
Tuning manifold harmonics filters

THOMAS LEWINER1 , THALES VIEIRA2 , ALEX BORDIGNON1,
ALLYSON CABRAL1 , CLARISSA MARQUES1 , JOÃO PAIXÃO1, LIS CUSTÓDIO1 , MARCOS LAGE1 ,

MARIA ANDRADE1, RENATA NASCIMENTO1, SCARLETT DE BOTTON1, SINÉSIO PESCO1, HÉLIO LOPES1,
VINÍCIUS MELLO3, ADELAILSON PEIXOTO2 AND DIMAS MARTINEZ2

1 Department of Matematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
2 Institute of Mathematics — Universidade Federal de Alagoas — Maceió — Brazil
3 Institute of Mathematics — Universidade Federal da Bahia — Salvador — Brazil

Abstract. There are several techniques for automatic music visualization, which are included with virtually any
media player. The basic ingredient of those techniques is spectral analysis of the sound, used to automatically
generate parameters for procedural image generation. However, only a few music visualizations rely on 3d models.
This paper proposes to use spectral mesh processing techniques, namely manifold harmonics, to produce 3d
music visualization. The images are generated from 3d models by deforming an initial shape, mapping the sound
frequencies to the mesh harmonics. A concise representation of such frequency mapping is proposed to permit for
an animated gallery interface with genetic reproduction. Such galleries allow the user to quickly navigate between
visual effects. Rendering such animated galleries in real-time is a challenging task, since it requires computing and
rendering the deformed shapes at a very high rate. This paper introduces a direct GPU implementation of manifold
harmonics filters, which allows to display animated gallery.
Keywords: Manifold Harmonics. Sound Visualization. Geometry Processing. GPU. Design Galleries.

Figure 1: Music visualization by deforming a 3d model according to the music amplitudes.

1 Introduction
The illustration of music became a necessary part of the

audio industry. While video clip is now a complete part of a
song production, almost any computer program that renders
sound content offers several visualizations. Most audio visu-
alization techniques rely on Fast Fourier transforms that ex-
tract the harmonic amplitudes of the sound samples. These
amplitudes serve as parameters to algorithms that generate
beautiful or exciting images in real time, using procedural
techniques from simple digital peak meters to psychedelic
dynamical systems. We propose to generate images obtained
by deforming an initial discrete 3d model (see Figure 1).

Since the sound analysis relies on sound harmonics, a nat-
ural approach is to use geometric harmonics to deform the

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department
of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

3d model. A definition of such geometric harmonics, called
manifold harmonics has been recently proposed by Vallet
and Lévy [20]. Amplifying some harmonics of a given mesh
leads to coherent deformations, in the sense that filtering low
frequencies actually deforms the global shape of the mesh,
while altering high frequencies changes its details.

However, using manifold harmonics for sound visualiz-
ation is a two-fold challenge: First, manipulating the amp-
litudes of each harmonic is a delicate task, since nearby fre-
quencies have very different and dramatic impacts on the
shape. Second, the deformation must be rendered in real-
time to keep synchronized with the music. In this paper,
we propose to model the mapping of sound harmonics amp-
litudes to manifold harmonics amplitude using a design gal-
lery with genetic reproduction, in a way similar to what is
commonly done in volume visualization [17].

T. Lewiner et al. 2

The use of gallery turns the second challenge even more
difficult, since an animated gallery requires to compute and
render several deformations of the initial mesh for each
frame. We propose here a direct GPU implementation of the
manifold harmonics filter that copes with such requirements.
For models containing around 50,000 vertices, we can render
a gallery of 12 animated deformations in real-time.

