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Abstract. In this paper we introduce an unified framework for topological manipulation on triangulated 2-
manifolds with or without boundary. We show that there are two kinds of primitive operators on the underlying
meshes: operators that change the topological characteristic of the mesh and operators that just modify its
combinatorial structure. We present such operators and demonstrate that they provide a complete and coherent
set of elementary operations for mesh construction and editing.
Keywords: Geometric Modeling. Handle Operators. Stellar Operators.

1 Introduction
Triangulated meshes constitute one of the fundamental

representations for objects in Computer Graphics and Geo-
metric Modeling. They describe the spatial support where
attributes of the objects are defined, such as geometry and
texture. Moreover, current graphics hardware are optimized
for such representations.

Although other representations, such as point sets, are
becoming increasingly popular in recent years, polygonal
representations are still prevalent and necessary in one way
or another. The main reason is that meshes describe in a
convenient piecewise manner the global space, intrinsic to
the object. Point sets, on the other hand, provide only a local
description. Indeed, the generation of polygonal meshes
from point data is an active area of research.

Two-dimensional surfaces are, arguably, the most com-
mon type of object in computer graphics. Moreover, we are
often interested in non-degenerate surfaces, i.e. 2D mani-
folds, since they allow efficient multiresolution represent-
ations, compact data structures and simple geometric ap-
proximations. These objects are best represented by com-
binatorial structures such as simplicial meshes.

Contributions: In this paper we investigate operators to
build, unbuild and modify combinatorial 2 dimensional
manifolds with or without boundary.

In particular, we introduce an unified framework for
primitive operations on combinatorial 2-dimensional man-
ifolds with or without boundary. This mathematical frame-
work is based on the integration of two fundamental theor-
ies: the Handlebody theory and the Stellar theory.
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We further define a complete and sufficient set of oper-
ators to change the combinatorial structure, as well as, the
topological characteristic of a polygonal mesh. This com-
putational framework is substantiated by the main theorems
of the Handlebody and Stellar theories. These new operat-
ors form a complete and coherent set and they not depend
on the space where the surface is embedded.

We finally propose a concise application program inter-
face (API) for the implementation of these operators, give
examples of prototype applications and point out how the
framework could be incorporated with advantages in previ-
ously known algorithms in Geometric Modeling and Com-
puter Graphics.

Paper outline: Section 2 introduces some concepts of
combinatorial topology. Section 3 describes previous and
related works. Section 4 presents the Handlebody and Stel-
lar theories. Section 5 proposes the complete set of operat-
ors for surface modeling. Section 6 presents a suitable API
for the proposed framework. Section 7 describes example
applications improved by the use of these operators. Finally,
section 8 concludes this work by giving some final remarks
and suggestion for future work.

2 Fundamental Concepts
In this section, we present some fundamental concepts

of combinatorial topology that will be used on this work.

(a) Basic Topological Concepts

A simplex σp of dimension p (p-simplex, for short) is
the convex hull of p + 1 points {v0, ..., vp}, vi ∈ Rm, in
general position, i.e., the vectors v1−v0, v2−v0, ..., vp−v0

are linearly independent. The points v0, ..., vp are called the
vertices of σ. A face of σ is the convex span of some of the



Thomas Lewiner, Hélio Lopes, Esdras Medeiros, Geovan Tavares and Luiz Velho 2

vertices of σ and therefore is also a simplex. The simplices
of dimensions 2 and 1 will be called, respectively, triangles
and edges. If τ is a face of a simplex σ, then τ is said to be
incident to σ. The boundary of a p-simplex σ, denoted by
∂σ, is the collection of all of its faces except σ itself. Two
k-simplices σ and ρ ∈ K are adjacent when σ∩ρ ̸= ∅, and
independent otherwise. The valence or degree of a vertex
v ∈ K is the number of edges which have v as a vertex, and
is denoted by deg(v).

A simplicial complex K is a finite set of simplices con-
taining all their subsimplices such that if ρ and σ belong to
K, then either ρ and σ meet at a subsimplex τ , or ρ and σ
are independent. A simplicial complex K is connected if it
cannot be represented as a union of two non-empty disjoint
subcomplexes. A component of a complex K is a connec-
ted subcomplex that it is not contained in a larger connected
subcomplex of K.

