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{mlage, fbipetro, apneto, lopes, tomlew, tavares}@mat.puc--rio.br.

Abstract. We present a novel algorithm for 2D vector field reconstruction from sparse set of points–vectors pairs.
Our approach subdivides the domain adaptively in order to make local piecewise polynomial approximations for
the field. It uses partition of unity to blend those local approximations together, generating a global approximation
for the field. The flexibility of this scheme allows handling data from very different sources. In particular, this work
presents important applications of the proposed method to velocity and acceleration fields’ analysis, in particular
for fluid dynamics visualization.
Keywords: Vector field reconstruction. Partition of unity. Function approximation.

Figure 1: Velocity field approximation of a smoke simulation: samples of the original field, magnitude, phase and integral curves of the
approximated field.

1 Introduction
The fundamental tools of classical physics are built on

vector fields: the motion of an object is represented by its
velocity vector field, and the fundamental law of mechanics
equals the acceleration vector field to the external force vec-
tor field. These fields appear generally in computer graphics
as measures of real phenomena, for example using Particle
Image Velocimetry methods, or as results of physical simu-
lations, such as fluid simulations through Smoothed Particle
Hydrodynamics.

Particle Image Velocimetry (PIV) became an important
and active research field in mechanical engineering. It is
concerned with the quantitative investigation of fluids by
imaging techniques [11]. PIV systems captures the light
scattered by small particles in a flow, and extracts from the
image sequence a set of points equipped with their estimated
velocity vectors. The reconstruction of the velocity field
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from these maps has several applications, in particular to
modern aerodynamics and hydrodynamics research [13].

Smoothed particle hydrodynamics (SPH) has been rec-
ognized as a flexible mesh free method for computational
fluid dynamics simulations [17]. In SPH the fluid is modeled
as a collection of particles, which move under the influence
of hydrodynamic and external forces. Each portion of fluid
is represented by a particle with attributes, among which the
velocity and the acceleration vectors. In the field of computer
graphics, SPH has been applied for deformable models [4],
free surface flows [8] and blood simulation [9], among oth-
ers.

Motivation. On one hand, a PIV velocity map contains a
set of points with their velocity vectors. Each point corre-
sponds to a pixel on the image. The resolution of this map
is thus defined by the resolution of the camera used in the
acquisition process. On the other hand, the set of particles
at a given time t on a SPH simulation is completely unstruc-
tured. For both problems, we aim at inferring a differentiable
vector field defined on the whole region of experimentation.
This field would not only improve visualization, but also help
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in analyzing the field structure, for example, by identifying
the existence of vortices.

Contributions. This work proposes a novel algorithm for
2D vector field reconstruction considering as input unstruc-
tured sets of points–vector pairs (formalized at section 3 Vec-
tor field and polynomial approximation). Our approach uses least
squares techniques (detailed at section 4 Local vector field ap-
proximation) on a multiresolution grid to generate local ap-
proximations. After that, we combine these approximations
through partitions of unity, obtaining a global, smooth de-
scription of the vector field (as detailed at section 5 From local
to global vector field evaluation). This approach extends previ-
ous approximation techniques to vector field. Comparing to
purely visual techniques such as texture interpolations, we
are not restricted to regular grid or to low order approxima-
tions. Moreover, we improve the numerical stability of the
approximation using ridge regression techniques. We con-
clude this work with important applications to visualization
and analysis of the fluid velocity field.

2 Previous and related works
In this work we combine three different techniques: least

squares fitting, ridge regression and partition of unity.

Least squares fitting is a mathematical procedure for find-
ing the best approximation function f to a given set of points.
To do so, it minimizes the sum of the squared residuals of
the points to function f [7]. It has several applications in
the fields of computer graphics [18], geometric modeling
[14], image processing [16] and computer vision [6]. Several
works use least squares to reconstruct planar curves [2] and
surfaces [19] from sparse points. Here, we use this mathe-
matical framework to build local approximations for the vec-
tor field, minimizing its residual on the given point–vector
pairs.

