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Abstract. Sampled vector fields generally appear as measurements of real phenomena. They can be obtained
by the use of a Particle Image Velocimetry acquisition device, or as the result of a physical simulation, such
as a fluid flow simulation, among many examples. This paper proposes to formulate the unstructured vector field
reconstruction and approximation through Machine-Learning. The machine learns from the samples a global vector
field estimation function that could be evaluated at arbitrary points from the whole domain. Using an adaptation of
the Support Vector Regression method for multi-scale analysis, the proposed method provides a global, analytical
expression for the reconstructed vector field through an efficient non-linear optimization. Experiments on artificial
and real data show a statistically robust behavior of the proposed technique.
Keywords: Discrete Vector Field. Support Vector Regression.

Figure 1: Reconstruction of a real 3D field captured by a PIV device with sparse, irregular sampling: magnitude (left) and phase (right).

1 Introduction
In the last few years, lot of attention has been paid to the

problem of object reconstruction from sparse samples [18].
However, there are still very few reconstruction methods for
vector fields, which is the fundamental object in classical
Physics and Engineering (velocity fields, force fields, etc.).
Moreover, most of existing methods restrict the samples to
be structured on a regular grid.

Sampled vector fields generally appear as measurements
of real phenomena, for example using a Particle Image Ve-
locimetry acquisition device. They also appear as the result
of physical simulations, such as fluid dynamics simulations.
In those context, the vector field reconstruction problem con-
sists in inferring a differentiable vector field on the whole
region of experimentation from only a finite, set of samples.

Learning Vector Field Reconstructing a sampled field is
a helpful step to analyze it identifying the existence of vor-
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tices and singularities, to improve simulations incorporating
global information in local computations and to interpreta-
tion of the measured or simulated field returning numerical
and visual information (see Figure 1).

Contrarily to the curve or surface reconstruction applica-
tion problems, vector fields usually characterize local beha-
viors and thus require only consistency based on local pat-
tern. We therefore argue that the vector field reconstruction
problem should be solved in the Machine-Learning context.
Kernel-based methods are considered the state of the art in
machine-learning. Amid them, the Support Vector Machines
(SVM) proposed by Vapnik et al. [15] is one of the most ro-
bust in terms of statistical learning, since they provide a de-
terministic and analytical result from an efficient non-linear
optimization. Starting from a cost function that is insensitive
to small errors, it reduces the learning process to a linearly
constrained quadratic programming problem, guaranteeing a
unique and globally optimal solution. Moreover, the solution
is a combination of a reduced set of the input, the support
vectors, which turns the SVM evaluation particularly effi-
cient.
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Related work Unlike surface reconstruction from unor-
ganized points, vector field reconstruction of unstructured
data does not appear frequently in the literature. Schaback
and Wendland [11] introduced the radial-based interpolants
and other approximation methods for multivariate functions.
Mussa-Ivaldi [7] presents a method for 2D vector field re-
construction using least squares schemes. In this strategy,
the reconstruction is done in two steps. The first step re-
constructs the rotational-free part of the velocity field, and
the second one reconstructs from the residual vector field the
divergence-free part. Another work for 2D vector field recon-
struction from sparse samples was done by Lage et al. [6]. In
their method the vector field is reconstructed by adjusting
locally a polynomial for each coordinate and then the global
approximation is obtained by the use of a partition of unity.
In fact, their work is a generalization of the Multi-level Par-
tition of Unity for surface reconstruction [8].

Two important reconstruction methods for surface recon-
struction based on Support Vector Machines have been pro-
posed in the last years. Schölkopf et al. [10] introduces a sur-
face reconstruction scheme using the so–called single class
Support Vector Machine method. Steinke et al. [14] present
a multi-scale method for surface reconstruction based on
a Support Vector Regression. The Support Vector Regres-
sion has also been recently used for optical flow reconstruc-
tion [4] in the work of [2]. This paper proposes methods that
extend these learning techniques for scalar fields to vector
fields reconstruction.

Contributions This paper presents a method for vector
field reconstruction from sparse points/vectors pairs, intro-
ducing a learning formulation to such problems. It uses the
Support Vector Machine for function estimation technique,
called the Support Vector Regression (SVR), as the basic
tool for the learning part (see section 2). The learning ma-
chine is trained on the samples and evaluated over the whole
domain, introducing an adaptation of SVR for multi-scale
analysis (see section 3). This method provides a single ana-
lytical expression for the reconstructed vector field on the
whole domain. Experiments on artificial and real data in two
and three dimensions show a statistically robust behavior of
the proposed technique (see section 4).