The underlying polyhedron |K| ⊂ Rm corresponds
to the union of the simplices in K. A triangle mesh is
the underlying polyhedron of a 2-dimensional simplicial
complex.

The join σ ⋆ τ of independent simplices σ and τ is the
simplex whose vertices are those of both σ and τ . The join
of complexes K and L, written K ⋆ L, is {σ ⋆ τ : σ ∈
K, τ ∈ L} if σ ∈ K and τ ∈ L, σ and τ are independent.

Consider a simplicial complex K and σ ∈ K. The local
neighborhood of σ is described by the following elements:

– The open star of σ is

star(σ,K) = {τ ∈ K : σ is a face of τ}.

– The star of σ is

star(σ,K) = {τ ∈ K : τ face of µ ∈ star(σ,K)}.

– The link of σ is

link(σ,K) = {τ ∈ K : τ, σ independent ; σ⋆τ ∈ K}.

Definition 1 (combinatorial surface) A simplicial com-
plex S, |S| ⊂ Rm, is a combinatorial surface if every edge
in S is bounding either one or two triangles and if the link
of a vertex in S is homeomorphic either to an interval or to
a circle.

The edges in a combinatorial surface S incident to only
one face are called boundary edges. Vertices incident to
boundary edges are called boundary vertices. The subcom-
plex of S of those boundary simplices forms the boundary
of S and is denoted by ∂S. The boundary of a combinatorial
surface is a collection of closed curves. The edges and ver-
tices that are not on the boundary are called, respectively,
interior edgesand interior vertices.

A combinatorial surface is orientable when it is possible
to choose a coherent orientation for all of its simplices,
where coherent means that two adjacent triangles induce
opposite orientations on their common interior edge. The
set of faces, edges and vertices of a surface S will be
denoted, respectively, by F (S), E(S) and V (S).

(b) The Euler characteristic of surfaces

The topological setting applied to boundary representa-
tion of solids [24] has traditionally been the Euler-Poincaré
theory, dated from the turn of the XIXth century [15]. A
very important theorem from this theory is the classifica-
tion theorem for surfaces, that says:

Theorem 2 Any connected oriented combinatorial surface
with boundary is homeomorphic to either a sphere or a
connected sum of g ¿ 0 tori, in any case with some finite
number of disks removed. No two of these surfaces are
homeomorphic.

The Euler characteristic of a connected combinatorial
surface S, denoted by χ(S) with f faces, e edges and v
vertices is defined as

χ(S) = v − e + f.

Poincaré proved [15] a very important topological in-
variant for a oriented combinatorial surface with boundary.
It says that any homeomorphic oriented combinatorial sur-
face has the same Euler characteristic

χ(S) = v − e + f = 2(s− g)− b,

where s is the number of surface connected components, g
is the number of genus on the surface, and b is the number of
boundary curves components. The equation above is called
the Euler-Poincaré formula.

3 Related Works
The representation of a surface by a polygonal mesh

is usually made of two parts: the connectivity and the
geometry. The connectivity defines neighborhood relations
within the surface, while the geometry defines the shape
embedding in ambient space.

In this paper, we are mainly concerned with the combin-
atorial structure of a surface. For this reason, we will not
address geometric issues extensively here. Nonetheless, we
observe that the combinatorial representation of a mesh in-
fluence the implementation of geometric operations in non-
trivial ways.

Accordingly, we review related work in the area, which
fall into three categories: combinatorial data structures; to-
pological operators; geometric and multiresolution operat-
ors.
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(a) Combinatorial Data Structures

The neighborhood relations within a mesh are encoded
by a combinatorial graph that indicates incidence and ad-
jacency relationships among vertices, edges and faces. The
major issue in terms of topological data structures is the
trade-off between the size of the representation, the execu-
tion time of queries; and the flexibility to edit the structure.
A general overview of data structures for meshes can be
found in [33].

Practically all combinatorial data structures for 2-
dimensional manifolds are based on edges or on faces.
Edge–based data structures mainly stores, for each edge, its
incident vertices and adjacent edges, while face–based data
structures stores, for each face, its vertices and the adjacent
faces.

