
VSVR: a very simple volume rendering implementation with 3D textures

THOMAS LEWINER

Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
http://www.mat.puc-rio.br/˜tomlew.

Abstract. This paper presents a volume rendering implementation using 3D textures as an approximation for ray
casting. The implementation available with this paper seeks simplicity: it uses only the 3D texture extension of
OpenGL 1.1 and fits into a limited amount of code. This code intends to provide an introductive material for
newbies and a good starting point for more complex implementations of volume rendering.
Keywords: Volume Rendering. 3D texture. Ray casting.

Figure 1: Tridimensional objects rendered as volume: (left) an implicit function close to its singularity, (middle) a tomography of two cylinders
of an engine and (right) an x–ray scan of a human skull.

1 Introduction

Although graphics hardware is designed for triangle
meshes, direct volume rendering already achieved real time,
accurate 3D visualization. Since this technique processes di-
rectly tridimensional scalar fields, it fits perfectly for a wide
range of applications from modeling to simulation, with a
particular emphasis on medical imaging.

This paper presents a very concise and simple implemen-
tation of volume rendering. It uses the usual approximation
of ray casting by 3D textures [6]. As opposed to the many
available source codes, our implementation aims at being di-
dactic for the reader interested in developing its own volume
rendering application. The code uses only basic OpenGL
features, namely clipping planes and 3D textures, which are
available since OpenGL 1.1 [8]. Moreover, it simplifies the
usual 3D texture pipeline by using hardware clipping instead
of explicitly computing slice intersections with the data cube.
The example application provides interactive visualization of
fair quality (Figure 1). Its source fits into a small amount of
code and is available with this paper.

Figure 2: The ray casting integral sums the color and opacity
properties of each data voxel that intersects the ray.

2 Ray casting with textured slices
Ray casting techniques [6] simulate the propagation of the

light traversing a colored translucent volume. For example,
in a computational tomography of a head, each piece of
brain corresponds to a scintillation of the X radiation. The
brain can then be rendered simulating the light propagation
across each piece of brain, associating its scintillation with

Preprint MAT. 16/06, communicated on June 26th, 2006 to the Department
of Mathematics, PUC — Rio de Janeiro, Brazil.

Thomas Lewiner 2

Figure 3: Axis aligned slices may fail to render parts of the volume,
even taking the closest axis to the view direction.

Figure 4: Slices perpendicular to the view direction optimize the
covering of screen pixels.

a translucent color. In the following, the scintillation of each
piece of brain will be called the data cube, and its association
with a translucent color the transfer function.

Additive reprojection. Each translucent volume element
contributes to the final color of the ray when it reaches the
screen. This final color is usually computed by summing
these contributions (Figure 2). However, instead of simulat-
ing the ray reflection and refraction as for ray tracing, ray
casting force light raysto be straight. This approximation al-
lows faster display through the use of 3D textures.

Figure 5: The ray casting integral can be approximated by sum-
ming over parallel 2D slices. The pixel color of each 2D slice is
interpolated from the data cube.

Textured slices. For a given view point, the volume is
rendered by shooting rays from the view point to each screen
pixel. With OpenGL textures, the color of all the pixels
can be computed simultaneously by superimposing 2D slices
textured by the data properties (Figure 5): The texture color
at a point p of a 2D slice is obtained by applying the transfer
function to the voxel of the data cube containing p.

Axis–aligned slices. Rendering with slices parallel to the
axis allow using only 2D textures and require very few com-
putations. However, as the view direction becomes tangent
to the slice, some screen pixels are not covered by any slice.
Even taking the closest axis to the view direction, it may fail
to render part of the volume (Figure 3).

View–aligned slices. This can be corrected by generating
slices always perpendicular to the view direction: it maxi-
mizes the number of slices covering each screen pixel (com-
pare Figure 4 with Figure 3). This technique requires com-
puting non–rectangular slices in order to fit into the data
cube, and generating the texture of this slice. The next
section describes how we perform these operations using
OpenGL clipping planes and 3D textures.

