cubes [SW04] using robust
adaptation [PLLdF06]. We generated results from 24 differ-
ent implicit functions in the unit cube, refined to maximal
depth 9 and with curvature threshold 0.6 (see Table 3 and
Figure 12). Since the timings include the octree adaptation
and Marching Cubes calls on the dual volumes, the total gain
is in average 30%, and 64% if we weight by the number of
nodes. The two methods compared use hashtables with the
same parameters, leading to the same memory consumption.

Limitation. We can observe on Table 2 that the gain ob-
tained by the proposed algorithms varies brutally when the
number of bits b used for the hashing function is changed
to cope with the size of the data. Actually, the speed of
hashtable manipulation is a crucial ingredient in pointer-
less representations. In particular, increasing b size may
be delicate in the static strategy, since it would require
two large blocks (of size 2b) of data for the hashtable. A
solution to optimize the hashing is to use perfect hash-
ing techniques, which are already used for pointerless oc-
trees [LH06, BC08, CJC∗09].
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Conclusions

• Dual generation optimized with pointerless octree

• Also linear, but processing 1/9th of the cells

• Directly extendable to n-dimension

• In average 3x faster with less memory

• Next step: perfect hashing optimized in GPU?
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