Ridge regression is a technique that is frequently used by
statisticians to remove the collinearity of the input points [5].
This technique avoids computationally expensive iterations
of pseudo–inverse approaches and improves the least–square
solution even if the input points are not collinear. Tasdizen et
al. [3] applied such technique to improve the least squares
algebraic curve fitting from sparse points in the plane. Along
the same lines, we will use ridge regression to regularize
ill-conditioned linear systems produced by our least squares
problem.

Partition of unity [1, 15] is a very useful mathematical
tool to combine local approximations in order to construct
a global one. Important properties such as the global maxi-
mal error and the convergence order could be inherited from
the local approximations. Ohtake et al. in [10] proposed a
partition of unit based multiresolution method, called Multi-
level Partition of Unity (MPU), that reconstructs an implicit
surface approximation from a set of sparse sample points and
normals inR3. This work extends their ideas in order to build
a multiresolution scheme for vector field reconstruction. Al-

though our work is for planar fields, it can be easily extended
to 3D.

3 Vector field and polynomial approximation
Sampled vector field. We will consider a set of points
P = {p1,p2, ...,pn}, where each point pi = (xi, yi) ∈
Ω ⊂ R2 base a vector vi, and denote the set of vectors
{v1,v2, ...,vn} by V . We will suppose that each vector vi is
sampled from a differentiable vector fieldF : Ω ⊂ R2 → R2

at pi: vi = F(pi). A vector field is a map F : R2 → R2

that assigns a vector F(p) = ( P (p) , Q (p) ) to each point
p ∈ R2. The functions P : R2 → R and Q : R2 → R are
called the coordinate functions of the vector field F . We aim
at inferring an approximation of F on region Ω.

Polynomial function. We will approximate each coordi-
nate function of F by a bivariate polynomial of a fixed de-
gree d, i.e. F(x, y) = ( Pd (x, y) , Qd (x, y) ) with:

Pd(x, y) =
d∑

0≤j+k

aj,kx
jyk, Qd(x, y) =

d∑

0≤j+k

bj,kx
jyk.

Notation. Since polynomial functions are the main mathe-
matical object used in this paper, it is convenient to define a
suitable notation. We will use the matrix notation of Tasdizen
et al. [2]:

Pd(x, y) = w t
(x,y)a, Qd(x, y) = w t

(x,y)b (1)

where column a ∈ Rl contains the coefficients [aj,k] of Pd

for j + k ≤ d:

a = [a0,0 a1,0 . . . ad,0 a0,1 . . . ad−1,1 a0,2 . . . ad−2,2 . . . a0,d]
t

and column w(x,y) ∈ Rl contains the monomials of degree
less than d:

w(x,y) =
[
1 x . . . xd y . . . (xd−1y) y2 . . . (xd−2y2) . . . yd

]t

The dimension l of columns a and w(x,y) is the number of
coefficients of Pd : #Pd = (d+1)(d+2)

2 .

4 Local vector field approximation
We aim at inferring a polynomial vector field F(x, y)=

( Pd, Qd ) that best approximates each sample vector vi at
pi. This section introduces the least square technique we
use for minimizing locally the approximation error between
F(pi) and vi (section 4(a) Classical least squares fitting). Our
approximation also incorporates eventual knowledge of the
vector field derivative at the sample points (section 4(b) Ac-
celeration fitting). We improve the numerical stability of this
local minimization using ridge regression techniques (sec-
tion 4(c) Ridge regression). These techniques are finally com-
bined and weighted using two user–defined parameters (sec-
tion 4(d) Local approximation evaluation).
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(a) Classical least squares fitting

Inferring the approximating polynomial vector field
F(x, y) =

(
w t

(x,y)a, w t
(x,y)b

)
reduces to computing the

coefficient of a and b that minimize the approximation error.
For least square methods, this error is formulated as the sum,
for each point pi, of the squared distance between vectors
F(pi) and vi, which can be written:

err(a,b) =
n∑

i=0

‖F(pi)− vi‖2

= atSa + btSb− 2atSx − 2btSy + Sx,y

(2)

where the following columns and matrices give a better
description for the optimal solution:

S :=
n∑

i=0

w(xi,yi) ·wt
(xi,yi)

∈ Rl×l

Sx :=
n∑

i=0

(
vt

i · [ 1
0 ]

)
w(xi,yi) ∈ Rl

Sy :=
n∑

i=0

(
vt

i · [ 0
1 ]

)
w(xi,yi) ∈ Rl

Sx,y :=
n∑

i=0

‖vi‖2 ∈ R.