3 Implementation
In order to avoid computing the intersection of the slices

with the data cube, we render rectangular slices, clipped by
the support planes of the cube faces. Since on screen, the
rectangular slices must cover the data cube, we compute the
rectangle of these slices as the bounding box of the data
cube on screen (Figure 6). This bounding box computation
requires projecting only the 8 vertices of the data cube. The
slices are then generated parallel to the screen by shifting that
bounding box in depth. The induced depth ordering allows
using only basic commands for transparency.

The clipping is performed directly through OpenGL clip-
ping planes (Figure 6), which substitues the software compu-
tation of the slice geometry by hardware operations. More-
over, the clipping planes are defined by the input data cube,
and can thus be set once for the OpenGL context, and then
just enabled and disabled at each display operation.

The OpenGL architecture then computes directly in hard-
ware the slices’ textures through a trilinear interpolation in-

Preprint MAT. 16/06, communicated on June 26th, 2006 to the Department of Mathematics, PUC — Rio de Janeiro, Brazil.

3 VSVR: very simple volume redering

Figure 6: Textured slices before clipping: the slices’ size is the
bounding box of the data cube on screen.

Figure 7: Final rendering after clipping: the clipping planes are the
support of the cube’s faces.

side the data cube. To do so, the data cube is sent to the
graphic card as a 3D texture.

Summarizing, the rendering pipeline is composed of the
following 4 steps (the functions refer to the source code
extract of the appendix):

1. enable clipping planes (function gl clip).

2. load the 3D texture with the transfer function (func-
tions tf glload and tex glload).

3. compute the bounding box of the texture cube in
screen coordinates (beginning of gl redisplay).

4. draw one rectangle for each slice by shifting the
bounding box in depth (end of gl redisplay).

4 Extensions
A C++ implementation is available with the paper. It

focuses on the projection part of the 3D texture, as described
in the previous sections, and provides a very simple interface
for transfer function based on color maps and explicit opacity
function. Further extensions can be incorporated to that code,
for example handling of large textures, illuminations, pre–
integration techniques and more complex transfer function.
Further references on volume rendering can be found in [3].

Large textures. The texture memory limitation on graphics
card prevents rendering large texture as one block. In order to
by-pass this limitation, the data cube must be cut into blocks,
each block being rendered separately. With the provided
source code, this can be done by instantiating several VSVR
classes. More complex techniques work on adapted slice
geometry to avoid rendering empty regions [1].

Illumination. The structures of 3D solid objects, when
rendered as volume, can be strengthen by shading pro-
cesses [6, 7]. This process requires some further concepts of
graphics programming. However, the proposed source code
could serve as the vertex projection part of the rendering
pipeline, which, combined with a finite difference compu-
tation for the gradient, can enter in usual fragment programs.

Pre–integration. The source code of the paper applies the
transfer function directly to the 3D texture, and the OpenGL
pipeline then interpolates the colors and opacity for each
slice. This can result in sharp color transition if using a
contrasted color map on a texture with high gradient. This
artifact can be solved by using pre–integration techniques,
which apply the transfer function after the texture interpola-
tion [2, 4].

Transfer functions. Once the volume rendering pipeline
is established, the main user control of the display resumes
to controlling the transfer function. In particular, mutli–
dimensional transfer functions [5] improve this control.

Web information

A C++ implementation is available online at http://
www.mat.puc-rio.br/˜tomlew.

Acknowledgments
The engine and the skull of Figure 1 are courtesy of

General Electric and of Siemens Medical Solutions. The foot
model is a courtesy of Philips Research. All these models are
available at http://www.volvis.org/.

References
[1] C. Bethune and J. Stewart. Adaptive Slice Geometry

for Hardware-Assisted Volume Rendering. Journal of
Graphics Tools, 10(1):55–70, 2005.

Preprint MAT. 16/06, communicated on June 26th, 2006 to the Department of Mathematics, PUC — Rio de Janeiro, Brazil.

http://www.mat.puc-rio.br/~tomlew
http://www.mat.puc-rio.br/~tomlew
http://www.volvis.org/
http://www.cs.queensu.ca/
http://www.cs.queensu.ca/home/jstewart/
http://jgt.akpeters.com/papers/BethuneStewart05/
http://jgt.akpeters.com/papers/BethuneStewart05/

Thomas Lewiner 4

[2] K. Engel, M. Kraus and T. Ertl. High-quality pre-
integrated volume rendering using hardware-accelerated
pixel shading. In Graphics hardware, pages 9–16. ACM,
2001.