2 Support Vector Regression

The Support Vector Regression (SVR) is a universal learn-
ing machine for solving multidimensional scalar value pre-
diction and estimation problems. It has received a lot of at-
tention in the machine-learning community since it is very
well grounded on a statistical learning theory, called the
VC-Theory [16]. Its consistency conditions, its convergence,
its generalization abilities and its implementation efficiency
have been studied by several authors from the last four dec-
ades (see [16] and [9]). This section describes the ε-SVR. A
complete introduction can be found in [12].

(a) ε-SVR learning problem

Consider the training set S = {(x1, y1), . . . , (xl, yl)},
where xi ∈ Rn are the explicative data and yi ∈ R are the
target values. The SVR method first maps the data x ∈ Rn
into some chosen Hilbert space F , called the feature space,
via a nonlinear function φ : Rn → F . In this feature
space, the prediction function f is formulated by the affine
equation:

f(x) = 〈w, φ(x)〉+ b (1)
where 〈·, ·〉 denotes the inner product in F , with x ∈ Rn,
and w ∈ F and b ∈ R are the variables to be determined.

(b) ε-SVR optimization problem

In the ε-SVR learning method, the values of w and b are
determined by the following optimization problem [16]:

Minimizew,b
1
2‖w‖

2 + P ·
∑l
i=1(ξi + ξ̂i)

subject to:


yi − (〈w, φ(xi)〉 − b) ≤ ε+ ξi
(〈w, φ(xi)〉+ b)− yi ≤ ε+ ξ̂i

ξi, ξ̂i ≥ 0

where P > 0 determines the trade-off between the flatness
of f (small ||w||) and the amount up to which deviations of
the estimation is larger than ε are tolerated. The variables
ξi and ξ̂i represent the deviation at sample i when f(xi) is
above or below yi, respectively.

One can rewrite this optimization problem in its dual
form, using Lagrange multipliers αi, α̂i:

Maximizeαi,α̂i

l∑
i=1

(α̂i − αi)yi − ε
l∑
i=1

(α̂i + αi) −

1
2

l∑
i=1

l∑
j=1

(α̂i−αi)(α̂j−αj)〈φ(xi), φ(xj)〉

subject to:
∑l
i=1(α̂i − αi) = 0, 0 ≤ αi, α̂i ≤ P

w −
∑l
i=1(α̂∗i − α∗i )φ(xi) = 0

α∗i (〈w, φ(xi)〉+ b− yi − ε− ξi) = 0
α̂∗i (yi − 〈w, φ(xi)〉 − b− ε− ξ̂i) = 0
α̂∗i · α∗i = 0, ξ̂i · ξi = 0
(α̂∗i − P )ξ̂i = 0, (α∗i − P )ξi = 0

This dual problem is a convex quadratic programming prob-
lem, thus it has an unique global solution. Such optimal solu-
tion will be denoted by w?, b?, α̂?, α?.

Support Vectors The second restriction of this problem
means that at the optimal solution w? for the primal problem
is a linear combination of the explicative points mapped to
the feature space: w? =

∑l
i=1(α̂?i − α?i )φ(xi), equation (1)

can be rewritten as:

f(x) =
l∑
i=1

(α̂?i − α?i )〈φ(xi), φ(x)〉+ b?. (2)

where b∗ is chosen so that f(xi) − yi = −ε for any i such
that α?i ∈ (0, P ).

The other set of restrictions says that when α?i and α̂?i
are both equal to zero the scalar function prediction for the
explicative point xi distances from the target value yi less
than ε. The explicative points xi whose one of the associated
α?i or α̂?i does not vanish are called the support vectors.

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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Figure 2: 3600 vectors of an synthetic vector field sampled randomly in the unit square (magnitude and cosine of the phase on the left),
reconstructed by learning in polar coordinates (magnitude and cosine of the phase on the right). The color scale from blue to red.

(c) Kernel functions

Kernel functions have been recognized as an important
tool in several numerical analysis applications, including
approximation, interpolation, meshless method for solving
differential equations and also in Machine Learning [11].