With these definitions and using the normal equation, the
critical point (a,b) of the error function (2) is defined by:

Sa = Sx and Sb = Sy

Therefore, the coefficients of a and b that are the solution
of our least square problem are obtained by solving two
l × l systems of linear equations, which involves only the
inversion of matrix S: a = S−1Sx and b = S−1Sy.

(b) Acceleration fitting

Some applications, like SPH simulations, also provide
the derivative v̇i of the vector field at each point pi ∈ P .
We will call this field the acceleration field, since in these
applications vi usually represents the velocity of particle
pi. This acceleration is usually given by the forces present
at pi. In this case we can use the set acceleration vectors
A = {v̇1, v̇2, . . . , v̇n} to complete the approximation of the
velocity field.

Notice that the time varying acceleration vector at point
p(t) = (x (t) , y (t)) should be approximated by the time
derivative dF(p(t))

dt of F. Although we do not have expres-
sions for x(t) and y(t), we do have the velocities at the
points pi ∈ P . The application of the chain rule thus de-
fines DF(pi)vi as an estimate for the acceleration vector at
pi, where DF(pi) is the Jacobian matrix of F at pi.

In order to improve the vector field approximation by
the use of the set A, we must add a new term to the least
square problem (2). This term corresponds to the sum of the

squared distance from the vector DF(pi)vi to v̇i. Thus, the
new minimization problem that balances the weight of the
acceleration and the velocity approximation through a user–
defined parameter µ is:

mina,b

{
n∑

i=0

‖F(pi)− vi‖2 + µ

n∑

i=0

‖DF(pi)vi − v̇i‖2
}

We can use again the column representation for Pd and
Qd to write the second term as:

atZa + btZb− 2atZx − 2btZy + Zx,y

where the following columns and matrices give again a better
description for the optimal solution:

Di :=
[
∂wpi

∂x

∂wpi

∂y

]
∈ Rl×2

Z :=
n∑

i=0

Divivt
iD

t
i ∈ Rl×l

Zx :=
n∑

i=0

(
v̇t

i · [ 1
0 ]

)
Divi ∈ Rl

Zy :=
n∑

i=0

(
v̇t

i · [ 0
1 ]

)
Divi ∈ Rl

Zx,y :=
n∑

i=0

‖v̇i‖2 ∈ R.

As a consequence, the above acceleration fitting problem
can be written:

min
a,b

{
at(S + µZ)a + bt(S + µZ)b

−2at(Sx+µZx)−2bt(Sy+µZy) + Sx,y+µZx,y

}

To solve it, we need to find the critical point of the new error
function. The optimal vectors a and b are thus obtained by
solving the following two l × l systems of linear equations:

(S + µZ)a = (Sx + µZx) and (S + µZ)b = (Sy + µZy)

(c) Ridge regression

When the matrix R = (S + µZ) doesn’t have a maximal
rank or is ill conditioned then the technique called ridge re-
gression (RR) can be used to stabilize the linear system solu-
tions [5] (see Figure 2). In our application, the RR technique
modifies the optimization problem by adding two new terms
depending on a diagonal matrix ∆ ∈ Rl×l and a constant
scalar κ weighting the regression term:

min
a,b

{
atRa + btRb− 2atRx − 2btRy + Rx,y

+ κ
(
at∆a + bt∆b

) }
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(a) Velocity phase with RR (κ =
0.1)).

(b) Acceleration phase with RR
(κ = 0.1, µ = 1.0)

(c) Velocity phase without RR (κ =
0)

(d) Acceleration phase without RR
(κ = 0, µ = 1.0)

Figure 2: The ridge regression (RR) improves the stability of the approximation.

The solution of the ridge regression minimization prob-
lem is again obtained by solving the following system of lin-
ear equations:

(R + κ∆)a = Rx and (R + κ∆)b = Ry (3)
Instead of adopting an identity matrix for ∆, we preferred
the one proposed by Tasdizen et al. [2]:

∆σσ =
i!j!