2 Related work

There are several techniques for automatic music visual-
ization, as one can see on virtually any media player. How-
ever, only a few of them use 3d models. To the best of our
knowledge, the closest work relating sound and 3d objects
come from granular mechanics simulation [3], starting back
to the studies of vibration modes [7], Modal Analysis [4] be-
came a very important tool in the understanding of mechan-
ical structure responses. Modal Analysis was first introduced
to Computer Graphics by Pentland and Williams [16], where
they used it to simulate deformations in non-rigid objects
from a sound signal. A reduced version of such simulations
has recently been brought to real-time through a GPU imple-
mentation, but only using the first few vibration modes [24].
In this paper, we propose a music visualization scheme in-
stead of a mechanical simulation, and achieve real-time per-
formance in a complete spectral processing system. Note that
a process inverse to this objective, i.e. creating audio content
from a 3d animation, has ben proposed by O’Brien et al. [13]

Since the seminal work of Taubin [19], several ap-
proaches have been proposed to adapt signal processing
techniques to discrete surfaces. Among those, spectral pro-
cessing has gained a lot of attention [10]. Those methods rely
on defining an equivalent for Fourier harmonics (basically
sine and cosine) as eigenvectors of Laplace-like operators.
Among those works, Vallet and Lévy proposed a manifold
harmonics adapted to mesh edition [20]. This work motiv-
ated several applications in connected fields: spectral mesh
deformation [18], mesh watermarking [11, 22] and shape
analysis [14, 23]. In this paper, we use manifold harmonics
filters, and propose a fast GPU implementation of spectral
filtering to obtain real-time deformations.

3 Manifold Harmonics

In this section, we will recall the basics of manifold har-
monics following the original work of Vallet and Lévy [20].

The idea behind manifold harmonics is to transpose usual
Fourier edition to 3d meshes. In Fourier analysis, a func-
tional basis hω(t) = e−2π·i·ω·t of so-called harmonics is
used to decompose an input signal f(t) into a combination
of those harmonics:

f(t) =

∫
R
f̃(−ω)·hω(t)dω with f̃(ω) =

∫
R
f(t)·hω(t)dt .

vi

vjβ’
β vi areai

Figure 2: Geometric elements for the coefficients of the discrete
Laplace operator.

(a) Laplace harmonics

The main observation is that those harmonics hω are the
eigenvectors of the differential Laplace operator ∆∂ :

∆∂ (hω) ≡ ∂2hω
∂t2

= λω · hω with λω = −4π2 ω2 .

To transpose such decomposition on a mesh, a natural op-
tion is to look for the eigenvectors of a discrete Laplace op-
erator. Vallet and Lévy derive a Laplace-De Rham operator
from Discrete Exterior Calculus [20]. On the vertices of a
mesh, this operator turns out to be linear, and can thus be
expressed as an n × n matrix ∆, where n is the number of
vertices of the mesh. Its coefficients ∆ij are zero if vertices
i and j are not adjacent, and otherwise:

∆ij = −
cot (βij) + cot

(
β′ij
)

√
areai · areaj

, ∆ii = −
∑
j

∆ij ,

where areai is the area of the restricted Voronoi region of
vertex i, and the angles βij and β′ij are opposite to the edge
between i and j (see Figure 2).

(b) Manifold harmonics transform

With a slight rescaling of the areas areai [20], the mat-
rix of this discrete Laplace operator ∆ is symmetric, and can
thus be diagonalized, obtaining an orthonormal basis eigen-
vectors of Hk ∈ Rn associated to eigenvalues Λk ∈ R. Since
this is a basis in Rn, any function F : i ∈ {0, . . . , n− 1} 7→
R defined on the vertices of the mesh can be decomposed on
this basis:

F (i) =

n−1∑
k=0

F̃ (k) ·Hk with F̃ (k) =

n−1∑
i=0

Fi ·Hk .

Using the analogy with Fourier analysis, the frequency
associated with Λk is

√
Λk, and we consider that the fre-

quencies are ordered: Λ0 ≤ Λ1 ≤ . . . ≤ Λn−1.