In the ε-SVR problem, the non-linear function φ, which
maps the explicative point to the feature space, appears in
two equations: one in the objective function of the ε-SVR
dual optimization problem as 〈φ(xi), φ(xj)〉, and the other
in the prediction function f as 〈φ(xi), φ(x)〉 (Equation (2)).
Notice that in both cases it is sufficient to know how to com-
pute the inner-product 〈φ(y), φ(z)〉 of two points mapped to
feature space by φ.

This operation is directly modeled by the use of Kernel
functions. A kernel function K : Rn×Rn→R is defined by:

K(y, z) = 〈φ(y), φ(z)〉.

In fact, kernel functions represent implicitly the mapping φ
to the feature spaceF . For example, consider that y and z are
in R2. Also consider the non-linear mapping φ : R2 → R3

as φ(y) = (y2
1 , y

2
2 ,
√

2y1y2). Then,

〈φ(y), φ(z)〉 = y2
1z

2
1 + y2

2z
2
2 + 2y1y2z1z2 = (〈y, z〉)2.

In this case computing the inner-product using φ, requires
the evaluation of the non–linear mapping at each 2D point
and, after that, the computation of their inner-product in R3.
A more efficient way to evaluate it uses the kernel function
K(y, z) = (〈y, z〉)2, which computes firstly the inner-
product in R2 and then takes the square of it.

In the general case, it is more efficient and more suit-
able to choose kernels rather than non-linear mappings φ.
However, not all functions K represent an inner-product in
the feature space. The Mercer’s theorem characterizes these
functions [16]. Some examples of kernel functions that sat-
isfy the Mercer’s conditions are:

– Polynomial kernel: [15]: K(y, z) = (1 + 〈y, z〉)d,

– Gaussian kernel: [15]: K(y, z) = exp
(
−‖y−z‖2

2σ2

)
,

– Wavelet kernel [17]: K(y, z) =
∏n
i=1 h

(
yi−zi

σ

)
,

where h(u) = cos(1.75u)e−
u2
2 ,

3 Reconstruction by Learning Method

(a) Sampled vector fields

A vector field F defined on a subset Ω ⊂ Rn is a map
that assigns to each point x ∈ Ω a vector v ∈ Rn (Fig-
ure 2 (left)). In the Cartesian coordinate system, the vector
field is represented by an ordered n-tuple of scalar func-
tions F(x) = (F1(x), F2(x), . . . , Fn(x)) The function Fi
is called the i-th coordinate function of F. A vector field is
differentiable when all of its n coordinate functions are.

This paper aims at providing a differentiable vector field
F̂ : Ω → Rn that approximates an ideal vector field F
on the region Ω by the use of a learning-machine method
based on ε-SVR. As an input of the reconstruction prob-
lem, it is considered a set of l pairs of n dimensional points
S = {(x1,v1), . . . , (xl,vl)} sampled from F, such that
xi ∈ Ω and vi ≈ F(xi) ∈ Rn. It is assumed that xi’s are in-
dependent and identically distributed samples, and that both
xi and vi are on the same basis of the Cartesian coordinates.

(b) Learning 2D vector fields

There are two classical ways to represent a vector v ∈ R2.
One is the Cartesian coordinates system v = (v1, v2) and
the other is the polar coordinates system (r, θ), for r ∈
[0,∞) and θ ∈ [0, 2π) (Figure 2). The equality (v1, v2) =
r(cos θ, sin θ) is used to convert one system into the other.
Thus, we propose two methods for learning 2D vector field
F : Ω ⊂ R2 → R2, one for each coordinate system.

Learning in Cartesian coordinates The first 2D vector
field learning method determines, from the samples in S, the
reconstructed field F̂ by learning each coordinate function of
F separately. This means that two ε-SVR machine learning
problems are solved, one to find F̂1 that approximates F1 and
other to find F̂2 that approximates F2. The approximation for
the vector field function F is thus obtained by:

F̂2Dc(x) = (F̂1(x), F̂2(x)),

where F̂j(x) =
∑l
i=1(α̂?i,j − α?i,j)K(xi,x) + b?j .
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Learning in polar coordinates The second 2D method
determines from the sampling set S the reconstructed field
F̂ by learning three functions:

R(x) = ‖F(x)‖, C(x) =
F1(x)
‖F(x)‖

, and S(x) =
F2(x)
‖F(x)‖

.