The classical Winged–Edge [24] structure links vertices
and faces through the edges, and also includes inform-
ation about orientation. Several data structures based on
edges have then been proposed. One example is the Quad–
Edge [36] data structure that represents both the primal and
dual graphs of the mesh. An important characteristic of the
Quad–Edge data structure is that it was defined together
with an Edge Algebra (see comments in the next subsec-
tion). Other very significant example is the Half–Edge [42]
data structure that decouples the two uses of an edge by ad-
jacent faces and encodes the face orientation by a cycle of
half-edges. This structure is very popular in recent imple-
mentations [28, 45]. The Handle–Edge data structure [3, 9]
extends the Half–Edge in order to represent surfaces with
boundary. An explicit representation of the surface bound-
ary will play an important role in the implementation of the
operators to be presented in this work.

Some examples of face-based data structure are the one
proposed by Higashi et al. [7], which is designed for robust
geometric computations, and the Corner–Table [16], which
is optimized for memory consumption rather than for struc-
ture changes. A recently proposed data structure, which is
the counterpart of Quad–Edge, is Gems a structure for d-
dimensional triangulations, that stores for each top simplex
the list of its incident simplices [35].

All the above data structures were designed to repres-
ent only manifold surfaces. Among others, the Radial–
Edge [51] and the Non-manifold Indexed Data Structure
with Adjacencies (NMIA) [4] are two examples of data
structures that can represent non-manifold objects, as well.

In this paper we adopt an edge-based mesh representa-
tion. It is similar to the half-edge, but it is enhanced to sup-
port manifolds with boundary. Such data structure shows
to be very suitable for a simple implementation of the pro-
posed mesh operators. However, the topological operators
proposed in our framework can also be implemented using
other data structures, such as the Corner–Table.

(b) Topological Operators

Surface modifications are implemented through operat-
ors on its mesh representation. These operators can be clas-
sified according to their level of abstraction and their func-
tionality.

Euler operators [42] are low level operators for editing
a mesh representation of the boundary of a solid. They are
based on the Euler-Poincaré theory, which states that the
topology of a compact oriented combinatorial surface S
with boundary is characterized by its Euler characteristic
χ(S) = |V | − |E| + |F |, where |V |, |E| and |F | indicate
respectively the number of vertices, edges and faces of
S. The Euler characteristic classifies compact orientable
surfaces according to the Euler formula: χ(S) = 2s−2g−b,
where s is the number of connected components, g is the
number of genus (e.g. through holes, tunnels or handles),
and b is the number of boundary curves of the surface.

Mäntylä proved that Euler operators form a complete
set of modeling primitives for manifold solids [42]. That
is, every topologically valid polyhedron can be constructed
from an initial polyhedron by a finite sequence of Euler op-
erators. There are two groups of such operations: the make
group and the kill group. The main disadvantage of the
Euler operators is that, in the process of editing a mesh with
these atomic operations, some intermediate results may not
represent valid solids. Moreover, the Euler operator that
generates a genus, assumes that the 2-manifold being op-
erated is the boundary of a solid in R3. Therefore, Euler
operators are usually encapsulated into higher level operat-
ors.

Quad-Edge operators are low-level operators based on
the Edge Algebra defined by Guibas and Stolfi in [36].
Their main advantage is conciseness, and they further show
that only two atomic operations are sufficient for the con-
struction and modification of arbitrary topological graphs
embedded in two-dimensional manifolds. The Gems data
structure has also an simple algebra associated with it. The
Gem Algebra is based on just two topological operators:
create and splice. We remark that these operators are con-
ceptually equivalent to our Handle operators.

The operators proposed in this paper work at a higher-
level than the above ones, and as such, could be defined
either in terms of the Euler or Quad-Edge operators —
although this is not necessary. Here we have chosen to
define them directly, as atomic operations, since we believe
that they provide the right level of abstraction. Moreover,
these operators have the advantage of always maintaining a
valid mesh.

(c) Multiresolution Operators

Because of their importance in applications, many high
level operators have been proposed to change the resolution
of a mesh. These operators can be used for mesh simplific-
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ation or mesh refinement. The meshes they operate on can
have regular or irregular connectivity.