[3] K. Engel and T. Ertl. Interactive High-Quality Volume
Rendering with Flexible Consumer Graphics Hardware.
In Eurographics State of The Art Report. Blackwell, 2002.

[4] R. Espinha and W. Celes. High–Quality Hardware–
Based Ray–Casting Volume Rendering Using Partial Pre–
Integration. In Sibgrapi, pages 273–280. IEEE, 2005.

[5] J. Kniss, G. Kindlmann and C. Hansen. Multidimen-
sional Transfer Functions for Interactive Volume Render-
ing. Transactions on Visualization and Computer Graph-
ics, 8(3):270–285, 2002.

[6] M. Levoy. Efficient ray tracing of volume data. Trans-
actions on Graphics, 9(3):245–261, 1990.

[7] M. Meisner, U. Hoffmann and W. Straser. Enabling
Classification and Shading for 3D Texture Mapping
Based Volume Rendering. In Visualization, pages 1–32.
IEEE, 1999.

[8] M. Segal and K. Akeley. The OpenGL Graphics System:
A Specification (Version 1.1). Silicon Graphics, 1998.

Main functions of the source code
void VSVR::gl clip () const sets the clipping planes

{
GLdouble plane[4] ;
plane = { +1, 0, 0, 0 } ;
glClipPlane(GL_CLIP_PLANE0, plane) ;
plane = { -1, 0, 0, ni() } ;
glClipPlane(GL_CLIP_PLANE1, plane) ;

plane = { 0, +1, 0, 0 } ;
glClipPlane(GL_CLIP_PLANE2, plane) ;
plane = { 0, -1, 0, nj() } ;
glClipPlane(GL_CLIP_PLANE3, plane) ;

plane = { 0, 0, -1, 0 } ;
glClipPlane(GL_CLIP_PLANE4, plane) ;
plane = { 0, 0, +1, nk() } ;
glClipPlane(GL_CLIP_PLANE5, plane) ;

}

void VSVR::tf glload () const loads the transfer function

{
int n = tf_size() ;
glPixelTransferi(GL_MAP_COLOR, GL_TRUE);
glPixelMapfv(GL_PIXEL_MAP_I_TO_R, n, _tf_red);
glPixelMapfv(GL_PIXEL_MAP_I_TO_G, n, _tf_green);
glPixelMapfv(GL_PIXEL_MAP_I_TO_B, n, _tf_blue);
glPixelMapfv(GL_PIXEL_MAP_I_TO_A, n, _tf_alpha);

}

void VSVR::tex glload () loads the 3D texture

{
// init the 3D texture
glEnable(GL_TEXTURE_3D_EXT);
glGenTextures(1, &tex_glid);
glBindTexture(GL_TEXTURE_3D_EXT, tex_glid);

// texture environment setup
glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_3D_EXT,

GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

// load the texture image
glTexImage3DEXT(
GL_TEXTURE_3D_EXT, // target
0, // level
GL_RGBA, // color storage
(int) tex_ni(), // width
(int) tex_nj(), // height
(int) tex_nk(), // depth
0, // border
GL_COLOR_INDEX, // format
GL_FLOAT, // type
_texture); // allocated texture buffer

glPixelTransferi(GL_MAP_COLOR, GL_FALSE);
}

void VSVR::gl redisplay (int nslices) const display :
nslices is the number of slices

{
// gets the direction of the observer
double x,y,z ;
double model[16], proj[16] ;
int view[4];
glGetDoublev (GL_MODELVIEW_MATRIX , model);
glGetDoublev (GL_PROJECTION_MATRIX, proj);
glGetIntegerv(GL_VIEWPORT , view);