The first represents the norm of the vector F(x), the second
represents the cosine of the phase and the last the sine
of the phase. The approximation for these three functions,
respectively named R̂, Ĉ, and Ŝ, are also expressed using
equation (2). Figure 2 shows the result of this approach on a
synthetic field.

It is better to learn both the cosine of θ and the sine of
θ instead of only the argument angle θ itself since it avoids
the discontinuity of the argument θ close to 0 or 2π. Such
discontinuities do not fit well for SVR, since the prediction
function f is continuous for continuous kernels (see equa-
tion (1)). To avoid this problem, the following adjustment is
proposed: the predicted point (Ĉ(x), Ŝ(x)) is projected on
the unit circle orthogonally. Notice that the projected point
has the same argument as the original, correcting only the
phase as desired. According to this, the adjusted point is:

(Ĉ(x), Ŝ(x)) =
(Ĉ(x), Ŝ(x))√
Ĉ2(x) + Ŝ2(x)

,

F̂2Dp(x) = (R̂(x)Ĉ(x), R̂(x)Ŝ(x)).

Figure 6(right) shows that the approximation F̂2Dp for the
vector field function F using this second strategy improves
the pointwise relative error.

(c) The role of the support-vectors.

According to the definition given in section 2, in the ε-
SVR learning method, the explicative points xi for which
the associated α?i or α̂?i does not vanish are called the support
vectors. Consequently, the explicative points that are not sup-
port vectors have estimation errors less than ε. Since the sup-
port vectors are the only explicative points used to compute
the ε-SVR estimated function (see equation 2), it is important
to notice that these points have a strong geometric meaning.
Since the reconstructed functions are computed only from
the support vectors, they capture the main elements of the
reconstructed vector field. It is important to observe that the
number of support vectors heavily depends on the paramet-
ers of the SVR, in particular on ε and P .

For example, in Figure 3 the support vectors for the
sampled vector field of Figure 2 using the Cartesian coordin-
ate method (left) and the polar coordinate method (right). In
this example, the Cartesian coordinates system reconstruc-
tion uses 160 support vectors for the x-coordinate and the
same number for the y-coordinate, while in the polar co-
ordinates system reconstruction there are 155 support vec-
tors for the norm predicted function, and respectively 182
and 142 support vectors for the cosine and for the sine pre-
dicted functions (Figure 2).

The left image Figure 3 shows that, the support vectors
of each direction in the Cartesian method identified features
of the field in the corresponding directions. However, the
right image shows that the support vector in the polar method
captured much more features. This occurs because the polar
method have to learn the norm, the sine and the cosine of the
phase, which characterize more clearly the singularities of
the vector field. As a conclusion, this advantage of the polar
coordinate method compensates the fact that it has to solve
three learning problems to obtain the reconstruction.

Figure 3: The support vectors in the Cartesian (left) and polar
coordinates (right), with the following color code: (left) red for x,
green for y, (right) red for the norm, green and blue for the phase
cosine and sine.

(d) Learning 3D vector fields

The learning methods proposed for 2D vector field recon-
struction are easily generalized to 3D as follows.

Learning in Cartesian coordinates The reconstruction
method for a 3D vector field F : Ω ∈ R3 → R3 using
Cartesian coordinates learns from the sampling set S each
coordinate function individually. obtaining:

F̂3Dc(x) = (F̂1(x), F̂2(x), F̂3(x)),

where F̂j(x) =
∑l
i=1(α̂?i,j − α?i,j)K(xi,x) + b?j .

Learning in spherical coordinates In spherical coordin-
ates, a vector v = (v1, v2, v3) ∈ R3 is represented by the
triple (r, θ, γ), for r ∈ [0,∞), θ ∈ [0, 2π) and γ ∈ [0, π).
The equality (v1, v2, v3) = r(cos θ sin γ, sin θ sin γ, cos γ)
is used to convert from the Cartesian to the spherical coordin-
ate system and vice-versa.

Similarly to the polar coordinates in 2D, the approxima-
tion method for a 3D vector field function F : Ω ∈ R3 →
R3 learns from the sampling set S the functions:

R = ‖F‖, C =
F3

‖F‖
, CS =

F1

‖F‖
, and SS =

F2

‖F‖
.

R(x) represents the norm of the vector F(x), C(x) rep-
resents the cosine of γ, CS(x) represents the cosine of θ
times the sine of γ, and, finally, SS(x) represents the sine
of θ times the sine of γ. The approximation for these four
functions, respectively named R̂, Ĉ, ĈS and ŜS, are also ex-
pressed using equation (2).