Multiresolution operators for regular meshes are usually
associated with simplification and subdivision algorithms.
In this area, the classical operators are the quadrisection for
faces [27], [10] and vertices [32] (e.g. primal and dual re-
finement). The drawback of these operators is that they can-
not be used for adaptive refinement without compromising
the regularity of the mesh. Recently, two new schemes,

√
3

subdivision [38] and
√

2 subdivision [26], introduced oper-
ators that are suitable for adaptive refinement. They employ
trisection and bisection operators, respectively.

The most popular multiresolution operators for irregular
meshes are the edge collapse and its inverse, the edge
split. Hoppe [37] proved that these two operators can be
used to transform between any two equivalent simplicial
complexes, if respecting the link condition [5]. Although
edge collapse was designed originally in connection with
progressive meshes [8], it has also been extensively used in
many mesh simplification methods [34].

The operators proposed in this paper have more express-
ive power than the multiresolution geometric operators dis-
cussed above and can be used to implement them.

(d) Geometric Operators

As we mentioned before, geometric operations are not
the focus of this paper. Nonetheless, we would like to
briefly discuss their relationship with topological operators.
Some geometric operations, such as warping deformations,
are defined only in terms of point-wise information of a
shape embedded in the ambient space. Therefore, these
operators are independent of the mesh structure, once the
geometry of the point is given.

Other geometric operators, such as the umbrella oper-
ator [17] used in Laplace smoothing, depend on the local
geometry of the surface. There are also operators that as-
sociate geometric quantities with elements of the mesh, for
example differential properties [31]. These two types of op-
erators need information about the neighborhood of a topo-
logical entity, and, thus, they rely on queries about the mesh
structure.

The data structure proposed in this paper supports ef-
ficient mesh queries and can be augmented with geomet-
ric attributes associated with different topological elements.
Thus, it is suitable for the implementation of geometric op-
erators.

(e) Overview

In this paper we introduce a complete and minimal set
of high–level operators that can be used to change both
mesh connectivity and topology. These operators are based
on two main theories of combinatorial topology: namely
the Handelbody and Stellar theories. They consist of the
following atomic operations for:

– Building, unbuilding and changing the topology of a
mesh:

create(v0, v1, v2) / destroy(f) — generates /
eliminates a connected component defined by the
triangle (v0, v1, v2) / face f , respectively;
glue(e0, e1) / unglue(e) — joins / splices two
pieces of the mesh boundary defined by the pair
of edges e0, e1 / edge e, respectively.

– Modifying the connectivity and resolution of a mesh:

flip(e) — alters the structure of a mesh region
defined by two adjacent triangles by swapping
their common edge e.
split(σ) / flip(σ) — refines / simplifies the mesh
by respectively subdividing / refining either a
triangle σ = f or an edge σ = e.

As we will show in the rest of the paper, these operat-
ors can naturally express the algorithms used in geometric
modeling and computer graphics applications.

4 Mathematical Framework
In this section, we lay out the fundamental concepts

of our framework for mesh operations. We distinguish
between two kinds of operators on meshes: the ones that
change the topology of the mesh, and the one that just alter
its combinatorial structure.

Operators that change the mesh topology globally are
based on the Handlebody theory, while operators that alter
locally the combinatorial structure of the mesh are based on
the Stellar theory. Both apply on combinatorial surfaces.

(a) Handlebody Theory

The Handlebody theory [13] refines the Euler-Poincaré
theory by bringing several new topological invariants for
n-dimensional manifolds. The fundamental problem of
Handlebody theory is to study the topological changes gen-
erated by handle attachments to a manifold with boundary.

In the surface case, three types of handles are to be
defined and they will be distinguished by an index λ that
varies from 0 to 2. Here, Di denotes the i-dimensional disk
and ∂P denotes the boundary of a set P .

Definition 3 For 2–dimensional manifolds, a handle of in-
dex λ, denoted by Hλ, is a pair of topological spaces
(Aλ, Bλ) such that Bλ ⊂ Aλ, Aλ = Dλ × D2−λ and
Bλ = ∂Dλ ×D2−λ.