(c) Filtering

The signal F (i) above is thus expressed as a combination
of harmonics Hk, with respective amplitudes F̃ (k). A linear
filter can then be expressed by amplifying each harmonic Hk

by a factor ϕ(k). The filtered signal Fϕ(i) is then given by:

Fϕ(i) =
∑
k

ϕ(k) · F̃ (k) ·Hk .

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

3 Tuning manifold harmonics filters

Since we are here interested in deforming the mesh,
we will consider the signal F (i) to be the coordinates
x(i), y(i), z(i) of vertex i. We therefore get three harmonic
amplitudes x̃(k), ỹ(k), z̃(k) for each frequency k. Since the
mesh is not a priori aligned, we will filter all the three co-
ordinates with the same amplification ϕ. Finally, since high
frequencies correspond to very small perturbations, appear-
ing as noise, we will only filter using the lowest #k frequen-
cies:

Fϕ(i) =

#k−1∑
k=0

ϕ(k)·F̃ (k)·Hk+di with di =

n−1∑
k=#k

F̃ (k)·Hk .

The coefficients di can be computed at preprocessing.

4 Tuning Manifold Harmonics
We want to apply manifold harmonics filters to illustrate

signals f(t) such as audio content. Since manifold harmon-
ics filters are very sensitive, eventually leading to large de-
formation for small variations of the filter, the transfer of
signal harmonic amplitudes f̃(k) to the manifold harmonic
amplitudes ϕ(k) would require a very careful edition if
done manually. In this section, we introduce a simple design
model for such mapping. This design allows a gallery inter-
face [12] with genetic reproduction [17], which permits the
user to quickly navigate between mappings (see Figure 3).

(a) Mapping to manifold harmonics filters

We want to design a filter ϕ(k) from the harmonic
amplitudes f̃(ω) of an input signal, where the dependency
ϕ(k) = Φ(f̃)(k) of ϕ from f̃ is not necessarily linear.
Moreover, the number of frequencies #ω computed from the
signal may differ from the number of harmonics #k of the
mesh. We decompose this mapping in two steps: a frequency
transfer function t : ω 7→ k ∈ {0, . . . ,#k − 1} combined
with an amplification function a : k 7→ a(k) ∈ R applied on
the manifold harmonic amplitudes.

We want each harmonic of the mesh to receive contribu-
tions from different harmonics of the signal, so that a mu-
sical instrument, which covers different frequencies, could
be mapped to a single manifold harmonic. Therefore, the
transfer function maps sound frequencies ω to mesh frequen-
cies k, and a mesh frequency k will receive contributions
from all the sound frequencies in t−1 ({k}). We propose a
harmonic mapping Φt,a : f̃ 7→ ϕ as (see Figure 4):

Φt,a(f̃)(k) = a (k) ·

 ∑
ω∈t−1({k})

f̃ (ω)

+ 1 .

By adding one, we maintain the usual intuition of amplifica-
tion: amplifying all the mesh frequencies to 0 (i.e. a ≡ 0)
does not deform the mesh. Note that, since the harmonic
amplitudes of the sound may be negative, the amplification
a may also be negative.

Sound

A
m

pl
ifi

ca
tio

n:

Sound Frequencies:

Transfer:

M
es

h
Fr

eq
ue

nc
ie

s:

Deformed
mesh

Figure 4: Filter design as the composition of a frequency transfer
function t and an amplification function a (drawn vertically). The
grey curve for the transfer corresponds to the direct mapping from
ω ∼=

√
Λt(ω).

(b) Tuning through design galleries

The filter design above gives a concise representation of
the harmonic mapping Φt,a from sound harmonic amplitudes
to manifold harmonic amplitudes. Indeed Φt,a is represented
as two vectors: t ∈ N#ω is an integer vector of size #ω,
and a ∈ R#k is a real vector of size #k. This allows
to easily mix two harmonic mappings by combinations of
those vectors. Using vocabulary from genetic algorithms, the
harmonic mapping Φt,a is represented by two chromosomes
a and t, which can reproduce by combination.