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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In order to adjust the prediction of C, CS, and SS to
satisfy the identity CS2(x) + SS2(x) + C2(x) = 1 the
following adjustment is used:

(ĈS(x), ŜS(x), Ĉ(x)) =
(ĈS(x), ŜS(x), Ĉ(x))√
Ĉ2(x) + ĈS

2
(x) + ŜS

2
(x)

.

As a result, the approximation for the 3D vector field
function F using spherical coordinates is obtained by:

F̂3Ds(x) = (R̂(x)ĈS(x), R̂(x)ŜS(x), R̂(x)Ĉ(x)).

Figure 1 shows the reconstruction of a real 3D
velocity field captured by PIV acquisition device
(piv.vsj.or.jp/piv/image3d/image351.html). The volumet-
ric and projected visualization of the reconstruction map
are displayed. The color scale from blue to red means the
magnitude of the reconstruction field in the two first images,
and the cosine of phase in the two last images. Some stream
lines in the reconstructed velocity field are shown at the
second and the fourth images.

(e) Parameters for the ε-SVR regression

For all methods discussed above the user has to choose
the following parameters:

– the tolerance value ε,
– the penalizing constant P ,
– the Kernel function K and its corresponding paramet-

ers. For example, the Gaussian kernel is parameterized
by σ.

Large ε generally results in a very smooth approximation and
a small number of support vectors. Small ε results on better
approximations since it will use almost all points (Figure 4).
Tiny ε (from 1.0 to 0.25 in the figure) may induce overfitting
the data, which is not suitable in noisy cases. Small P
generates smooth reconstructions that loosely approximate
the training data. For large P , the approximation fits the
vector field very close to the training set, but this may harm
the prediction elsewhere.

Usually, Gaussian kernel is a very nice choice for vector
fields when no particular structure is known a priori. As
suggested by Steinke et al. [14] a good initial choice of its
parameter σ is the half of the diameter of the bounding box of
the points. In order to have a control of these parameters, the
coordinates of the vectors xi and the coordinates of the target
values yi are all standardized, i.e. their value is subtracted by
the mean and the result is divided by the standard deviation.
After the prediction the values are transformed back using
the inverse process. Using this strategy, an initial suggestion
is to set P = 1 and ε = 0.01.

Another option to deduce good parameters is to separate
the samples into a training set, used to compute the vector
field F̂ and a validation set used to tune the SVR. This cross-
validation can be easily implemented by pre-selecting values
for each SVR parameter and perform a regression for each
combination of these values. The parameters that generate
the best prediction on the validation set are retained.

Figure 4: The effect of the ε parameter: original data (top left) and
decreasing ε (in reading order) the reconstruction fits closer to the
input data, but harms the smoothness of the reconstructed field.

(f) Multi-scale ε-SVR regression

For surface reconstruction Steinke et al. [14] proposed the
combination of kernels with different sizes, for example to
interpolate across holes. Their scheme provides an approx-
imation with enough variability to capture the details while
guaranteeing good results in large distances. It uses a coarse-
to-fine approximation: In the first scale, it captures basically
the sign of the scalar function and on the subsequent scale
levels it approximates the residual errors. Since they are us-
ing a kernel that is a radial basis function, at each level the
scale is divided by two. The points having the desired error
tolerance are not considered on the next level learning pro-
cedure. The final function is given by the sum of the func-
tions obtained at each level. A novel adaptation of this multi-
scale method is proposed here to improve the approximation
results of the vector field reconstruction.

Given a data set S = {(x1, y1), (x2, y2), . . . , (xl, yl)},
the initial multi-scale targets are err0i = yi for i = 1, . . . , l,
thus the initial multi-scale data set is S0 = S and the ini-
tial estimation function is f0 → SVR{S0, ε, σ}. At scale
k, Sk, εk, σk and P k represent, respectively, the Gaussian
kernel parameter, the loss function parameter, the error pen-
alizing constant and the training data set. The procedure
SVR{Sk, εk, σk, P k} returns the estimated function fk us-
ing the ε-SVR technique.