According to this definition, one can observe that: 1) the
set A0 is a 2–disk and B0 is the empty space; 2) the set
A1 is a square and B1 is defined to be two of its opposite
sides and 3) the set A2 is a 2-disk and B2 is its boundary
(see Figure 1). Observe that Bλ is naturally identified with
a subset of the boundary of Aλ, i.e. there is a natural
homeomorphism between Bλ and a subset of ∂Aλ.
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A0 = D0 ×D2 B0 = (∂D0)×D2 = ∅

A1 = D1 ×D1 B1 = (∂D1)×D1

A2 = D2 ×D0 B2 = (∂D2)×D0

Figure 1: 2D Handles: H0 = (A0, B0); H1 = (A1, B1);
H2 = (A2, B2).

A handle Hλ = (Aλ, Bλ) is attached to a surface S by
identifying Bλ with a subset I of ∂S and glueing Aλ ⊃ Bλ

to S along I .
The next theorem is the main mathematical tool in which

the Handlebody theory is based.

Theorem 4 (Handlebody Decomposition) For every ori-
entable surface S there is a finite sequence of surfaces {Si},
i = 0..N , such that S0 = ∅, SN = S and the surface Si

is obtained by attaching a handle Hλ = (Aλ, Bλ) to the
boundary of Si−1. This sequence is called a Handlebody
Decomposition of S.

Figure 2 illustrates the handlebody decomposition of a
torus, S4 = (((S0 + H0) + H1) + H1) + H2.

S0 = ∅

S1 = S0 + H0

S2 = S1 + H1 ≈

S3 = S2 + H1 ≈

S4 = S3 + H2

Figure 2: Handlebody decomposition of a torus, S4 = (((S0 +
H0) + H1) + H1) + H2.

When a handle Hλ = (Aλ, Bλ) is attached to the
boundary of Si−1 to obtain Si, a topological change is
generated and such change depends only on the index λ.

Theorem 5 If Si is obtained by attaching the handle Hλ to
Si−1, then χ(Si) = χ(Si−1) + (−1)λ.

As a consequence, the Euler characteristic of a surface S
provided with a handlebody decomposition {Si}, i = 0..N
is

χ(S) = |H0| − |H1|+ |H2|
where |Hk|, k ∈ {0, 1, 2} corresponds to the number of
handles of type k in {Si}. For example, in the handlebody
decomposition of the torus in Figure 2, there are one handle
H0, two handles H1, and one handle H2. The formula
above is, then, verified, since the Euler characteristic of a
torus is zero. This is a topological invariant introduced by
the Handlebody theory.

Handles can be attached to an orientable surface with
boundary in such a way to preserve its orientability, i.e., the
identification of Bλ into ∂S preserves the orientation of S.
If one starts with an orientable surface, then after attaching
a handle coherently the surface is again orientable.

We observe that if we keep track of the number of con-
nected components and the number of boundary curves, we
can easily calculate the number of genus on the surface and
classify it whenever it is necessary. We will now present
how to count those two numbers by studying the topolo-
gical changes caused by a handle attachment that preserves
the orientability.

0-Handle. The topological change generated by a handle
attachment of index 0 is a creation of a new surface com-
ponent (see S1 in Figure 2). This handle attachment in-
creases the Euler characteristic by one.

1-Handle. When the handle H1 is coherently attached to
a surface Si, three situations can occur:

1. The set A1 is attached to disjoint intervals on the
same boundary curve component. In this case, the
topological change is the inclusion of a new boundary
curve component in the surface (see S2 in Figure 2).

2. The set A1 is attached to intervals on different bound-
ary curve components of the same surface component.
The topological change is here characterized by the
creation of a new genus on the surface. In addition, the
number of boundary curve components decreases (see
S3 in Figure 2).

3. The set A1 is attached to intervals on different surface
components. Here, a boundary curve component and a
surface component is removed.

In these three situations, when a handle H1 is at-
tached coherently to Si−1 to obtain Si, we have χ(Si) =
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χ(Si−1) − 1. Observe that, all of them alter the number of
boundary curves. Moreover, the last one also changes the
number of connected components on the surface.