(i + j)!




k+l=i+j∑

k,l≥0

(k + l)!
k!l!

q∑
m=1

x2k
m y2l

m


 ,

where the indices i, j ≥ 0 are deduced from index σ by
σ = j + (i+j+1)(i+j)

2 , with i + j ≤ d. Such matrix has
several interesting geometrical properties [2].

(d) Local approximation evaluation

Our local approximation scheme combines the least
square fitting, the acceleration fitting and the ridge regres-
sion method. These three techniques are unified into the sin-
gle square matrix inversion problem of equation (3). The user
can set parameters µ and κ to use only part of the techniques.
Observe that setting µ = 0 and κ = 0 we have the classical
least squares method. In particular, µ is set to zero when the
acceleration fieldA is not available. Using κ > 0 we add the
ridge regression term of the minimization.

5 From local to global vector field evaluation
The previous section detailed how we compute a local

approximation F which fits to the field sample data P,V
and eventually A. Because of its local nature, this approx-
imation performs better on small sets of data. We thus use
this approximation only on small support regions (section
5(a) Adaptive domain subdivision). To evaluate the approxi-
mate vector field F at a given point, we combine these lo-
cal approximations using a multiresolution partition of unity
(MPU) scheme (section 5(b) Partition of unity). This scheme
guarantees a smooth behavior of F, but requires that each re-
gion contains an approximation. This requirement can be sat-
isfied using the proper multiresolution of the MPU scheme
(section 5(b) Partition of unity). Figure 3 shows an example of
how the polynomial degree and the multiresolution scheme
influence on the field reconstruction.

(a) Adaptive domain subdivision

In order to benefit from the efficiency of the least–square
method, we need to use it at the right level of detail. We de-
fine this level of detail through an adaptive quadtree decom-
position of the vector field domain Ω: a cell of the quadtree
is subdivided if it contains enough points for defining a poly-
nomial of degree d (which has #Pd coefficients) and if it is
not already of the maximal level (denoted by lmax) defined
by the user. Figure 4(left) illustrates the domain subdivision
determined by this quadtree structure, adapted to the input
data (blue points).

Figure 4: Quadtree adaptated to the data and the leaf’s supports.

(b) Partition of unity

A partition of the unity function on Ω ⊂ R2 is a set of
positive functions ϕi : R2 → R+ summing to 1 for each
point of Ω: ∀(x, y) ∈ Ω,

∑
i ϕi(x, y) ≡ 1 . These

functions provide an optimal way of combining the different
contributions of each local approximation: each of them can
be weighted with a different ϕi, and their weighted sum will
be a function F defined on the whole Ω. Moreover, since this
sum is actually a convolution, F has the same regularity as
the ϕi.

In practice, we use a multiresolution partition of unity,
such as the one proposed by Ohtake et al. [10]. Each cell i
of the quadtree defines a support region supp(ϕi) for the
ϕi, taken as a disk centered at the center ci of the cell
with radius ri = 3

4 of the diagonal of cell i. These support
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(a) d = 2/lmax = 2. (b) d = 2/lmax = 5. (c) lmax = 5/d = 1. (d) lmax = 5/d = 3.

Figure 3: Multiresolution and polynomial degree effects on approximation.

regions are illustrated on Figure 4(right). Then, we compute
the local approximation Fi of the vector field F with the
methods described at section 4 Local vector field approximation,
but using only the points pi and vi belonging to supp(ϕi).
A global approximation for the vector field F : Ω → R2 can
then be deduced from the partition of unity by:

F(x, y) ≈ F(x, y) ≡
∑

ϕi(x, y)Fi(x, y). (4)

(c) Kernel functions

The last step is to define the partition of unity for each
cell i of the quadtree, respecting the support region and the
constant sum restrictions. Since the number of neighbors j
in the support varies from cell to cell, it is difficult to define
directly a partition of unity which respects the constant sum
restriction. The usual method defines ϕi from kernel func-
tions ki, based at the center ci of the quadtree cell i. These
kernels respect the support restriction, and the constant sum
restriction is ensured by the following definition:

ϕi(x, y) =
ki(x, y)∑n

j=1 kj(x, y)
(5)

There are several examples of kernel functions with this
type of compact support and whose range is contained in the
interval [0, 1]. We mainly used the poly6 kernel [4]:

ki(x, y) = max
(

0 ,
4

πr8
i

(r2
i − ‖(x, y)− ci‖2)3

)

(d) Global approximation evaluation

We have now all the elements to compute a vector field
F : Ω → R2 that approximates the vector field F from
where the data was sampled. To evaluate F at a point p ∈
Ω, we traverse the quadtree, enumerating the nf leaf cells
whose support region contains p. After that, we compute the
P (p) and Q(p) coordinate function of F(p) using equations
(4) and (5).

However, in order to solve the two l × l linear systems
of the local approximation (equation (3)), each cell must
contain at least l = #Pp sampled points in its support
region. For example, using a polynomial approximation of
degree d = 2, we need l = 6 points inside each support

region. We propose the following strategy to work when this
number is not reached for the support of cell i: we generate
random points uniformly inside the support region of cell i.
We attach to these points the vector obtained by evaluating
the polynomial approximation Ff of the father f of i.

6 Application to derivatives evaluation
In this section, we present how to apply our approximated

velocity field to the computation of integral curves and to
estimate Jacobian matrices and acceleration vectors.

Integral curves. Our method allows computing integral
curves on Ω using the global approximation for the velocity
field F : Ω → R2. Given an initial condition p0 ∈ Ω, the
integral curve at p0 is the function cp0 : R → R2, t 7→
cp0(t) that satisfies:

cp0(0) = p0;
dcp0

dt
(t) = F(cp0(t)).

We can compute these integral lines using an Euler method
on the global evaluation for F. The last picture of Figure 1
shows examples of integral curves using several initial con-
ditions.

Jacobian matrix evaluation. Using the expression of the
velocity field’s global approximation described in (4), we
can also compute an estimative for the Jacobian matrix of
F at a given point p. This requires computing the partial
derivatives of its coordinate functions. The expressions for
the coordinate functions are given by the following formula:

∂P

∂x
(p) =

nf∑

i=1

ϕi(p)
∂Pd,i

∂x
(p) +

nf∑

i=1

∂ϕi

∂x
(p)Pd,i(p)

∂P

∂y
(p) =

nf∑

i=1

ϕi(p)
∂Pd,i

∂y
(p) +

nf∑

i=1

∂ϕi

∂y
(p)Pd,i(p)

Acceleration field evaluation. We can apply the above
formulas to obtain an approximation of the acceleration field:
the acceleration vector at point p is given by DF(p)v, where
DF(p) is the Jacobian matrix of F at p, and v = F(p)
is the velocity vector. This approximation serves not only
for computational fluid application, but also for visualizing
properties of the resulted reconstruction.
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(a) Original sampled data. (b) Magnitude map of the approxi-
mated field.

(c) Phase map of the approximated
field.

(d) Error graph of the synthetic exam-
ple.

Figure 5: Synthetic field example F = (y, x2), with some integral curves.

7 Results
In this section we use the following convention for the

colors on the results figures background. For magnitude
maps, the colors vary from blue to red representing an scale
of the magnitude from low to high values. For phase maps,
the colors represent the cosine of the phase (which is the
angle between the vector and the abscissa axis). Again, we
use a color palette that varies from blue to red, representing
the variation of the cosine from −1 to 1.

We also use the following convention for the approxi-
mation error graphs. The abscissa represents the degree of
the polynomial, the ordinate represents global approxima-
tion error. In each graph illustrating the errors, we draw eight
curves: one for each value of the maximal level lmax. We
choose to vary lmax from 0 to 7.

To measure the quality of the approximation, we use the
following error formula:

error =
1
n

n∑

i=1

‖F(pi)− vi‖
/

1
n

n∑

i=1

‖vi‖ (6)

This formula computes the quotient of the mean approxima-
tion distance error and the mean velocity norm using all sam-
ples. We illustrate the power of our method by the use of four
examples.