This leads to a direct design gallery interface, where
different harmonic mappings are proposed to the user, who
can select the ones he likes. From this selection, a new
gallery is generated using genetic reproduction, until the user
chooses only one harmonic mapping, as explained in the next
section. The following section will detail the initial gallery
creation. The harmonic mapping can then be directly edited
from the two curves of t and a.

(c) Reproduction

The reproduction generates a new gallery of S harmonic
mappings from a selection of old mappings. To do so, S pairs
of distinct selected old mappings are randomly chosen. Each
pair is then combined into a new mapping as follows.

Since the frequency transfer and amplification functions
t and a have complementary effects, we reproduce them
independently. This also reduces the initial gallery size, as
explained in the next subsection. In practice, this means
that we first decide if we combine the frequency transfer
functions of the pair using a 1

2 -Bernoulli trial (“heads or
tails”). We decide in a similar manner if the amplification
functions will be combined.

The combination of the frequency transfer functions t′

and t′′ of the pair is done as follow. First we randomly
choose an integer value n0

k, as a geometric random variable
in {1, . . .#k}, and a random real value w0 uniformly in

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

T. Lewiner et al. 4

Figure 3: Initial gallery on an octopus model, with the corresponding transfer and amplification functions. The frequency input f̃ is drawn
at the bottom.

[0, 1]. We then set the first n0
k coefficients of vector t as the

first n0
k coefficients of w0 · t′ + (1 − w0) · t′′. We choose

again random values n1
k ∈ {1, . . .#k} and w1 ∈ [0, 1], and

clamp n1
k to ensure n0

k + n1
k ≤ #k (the geometric random

process intends to reduce the effect of this clamping). We
then set the following n1

k values of t as above, and repeat
until completing all the frequencies. We perform the same
operations for the amplifications (see Figs. 3 and 5).

This combination method avoids producing combination
that varies too quickly, as compared to randomly choosing
real values w at each frequency.

(d) Gallery initialization

We generate an initial gallery (see Figure 3) that could
theoretically generate any harmonic mapping by the above
reproduction. Since the reproduction of the frequency trans-
fer and amplification are independent, we can use the S ele-
ments of the initial gallery to span the frequency transfer
functions and the same S elements to span the amplifica-
tion functions. This reduces the size of the initial gallery,
although it generally requires one more reproduction to get
interesting mappings.

The first frequency transfer function is the direct map-
ping:

tini(ω) = min{k such that
ω

ω#ω
≤

√
Λk

Λ#k
} .

This expression ensures that, if there exist a unique k such
that ω

ω#ω
=
√

Λk

Λ#k
, then tini(ω) = k. This function maps

the sound low (resp. high) frequencies to the mesh low (resp.
high) frequencies. The function trev = #k− tini maps high
sound frequencies to low ones, and vice versa.

Usually, altering the low frequencies of the mesh give
more visible effects. We therefore define the frequency trans-
fer functions of the initial galleries as condensed transfers
towards the low frequencies: t(ω) = tir(α · ω), where tir is
either tini or trev and α ∈ {0, 1, 2

S , 2
2
S , 3

2
S , . . . }. The first

value α = 0 is a constant mapping to the lowest and highest
frequency. It is included to guarantee that any transfer func-
tion can be generated by combinations.

The amplification functions of the initial gallery are
simple band-pass filters, with positive or negative factors.
The interval of manifold harmonic frequencies {0, . . . ,#k−
1} is divided in intervals Iα, for α ∈ {S2 , 2

S
2 , 3

S
2 , . . . }.

After we define the amplification function for the first half
of the gallery aα(k) = M if k ∈ Iα, and aα(k) = 0 oth-
erwise, where M is the maximal amplification factor. The
other half is defined similarly using −M . If the sound amp-
litudes are normalized to [−1, 1] and the if the mesh is reas-
onably smooth, the order of magnitude of M is 5,000. Since
we try to emphasize the low frequencies, we define the inter-
vals Iα = [α2, (α+ 2

S)2].