2-Handle. Handles of index 2 close a boundary curve
component (see S4 in Figure 2).

Concluding, there are three types of handles and five
different situations in which they can be attached to a
boundary surface.

(b) Stellar Theory

In the previous section, we saw how to change the to-
pology of a manifold. Now, we will see how to manipu-
late the structure of a combinatorial surface without modi-
fying its topology, which is the main point of Stellar the-
ory [23, 44, 46, 39].

As we have seen in Section 2(a), the link and the star
of a simplex σ provide a combinatorial description of the
neighborhood of σ. We can use them to define certain
changes in a triangle mesh, without modifying essentially
(i.e., “topologically”) that neighborhood. That is, we do not
want to change the topology of the realization of the surface
in R3. The stellar operations provide a such change. They
comprise bistellar moves and stellar subdivision:

Definition 6 Let K be an n-dimensional simplicial com-
plex. Take an r-simplex σ ∈ K, and an (n − r)-simplex
τ ̸∈ K, such that link(σ,K) = ∂τ . Then, the operation
κ(σ, τ), called bistellar move, consists of changing K by
removing σ ⋆ ∂τ and inserting ∂σ ⋆ τ .

The bistellar moves are atomic operations that make
local changes to the neighborhood of an simplex, while
maintaining the integrity of its combinatorial structure. In
the case of combinatorial surfaces, there are three types
of bistellar moves, for dim σ = 2, 1, 0, called 2-move, 1-
move, and 0-move. They are shown in figure 3.

(a) dimσ = 2 →

(b) dimσ = 1 →

(c) dimσ = 0 →

Figure 3: Two-dimensional bistellar moves.

The fundamental result of the Stellar theory is given by
the following theorem:

Theorem 7 ([44], [46]) Two combinatorial surfaces are
piecewise linearly homeomorphic if and only if they are
bistellar equivalent.

The above result guarantees that bistellar moves can
change any triangulation of a closed piecewise linear man-
ifold to any other. A version of this theorem for manifolds
with boundary uses all stellar operations, including stellar
subdivision [46].

Definition 8 Let K be a 2-dimensional simplicial complex,
take an r-simplex σ ∈ K and a vertex ν in the interior of
σ. The operation (σ, ν) removes star(σ,K) and replaces it
with ν ⋆ ∂σ ⋆ link(σ,K). Such operation is called a stellar
subdivision and its inverse (σ, ν)−1 is called a stellar weld.

Note that some of the stellar subdivision and welds are
also stellar moves as for example κ(σ, ν) and κ(ν, σ) for
dim σ = 2 (see the top and bottom rows of figure 3).

In dimension 2, this new operation is the stellar subdi-
vision on edges, called 1-split. It is shown in figure 4 the
interior edge case and in figure 5 the boundary edge case.

(σ,ν)−→

Figure 4: Two-dimensional stellar subdivision on interior
edges.

(σ,ν)−→

Figure 5: Two-dimensional stellar subdivision on boundary
edges.

Stellar subdivision is a very powerful concept and it
is the cornerstone of Stellar theory. Here, we will only
mention some results of the stellar subdivision theory [23].

Proposition 9 Any stellar move, κ(σ, τ), is the com-
position of a stellar subdivision and a weld, namely
(τ, ν)−1(σ, ν).

This result can be easily seen through an example,
shown in figure 6.

κ(σ,τ)

(σ,a)−→ (τ,a)−1

−→

Figure 6: A bistellar move on an edge can be decomposed into
a subdivision and an weld.
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Proposition 10 Any stellar operation can be decomposed
into a finite sequence of elementary stellar operations on
edges.

This result is even stronger than the previous one. It
basically allows us to restate the main theorem of Stellar
theory only in terms of operations on edges. We will use
this result to state a simple framework for mesh creation
and edition which uses only operations on edges, making
it particularly suited for implementation on classical data
structures.

5 Computational Framework
The purpose of this section is to introduce a new set of

topological operators based on the concepts of Handlebody
and Stellar theories. This set includes operators for build-
ing/unbuilding meshes and to change the structure and res-
olution of a mesh.