The proposed multi-scale method can be summarized by
the following procedure:

Preprint MAT. 09/07, communicated on Arpil 25th, 2007 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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errki = errk−1
i − fk−1(errk−1

i )
Sk = {(x1, err

k
1), (x2, err

k
2), . . . , (xl, errkl )}

εk = ε
2k , σk = σ

2k and P k = P

fk → SVR{Sk, ε
2k ,

σ
2k , P

k}

(3)

Taking into account the estimations at N different scales,
the final multi-scale estimation function is:

f∗(x)=
N∑
k=1

fk(x)=
N∑
k=1

∑
v∈SVk

(α̂k,∗v −αk,∗v )K(v,x) (4)

Figure 5 shows an example of the improvement provided by
the multi-scale scheme on a PIV data.

10
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0.001

0.0001
0 1 2 3 4 5 6 7

singlescale multiscale
x
y

(a) Original filed (left) and mean absolute error (right) for x and y with 1
and 4 scales vs number of support vectors (logarithmic scale axies).

(b) Single scale. (c) 4 scales.

Figure 5: Single-scale regression versus multi-scale regression: the
ability to reconstruct several scales at the same time improves the
reconstruction on the original field. The multi-scale parameters
are: σ0 = 4, P 0 = 1, ε0 = 0.1.

The scheme proposed above differs from Steinke et
al. [14] in the following points: First, their method adapts
SVR for surface reconstruction. Second, their method dis-
cards the points xi having the desired error tolerance, in the
method proposed in this work the residual vector is set to
zero if the distance from yi to F̂(xi) is less than ε. Third, the
proposed method divides by two at each level not only the σ,
but also the ε parameter. By doing so, this proposed scheme
corresponds to the physical paradigm that higher frequencies
generally have lower amplitudes. We apply this multi-scale
approach to each learning method for 2D and 3D vector field
reconstruction.

(g) Implementation

All the proposed vector field reconstruction methods use
a Sequential Minimal Optimization (SMO) [5] to the ε-
SVR quadratic optimization problem, the implementation
is based on the open source libSVM [1, 3]. All the SVR

inputs, including the errors in the multi-scale regression, are
standardized before being processed.

4 Results
The reconstruction methods proposed above were tested

on different kind of vector fields: synthetic fields, velocity
fields acquired from PIV devices, and velocity fields of fluid
flow simulation.

We measure the quality of the reconstruction by the dis-
tribution of a punctual error at a point x with a known vector
field v = F (x). We compute the punctual magnitude error
by: ‖v − F̂(x)‖

max{‖v‖, ‖F̂(x)‖}
.

The phase error is measured by the cosine of the angle
between the estimated vector and the correct vector from the
analytical function. To maintain the coherence of the quality
measure, no point x used for the error computation is used
in the learning process.

(a) Synthetic Analytic Fields

Figure 2 illustrate the reconstruction of a 2D synthetic
field from unstructured samples, using the Cartesian and the
polar coordinates learning method respectively. Since it is
ansynthetic field, a global measure of the error can be done
using the average of the pointwise error at the vertices of
a regular grid. Figure 6(left) shows this average error for
various samplings of the same vector field. The quality of
the reconstruction is not sensitive to a particular sampling.
The improvement in normalization of the polar coordinates
is illustrated in Figure 6(right).
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Figure 6: Error histograms in the synthetic field (Figure 2): (left)
Average error distribution over 112 random uniform samplings of
3600 points: the estimation of F̂1 have similar behaviors independ-
ently of the sampling, provided it has the same average density.
(right) The normalization of the polar coordinates improves the his-
togram of the pointwise relative error.

Figure 7 shows the reconstruction of the 3D synthetic
field F (x, y, z) = (−z, 0.2y2, x) with 5000 random samples
in the [−2.8, 2.8]3 domain. In reading order, the first im-
age shows some stream lines of the reconstruction field
with colors representing, from blue to red, the cosine of the
field’s phase. The second one displays the support vectors
of the function ĈS using the spherical coordinates learn-
ing scheme. Observe that the support vectors here show the
spiral behavior of the field. The next two images of this fig-
ure illustrate respectively the pointwise errors of the field’s
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7 Support vectors learning for vector field reconstruction

magnitude and the cosine of phase absolute error meas-
ured on a 3D regular grid. The color scale from blue to
red corresponds to, respectively, small and big errors. In the
magnitude error, the error range is θ(error) = [10−4, 100],
while the relative error order of the cosine phase error is
θ(error) = [10−8, 10−1]. Observe that the phase error is con-
centrated where the magnitude vanishes.