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

5 Tuning manifold harmonics filters

Figure 5: Gallery after one reproduction from the 1st, 4th and 5th items of Figure 3 in reading order, with the reproduced transfer and
amplification functions.

5 Making It Real-Time
The main challenge for the above interface to work with

sound signals is to compute and render the deformation
of each gallery element synchronously with the music (see
Figure 7). If we have S elements in the gallery, each of
which is a mesh of n vertices with #k manifold frequen-
cies and #ω sound frequencies, a single frame represents
O(S ·#ω ·#k · 3n) operations! (The #ω factor comes from
the evaluation of Φt,a). We therefore propose a GPU imple-
mentation of the manifold harmonics filter, while the mani-
fold harmonics decomposition is pre-computed in CPU.

(a) GPU implementation

For the sake of portability, we chose to use GLSL [8] as
GPU language. The manifold harmonics filters actually re-
quire a single fragment shader, which computes the filter-
ing Fϕ for each coordinate x, y, z (see section 3(c)), together
with a render-to-vertex-buffer mechanism [1].

Data textures The manifold harmonics is sent to the GPU
as textures: a texture x̃ỹz̃ containing the harmonic amplitudes
x̃(k), ỹ(k), z̃(k) of the original mesh, a texture dxyz contain-
ing the sum of high frequencies contributions for each co-
ordinate (see section 3(c)) and a texture Hk containing the
manifold harmonics eigenvectors. The filter ϕ must be sent
to the GPU at each gallery element of each frame. Since the
computed ϕ has a smaller size than the sound frequencies f̃
and the t and a vectors, we compute ϕ on the CPU and send
it as a 1D texture φ.

uniform sampler1D x̃ỹz̃;
uniform sampler2D dxyz;
uniform sampler3D Hk;
uniform sampler1D φ;
uniform float δk;

void main() {
vec3 texcoord = gl TexCoord[0].stp ;
vec3 pos = texture2D(dxyz,texcoord.st).xyz ;
for(float k=0.0; k ≤ 1.0;) {

texcoord.p = k ;
vec4 H = texture3D(Hk, texcoord);
vec4 f = texture1D(φ, k);
vec3 x̃ỹz̃0 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃1 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃2 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃3 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
pos += f[0] * H[0] * x̃ỹz̃0 + f[1] * H[1] * x̃ỹz̃1 +

f[2] * H[2] * x̃ỹz̃2 + f[3] * H[3] * x̃ỹz̃3 ;
}
gl FragColor.rgb = pos.xyz ;

}

Figure 6: GLSL fagment shader for the manifold harmonics filter.

Texture storage All the textures are stored using 32 bits
floats to keep the precision of the vertices coordinates. Since
the number of vertices of the mesh is usually higher than
the maximal texture size for 1D textures, we use two texture
coordinates in {0 . . . d

√
n− 1e} as vertex indexes. The high

frequency contributions dxyz are stored as a 2D RGB texture
of size d

√
n e×d

√
n e, where the coordinates are mapped to

the RGB color components.

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

T. Lewiner et al. 6

Figure 7: Frames of pop music visualization using the dinosaur model.

Since the number of manifold frequencies #k kept fits in
a texture row, the original harmonic amplitudes texture x̃ỹz̃
are stored as a 1D RGB texture of size #k, where the x̃, ỹ, z̃
components are mapped to RGB.

Finally, the scalar data Hk and φ of the manifold harmon-
ics eigenvector n coordinates and the filter can be stored in
the RGBA components to optimize space: φ is then a d#k

4 e
1D and Hk an d

√
n e × d

√
n e × d#k

4 e 3D RGBA textures.

(a) Original model with the ori-
ginal normals.

(b) Deformed model with the ori-
ginal normals.

(c) Deformed model with the de-
formed, flat normals.

(d) Average normals with 40%
deformed normals.

Figure 8: Normal enhancement for the deformed model.