We remark that, although the Handlebody theory can be
applied to general combinatorial manifolds, the Stellar the-
ory is restricted to simplicial complexes. Therefore, from
now on, we will focus on triangular meshes. This is not a
limitation, since any manifold surface can be triangulated
and, in practice, triangular meshes are a common choice in
applications.

(a) Handle Operators

Building Handle operators

The Handlebody theory presented in Section 4(a) stud-
ies the topological changes in a surface caused by a handle
attachment. There are three types of handles to build a
handlebody decomposition of a surface. From a combin-
atorial point of view, we define three types of operators to
represent the handle attachments:

• Handle operator of type 0 – This operator creates a new
combinatorial surface component with only one triangle
(see Figure 7).

• Handle operator of type 1 – The purpose of this operator
is to identify two given boundary edges with no vertices
in common. There are three situations for this group:

Case (a): the boundary edges are on different sur-
faces. In this case the operator attaches the surfaces
and removes one boundary curve (see Figure 8(a)).
Case (b): the given boundary edges are incident to
the same boundary curve. The operator splits the
boundary curve into two different components (see
Figure 8(b)).
Case (c): the boundary edges are on different
boundary curves on a surface component. It cre-
ates a new genus in the surface and reduce in one
the number of boundary curve components of the
surface (see Figure 8(c)).

• Handle operator of type 2 – This operator identifies
two given boundary edges with two vertices in common.
The operator closes one boundary curve component and
transform those boundary vertices into two interior ver-
tices (see Figure 9).

NIL −→

Figure 7: Handle operator of type 0 (triangle creation).

−→
8(a): Boundary edges belong to different surfaces

−→
8(b): Boundary edges belong to the same boundary curve of

a surface

−→
8(c): Boundary edges belong to different boundary

curves of a surface

Figure 8: Handle operator of type 1 (joining boundaries).

−→
9(a): Boundary edges have two vertices in common

Figure 9: Handle operator of type 2 (closing boundaries).

−→
10(a): Boundary edges have one vertex in common

Figure 10: Zip operator.

According to the definitions above, we observe that if
a Handle operator of type λ is applied to a combinatorial
surface S1 to obtain S2, then χ(S2) = χ(S1) + (−1)λ.
This is a direct consequence of theorem 5.

One can observe that the Handle operators of type 1
and type 2 identify two boundary edges to make an interior
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edge. The first is applied when the edges have no vertices in
common, and the second when the edges have two vertices
in common. Thus, there is one missing case to consider:
when the boundary edges have one vertex in common. So,
it is suitable to define the Zip operator, which identifies two
boundary edges with one vertex in common. This operator
removes one edge and one vertex, then it doesn’t change
the Euler characteristic of the surface. Its main purpose is to
close the vertex link (see Figure 10). In fact, such operator
can be derived from the building Handle operators together
with their inverse. However, it is very convenient to have a
direct implementation of it.

Unbuilding Handle operators

There is an inverse operator for each building Handle
operator presented. The topological changes caused by their
inverse operation are now described.

The unbuilding Handle operator of index zero destroys a
triangle. Unbuilding Handle operators of index 1 and index
2 split an interior edge into two boundary edges. There
are five cases to consider when splitting an interior edge.
Such cases are distinguished according to the number of
boundary vertices incident to the interior edge that will be
operated, which could be 2,1 or 0. The unbuilding handle
operator of type 1 is used when the incident vertices to
the interior edge are both in the surface boundary. The
unbuilding Handle operator of type 2 is applied when the
incident vertices of the interior edge are on the interior of
the surface. In the last case, when the interior edge has
one vertex in the boundary, one should use the inverse Zip
operator.

The topological changes caused by an unbuilding
Handle operator of index 1 when applied to a given interior
edge e, depend on the answer to the following question:

Are the boundary vertices incident to e on different
boundary curve components?

If the answer is affirmative then the unbuilding Handle
operator will remove one boundary curve component (see
the unbuilding operation in the Figure 8(b)). In contrary,
the second question has to be answered.

Are those vertices on the same boundary curve compon-
ent?