Synthetic field. The first example illustrates the recon-
struction of a set of points sampled from the velocity field
F(x, y) = (y, x2) on the region [−2, 2] × [−2, 2]. Figure
5(a) shows the 441 sampled points with their corresponding
velocity vectors. Figures 5(b)(c) show the visualization of
some reconstructed velocity vectors and integral curves. At
the background we see on image (b) the velocity magnitude
map and on (c) the cosine of the velocity phase map. For
that reconstruction, we use the following parameters: d = 2,
µ = 0, κ = 0.1 and lmax = 6.

Figure 5(d) shows the approximation error of the recon-
struction using the formula (6). Observing this graph, we
conclude that we get better approximations either when we
increase the degree or when we increase the value of lmax.

Stable fluids. In figure 1 we provide an example of a
velocity field reconstruction obtained from 4096 samples of
an Eulerian grid-based fluid simulation [12]. From left to
right, the first image shows a discretized velocity field of
a smoke flow, the second illustrates the field reconstruction
obtained by the method and its magnitude map. The third
one shows the reconstructed field and its phase map at the
background. Finally, the last image displays some integral
curves using the reconstructed field. For that reconstruction,
we use the following parameters: d = 2, µ = 0, κ = 0.1 and
lmax = 6. Figure 7 shows a graph of the approximation error
computed on the samples.

Figure 7: Stable fluid approximation error.

Particle image velocimetry. An important application of
our method is on the reconstruction of sampled points of
vector field acquired from a PIV device. Figure 6(a) shows
the input data with 15607 points. This sampled velocity field
corresponds to a flow of a gas that is continuously injected
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(a) Original data. (b) Magnitude map of the velocity
approximation.

(c) Phase map of the velocity ap-
proximation.

(d) Global error graph.

Figure 6: Particle image velocimetry example, with some integral curves.

horizontally on the bottom left corner. This gas flows on the
domain from left to right until it meets an wall, represented
on the image by its right edge.

One can visualize some reconstructed velocity vectors
and integral curves in figures 6(b)(c). Again, at the back-
ground we see on image (b) the velocity magnitude map and
on image (c) the cosine of the velocity phase map. For this
example we use d = 2, µ = 0, κ = 0.1 and lmax = 6. Fig-
ure 6 shows the approximation error. In this case the error is
higher than the previous examples because the data is very
noisy in the top left and bottom right corners.

Smooth particle hydrodynamics. In the SPH application,
the acceleration vector is available at each sampled point.
In that case, we can use our acceleration fitting method for
local approximations. The initial condition for the 2D SPH
simulation is a rested fluid box, dropped at the bottom center
of a rectangular container. The data input on this example
corresponds to 1800 fluid particles at a given time of the
simulation, together with the following attributes: position,
velocity and acceleration.

Figure 8(a) shows the input points and the correspond-
ing velocities after of the impact against the vertical walls.
Figures 8(b),(c) show the reconstructed velocity vectors and
integral curves together with the velocity magnitude and co-
sine of the phase maps. Again this example is very noisy.
Finally, Figure 8(d) shows the approximation error graph.

This example shows that there exists an optimal level,
since even we continue to increase the maximum level we
can’t improve the approximation. The reason is that the
support region of a high level node may not contain sufficient
number of point to make a good local approximation.

8 Conclusions and future works
This work proposed a novel multiresolution scheme for

velocity field reconstruction from sparse sampled points.
This new scheme combines three important techniques,
least squares fitting, ridge regression and partition of unity,
to produce a global approximation of the velocity field.
The method could be used on samples from very different

sources. The local approximation procedure is very flexible,
since it unifies several methods and control their functional-
ity by the use of parameters (d,µ, and κ). The global approx-
imation is obtained by the use of a partition of unity. Again
the global approximation shows to be very malleable, since
the users not only have several options for the kernel func-
tions, but also can choose the maximum level of the Quad-
Tree and the local error control threshold to control the re-
construction result.

The authors plan to extend this work in three main direc-
tions. One is to generalize it to 3D velocity field reconstruc-
tion. Another direction is to produce a velocity field recon-
struction scheme that is conservative. And the other is to use
other subdivision schemes, like binary space partitions, to
improve the approximation.
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