Fragment shader for the filter When all the above textures
are bound, the rendering of a single square of size d

√
n e ×

d
√
n e will call the fragment shader for each of the vertex

index and compute the new vertex positions as frame color
(see Figure 6). The fragment shader renders to a frame
buffer containing the filtered vertex coordinates, which is
then copied to the vertex buffer inside the GPU [1]. The
shader receives a uniform variable which is the normalized
increment δk = 1

4(#k−1) for manifold frequency iteration
inside normalized texture coordinates.

(b) Complementary effects

Normal enhancement The previous method updates the
vertex positions, but not the normal. Since a second render-
to-vertex-buffer would be too costly, we use a geometry
shader that computes, for each triangle, a constant normal.
This normal is used in a per-pixel lighting via fragment
shader. However, the constant normal per triangle leads to
flat shading. To obtain smoother result, we average, in the
geometry shader, the constant normal of the triangle with the
original normal of the vertex (see Figure 8).

Harmonic mapping re-use The gallery interface allows to
quickly navigate between all the possible harmonic map-
pings within our proposed design. If a harmonic mapping
gives a very exciting effect, it would be nice to be able to
re-use it on other models. The main obstacle is that the num-
ber of manifold frequencies #k may differ from model to
model. We can work around this problem by normalizing the
image values of t to a constant interval [0, 1]: t̄(ω) = t(ω)

#k ,
and adapt the definition of Φt,a to

Φt̄,a(f̃)(k) = a (k) ·

 ∑
ω∈t̄−1({ k

#k })

f̃ (ω)

+ 1 .

Beat detection Until now, the whole deformation of the
mesh is seen from a single point of view with a constant
lighting. We propose to use those degrees of freedom to
transpose global sound feature, such as beat. We implemen-
ted a simple beat detection [15], and at each detected beat we
randomly choose to rotate the model or the light positions.

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

7 Tuning manifold harmonics filters

Figure 9: Frames of electronic music visualization using the alien head model.

(c) Implementation details

We used the Scalable Library for Eigenvalue Problem
Computations (SLEPc) [5] software package to compute
the first #k manifold harmonics eigenvalues and eigen-
vectors. We use the Compact Half Edge [9] data struc-
ture to represent the model mesh. The proposed shaders
require an OpenGL 2.x compatible card [8]. Finally, we
use FFmpeg [2] for sound decompression and OpenAL [6]
for stereo sound rendering in a separate thread. A nice tu-
torial for such sound configuration can be found at kcat.
strangesoft.net/openal.html.

6 Results
We experimented the proposed filter design with gallery

interface to check the feasibility of such approach. The actual
validation of the interface is beyond the scope of this paper.
However, our proposal is able to provide an animated gallery
interface synchronized with sound in real time.

Performance We first compare the CPU implementation of
manifold filters [20] with our GPU implementation. Since
the problem fits well for streaming process, we expect the
GPU implementation to outperform the CPU counterpart
(see Table 1, comparing a single mesh deformation on CPU
with 6 and 12 deformations on GPU). Furthermore, we val-
idated that the GPU implementation supports real-time ren-
dering to keep synchronization with the sound. Those exper-
iments allow estimating the appropriate gallery size depend-
ing on the graphics hardware (see Table 1). We conclude that
for models with around 50,000 vertices, a correct gallery size
would be between 6 and 12 on a GeForce 130 with 48 cores
at 500 MHz.

Music visualization We use our music visualization for de-
forming different models in real-time (see the accompany-
ing video). Since the music is decoded and analyzed on the
CPU, the combination of sound does not alter the perform-
ance of the gallery. We introduce a callback that update the

filter every 50 milliseconds, and the rendering is done fol-
lowing the rendering cycles, so that even with large galleries
that would harm the real-time rendering, the sound playing
does not stop. Finally, we add a parameter m ∈ [0, 1] to con-
trol how smoothly the frequencies are passed to the mesh:
the sound frequency amplitudes f̃(ω) passed to the filter are
continuously averaged by f̃new(ω) = w · f̃old(ω) + f̃(ω).
For very rhythmic music, this avoids flickering effects on the
mesh (see Figs. 1, 7, 9, and 11, and the accompanying video).