//--//
// bounding box of the data cube on screen
double xmin = ymin = zmin = FLT_MAX ;
double xmax = ymax = zmax = -FLT_MAX ;
for(int i = 0; i < 8; ++i)
{
float bbx = (i&1) ? ni() : 0 ;
float bby = (i&2) ? nj() : 0 ;
float bbz = (i&4) ? nk() : 0 ;
gluProject(bbx, bby, bbz,

model, proj, view, &x, &y, &z);

if(x < xmin) xmin = x ;
if(x > xmax) xmax = x ;
if(y < ymin) ymin = y ;
if(y > ymax) ymax = y ;
if(z < zmin) zmin = z ;
if(z > zmax) zmax = z ;
}

//--//
// draw each slice shifting the bounding box

Preprint MAT. 16/06, communicated on June 26th, 2006 to the Department of Mathematics, PUC — Rio de Janeiro, Brazil.

http://wwwvis.informatik.uni-stuttgart.de/~engel
http://www.vis.uni-stuttgart.de/~kraus/index.html
http://www.vis.uni-stuttgart.de/~ertl/
http://doi.acm.org/10.1145/383507.383515
http://doi.acm.org/10.1145/383507.383515
http://doi.acm.org/10.1145/383507.383515
http://wwwvis.informatik.uni-stuttgart.de/~engel
http://www.vis.uni-stuttgart.de/~ertl/
http://wwwvis.informatik.uni-stuttgart.de/~engel/engel_egStarReport2002_600dpi.pdf
http://wwwvis.informatik.uni-stuttgart.de/~engel/engel_egStarReport2002_600dpi.pdf
http://www-nt.inf.puc-rio.br/cgilua/cgilua.exe/pessoa.htm?id=1102&cxid=alunom
http://www-di.inf.puc-rio.br/~celes//
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2005.29
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2005.29
http://doi.ieeecomputersociety.org/10.1109/SIBGRAPI.2005.29
http://www.cs.utah.edu/~jmk/
http://www.cs.utah.edu/~gk/
http://www.cs.utah.edu/~hansen/
http://dx.doi.org/10.1109/TVCG.2002.1021579
http://dx.doi.org/10.1109/TVCG.2002.1021579
http://dx.doi.org/10.1109/TVCG.2002.1021579
http://graphics.stanford.edu/~levoy/
http://doi.acm.org/10.1145/78964.78965
http://www.uni-tuebingen.de/
http://www.uni-tuebingen.de/
http://www.gris.uni-tuebingen.de/~strasser/
http://doi.ieeecomputersociety.org/10.1109/VIS.1999.10001
http://doi.ieeecomputersociety.org/10.1109/VIS.1999.10001
http://doi.ieeecomputersociety.org/10.1109/VIS.1999.10001
http://www.ati.com/
http://en.wikipedia.org/wiki/Kurt_Akeley
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/index.html
http://www.opengl.org/documentation/specs/version1.1/glspec1.1/index.html

5 VSVR: very simple volume redering

float dz = (zmax-zmin) / nslices ;
float sz = zmax - dz/2 ;

glColor4f(1,1,1,1);
glBegin(GL_QUADS) ;
for(int n = nslices-1; n >= 0; --n, sz -= dz)
{
gluUnProject(xmin,ymin,sz,

model, proj, view, &x, &y, &z);
glTexCoord3d(x/ni(), y/nj(), z/nk());
glVertex3d (x,y,z) ;

gluUnProject(xmax,ymin,sz,
model, proj, view, &x, &y, &z);

glTexCoord3d(x/ni(), y/nj(), z/nk());
glVertex3d (x,y,z) ;

gluUnProject(xmax,ymax,sz,
model, proj, view, &x, &y, &z);

glTexCoord3d(x/ni(), y/nj(), z/nk());
glVertex3d (x,y,z) ;

gluUnProject(xmin,ymax,sz,
model, proj, view, &x, &y, &z);

glTexCoord3d(x/ni(), y/nj(), z/nk());
glVertex3d (x,y,z) ;
}
glEnd() ; // GL_QUADS

}

Preprint MAT. 16/06, communicated on June 26th, 2006 to the Department of Mathematics, PUC — Rio de Janeiro, Brazil.

	Introduction
	Ray casting with textured slices
	Implementation
	Extensions
	Bibliography