(b) Fields acquired from PIV techniques

Figure 8 shows our experiments on the velocity fields of
a gas flow acquired from a PIV device. The original data
is given on a regular grid and we selected randomly 80%
of the original data to use in the learning stage, and we use
the remaining 20% for the test/validation phase. Using the

Figure 7: Reconstruction of a 3D vector field F (x, y, z) =
(−z, 0.2y2, x) with 5000 random samples in the [−2.8, 2.8]3 do-
main using a single scale ε = 0.1, P = 1 and σ = 2.63522.

Cartesian coordinate method with Gaussian kernel in single
scale, we obtain the reconstructed field whose phase cosine
is represented in Figure 8(left). The error (Figure 8(right)) is
measured by the reconstruction error on the training set (20%
of the original data). In the above context, the multi-scale
approach improves on single-scale reconstruction as can be
seen in the example of Figure 5.

(c) Fluid Flow Simulation Examples

Figure 9 provides an example of a velocity field recon-
struction obtained from 4096 samples of an Eulerian grid-
based fluid-simulation [13]. From left to right, the first im-
age shows a grid sampled velocity field of a smoke flow, the
second illustrates this field reconstructed by the 2D learning
method in polar coordinates. Finally, the last image displays
the support vectors results for the three ε-SVR problems.
The vectors in red, green and blue represent, respectively, the

0
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300

400

0.0 0.5 1.0 1.5 2.0

Figure 8: Exponential decreasing of the relative error computing
using the test data set, which corresponds to 20% separated from
the original PIV data that contains 16000 samples. In the learning
process, only 80% of the original data was used to train the SVR
machine using the Cartesian coordinates method.

support vector from the norm, from the cosine and from the
sine of the polar coordinates learning scheme. Notice that,
in this image, the support vectors visually identify relevant
features of the vector field.

Figure 9: Reconstruction of a smoke-flow using the polar coordin-
ates learning method: (left) The 4096 sampling points. (middle) The
reconstructed cosine of phase, the colors range from blue (cosine
equal to -1) to red (cosine equal to 1). (right) The vectors in red,
green and blue represents respectively the support vectors from the
norm, cosine and sine SVR learning process.

Figure 10 shows the reconstruction of velocity fields ob-
tained from a 3D SPH simulation. The input data correspond
to 3840 fluid particles in the free-surface flow simulation of
the dam-break problem after the impact of the fluid front
against the vertical wall at the end of the dry deck. Figure
10(bottom) show several examples of integral curves com-
puted using an Euler method on the evaluation of the recon-
struction function. The color scale from blue to red means
the magnitude of the reconstructed field, moreover Figure
10(top) show the volumetric and projected visualization of
the same map.

Limitations The main limitation of our current implement-
ation of the proposed method is still the execution time on
huge data. For example, in a field with 10, 000 samples, the
learning process last around 4 minutes and the evaluation on
a 100 × 100 grid last around 150 seconds, which is slower
than MPU approaches [6]. Since the reconstruction is global,
it requires a global optimization which harms its efficiency.
This will be improved in a future work by factoring results
for repetitive regression, or by using local solutions for good
initial guess of the SMO quadratic solver.
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Figure 10: 3D Velocity field reconstruction using the 3D Cartesian
coordinate scheme from a 3840 fluid particles in the free-surface
flow simulation of the dam-break problem after the impact of the
fluid front against the vertical wall at the end of the dry deck.

5 Conclusions

This paper proposes to solve the vector field reconstruc-
tion problem in a Machine Learning context. Using the well
known Support Vector Regression scheme, the proposed 2D
and 3D schemes achieve faithful reconstruction on synthetic
and real data. Moreover, the reconstruction is statistically
stable with respect to a specific sampling. A multi-scale vari-
ation of the method improves its robustness on real data.

Other contribution of this paper is the use of support
vectors as a useful tool for a visual analysis of the vector
field before an eventual relatively long-lasting evaluation of
topological feature detection algorithms. Since the support
vectors generally appear close to the field features.

With the proposed approach, the reconstructed field is
global and differentiable. This is suitable for vector field ana-
lysis involving derivatives, which can be directly calculated
from the derivatives of the kernel. The authors plan to de-
velop a new method for vector field differentiable topolo-
gical analysis from samples based on the formulation presen-
ted in this work.
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