Limitations The GPU implementation allows real-time an-
imated galleries, but it prevents complex processing or fur-
ther control on the deformed mesh. In particular, it does not
permit to directly used quality measure or more advanced
interface such as intelligent galleries [21]. The proposed
method generates exciting animation on top of a given mu-
sic. However, we used a very raw sound analysis, which can
be enhanced to get more correlated effects. Several comple-
mentary effects, in particular on the mesh textures, could im-
prove our music visualization.

7 Conclusion
In this paper we proposed a GPU implementation of

manifold harmonics filters, which allows computing and
rendering spectral mesh deformations at a very high rate.
We applied this technique for music visualization, using
animated design galleries for navigation between different
visual effects. Each effect is represented as a mapping from
music frequencies to manifold harmonics. We represent such
mapping in a concise way to be able to couple genetic
reproduction in the gallery.

Acknowledegments
This paper is the result of many discussions between the

numerous authors. It has been partially financed by CNPq,
FAPERJ and FAPEAL.

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

kcat.strangesoft.net/openal.html
kcat.strangesoft.net/openal.html

T. Lewiner et al. 8

Figure 10: Frames of reggae music visualization using the cow model.

Table 1: Performance tests: all models are normalized into a
[−1, 1]3 bounding box, and the gallery of S items is rendered in a
1024×768 window. All experiments are performed on a 3.06GHz
processor with a GeForce GT 130 with 512MB of RAM. The de-
formation speed is measured in frame per second (fps), while the
harmonic basis pre-computation time is expressed in seconds.

#verts #freqs pre- CPU GPU GPU
n #k process S=1 S=6 S=12

model secs fps fps fps
pig 1 843 184 4 54.2 203.0 122.8
triceratops 2 832 256 7 46.9 153.9 63.6
neptune 9 392 276 32 12.7 58.6 31.2
multitorus 11 898 270 43 11.5 73.9 40.1
dinosaur 14 054 533 74 4.7 28.3 13.9
octa 15 136 529 25 4.1 26.8 13.2
octopus 20 351 546 129 3.0 21.4 7.1
alien 24 988 540 232 3.4 22.4 12.1
david 24 988 804 116 2.6 14.8 7.3
david head 30 058 1317 232 1.8 15.0 7.0
cat 30 059 271 379 9.6 45.7 23.0
gargoyle 30 059 1052 96 2.1 13.7 6.9
bunny 34 834 1070 478 1.7 12.1 5.8
buste 37 874 1075 329 1.5 13.4 3.4
blooby 42 432 1065 553 1.5 12.5 7.5
egea 63 739 275 718 0.9 7.2 3.2
head 65 002 1607 739 0.5 8.7 4.3
armadilo 86 488 2376 1 134 0.2 10.3 3.4

References
[1] Apple. PBORenderToVertexArray: render-to-

vertex-array using FBO, PBO and VBO, 2006.
developer.apple.com/ mac/ library/ samplecode/
PBORenderToVertexArray.

[2] F. Bellard. FFmpeg, 2004. www.ffmpeg.org.

[3] A. Bordignon, L. Sigaud, G. Tavares, H. Lopes, T. Lew-
iner and W. Morgado. Arch generated shear bands in
granular systems. Physica A: Statistical Mechanics and
its Applications, 388(11):2099 – 2108, 2009.

[4] R. W. Clough and J. Penzien. Dynamics of Structures.
Mcgraw-Hill, 1975.

[5] V. Hernandez, J. Roman and V. Vidal. SLEPc: A scalable
and flexible toolkit for the solution of eigenvalue prob-
lems. Transactions on Mathematical Software, 31(3):362,
2005.

[6] G. Hiebert. OpenAL programmer’s guide, 2005. con-
nect.creativelabs.com/ openal.

[7] H. Jenny. Cymatics: A Study of Wave Phenomena &
Vibration. Macromedia, 3rd edition edition, 2001.

[8] The OpenGL Shading Language v 4.0, 2010.
www.opengl.org/ documentation/ glsl.

[9] M. Lage, T. Lewiner, H. Lopes and L. Velho. CHF: a
scalable topological data structure for tetrahedral meshes.
In Sibgrapi, pages 349–356. IEEE, 2005.

[10] B. Lévy and H. R. Zhang. Spectral mesh processing.
In Siggraph Asia Course Note, pages 1–47. ACM, 2009.

[11] Y. Liu, B. Prabhakaran and X. Guo. A robust spectral
approach for blind watermarking of manifold surfaces. In
Multimedia and Security, pages 43–52. ACM, 2008.

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

9 Tuning manifold harmonics filters

Figure 11: Frames of rock music visualization using the armadillo model.

[12] J. Marks, B. Andalman, P. Beardsley, W. Freeman,
S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister,
W. Ruml et al. Design galleries: A general approach to
setting parameters for computer graphics and animation.
In Siggraph, page 400. ACM, 1997.

[13] J. F. O’Brien, C. Shen and C. M. Gatchalian. Synthes-
izing sounds from rigid-body simulations. In Symposium
on Computer animation, pages 175–181. ACM, 2002.

[14] M. Ovsjanikov, J. Sun and L. Guibas. Global intrinsic
symmetries of shapes. In SGP, pages 1341–1348. Euro-
graphics, 2008.

[15] F. Patin. Beat detection algorithms, 2003.
www.gamedev.net/ reference/ programming/ features/
beatdetection.

[16] A. Pentland and J. Williams. Good vibrations:
modal dynamics for graphics and animation. Siggraph,
23(3):207–214, 1989.

[17] F. de Moura Pinto and C. M. D. S. Freitas. Two-level
interaction transfer function design combining boundary
emphasis, manual specification and evolutive generation.
In Sibgrapi, pages 281–288. IEEE, 2006.

[18] G. Rong, Y. Cao and X. Guo. Spectral mesh deforma-
tion. The Visual Computer, 24(7):787–796, 2008.

[19] G. Taubin. A signal processing approach to fair surface
design. In Siggraph, pages 351–358, 1995.

[20] B. Vallet and B. Lévy. Spectral geometry processing
with manifold harmonics. In Computer Graphics Forum,
volume 27, pages 251–260, 2008.

[21] T. Vieira, A. Bordignon, A. Peixoto, G. Tavares,
H. Lopes, L. Velho and T. Lewiner. Learning good views
through intelligent galleries. Computer Graphics Forum
(Eurographics Proceedings), 28(2):717–726, 2009.

[22] K. Wang, M. Luo, A. Bors and F. Denis. Blind and
robust mesh watermarking using manifold harmonics. In
ICIP, pages 3657–3660. IEEE, 2009.

[23] H.-Y. Wu, T. Luo, L. Wang, X.-L. Wang and H. Zha. 3D
shape retrieval by using manifold harmonics analysis with
an augmentedly local feature representation. In VRCAI,
pages 311–313. ACM, 2009.

[24] C. Yinghui, W. Jing and L. Xiaohui. Real-time de-
formation using modal analysis on graphics hardware. In
Graphite, pages 173–176. ACM, 2006.

Preprint MAT. 04/10, communicated on April 25th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.

	Introduction
	Related work
	Manifold Harmonics
	Laplace harmonics
	Manifold harmonics transform
	Filtering

	Tuning Manifold Harmonics
	Mapping to manifold harmonics filters
	Tuning through design galleries
	Reproduction
	Gallery initialization

	Making It Real-Time
	GPU implementation
	Complementary effects
	Implementation details

	Results
	Conclusion
	Bibliography