When the vertices are incident to the same boundary
curve, the unbuilding operation not only will add a new
boundary curve component to the surface but also it will
either decrease the genus (see unbuilding of Figure 8(c)) or
disconnect the surface (see unbuilding of Figure 8(a)).

Unbuilding operator of index 2 duplicates an interior
edge with zero incident boundary vertices. The topological
change in this situation is an addition of a new boundary
curve to the surface.

The inverse Zip operator (the unzip operator) is applied
when the interior edge e has one incident vertex on the

boundary. It simply duplicates an interior edge and trans-
forms an interior vertex into a boundary vertex.

Algebraic properties

A surface S is said to be valid if it satisfies the definition
of a combinatorial surface. So the Euler-Poincaré formula
is a necessary condition for the validity of the model.

χ(S) = v − e + f = 2(s− g)− b,

where v, e, f, b, g, and s represent, respectively, the number
of vertices, the number of edges, the number of faces, the
number of boundary curves, the number of genus and the
number of connected components on the surface.

Similarly to [2], we consider a six-dimensional space E6,
whose axes are: v, e, f, b, g, s. The canonical basis E6 is
denoted by B. This consideration allows us to say that the
Euler-Poincaré formula can be rewritten in such a way to
represent a hyperplane (five-dimensional subspace) EP on
this vector space:

v − e + f − 2(s− g) + b = 0.

It is suitable to define a new basis for this six-
dimensional space E6 in such a way that a combination of
Handle operators could be explicitly represented as a vector
on the EP hyperplane. This new basis, called the Handle
operator basis and denoted by H, is defined in the follow-
ing way:

– Handle operator of type 0↔ (1, 0, 0, 0, 0, 0)H.

– Handle operator of type 1 (a): boundary edges on
different surface components↔ (0, 1, 0, 0, 0, 0)H.

– Handle operator of type 1 (b): boundary edges on the
same boundary component↔ (0, 0, 1, 0, 0, 0)H.

– Handle operator of type 1 (c): boundary edges on the
same surface component but on different boundary
curves↔ (0, 0, 0, 1, 0, 0)H.

– Handle operator of type 2↔ (0, 0, 0, 0, 1, 0)H.

In order to complete the six-dimensional space we can
use the perpendicular vector of the Euler-Poincaré hyper-
plane, which coordinate on the Handle operators basis is
(0, 0, 0, 0, 0, 1)H, and on the canonical basis on the Euc-
lidean space is (1,−1, 1, 1, 2,−2)B.

Now, we would like to change the basis from H to the
canonical basis B of E6, whose axis are v, e, f, ∂s, g, s. In
this way, we could obtain the number of cell elements after
the application of a combination of Handle operators, or
in the inverse way we could obtain the number of Handle
operators to be applied to build a surface with a given
number of cell elements.

To find the solution of this change of basis problem we
need to relate the vectors of the Handle operators basis with
the vectors of the basis B. Those relations are expressed as
follows:
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−→ −→
11(a): Two uses of Zip operator

−→ −→
11(b): One use of Handle operator of type 1(b) and one of type 2

Figure 11: Obtaining the Zip operator by the use of Handle operators.

– Handle operator of type 0: (1, 0, 0, 0, 0, 0)H ↔
(3, 3, 1, 1, 0, 1)B.

– Handle operator of type 1 (a): (0, 1, 0, 0, 0, 0)H ↔
(−2,−1, 0,−1, 0,−1)B.

– Handle operator of type 1 (b): (0, 0, 1, 0, 0, 0)H ↔
(−2,−1, 0, 1, 0, 0)B.

– Handle operator of type 1 (c): (0, 0, 0, 1, 0, 0)H ↔
(−2,−1, 0,−1, 1, 0)B.

– Handle operator of type 2: (0, 0, 0, 0, 1, 0)H ↔
(0,−1, 0,−1, 0, 0)B.

We can now introduce the transition matrix Λ as a
change of basis matrix from the Handle operators’ base to
the base on the Euclidean space.

Λ =


3 −2 −2 −2 0 1
3 −1 −1 −1 −1 −1
1 0 0 0 0 1
1 −1 1 −1 −1 1
0 0 0 1 0 2
1 −1 0 0 0 −2


So with this matrix we can compute in advance the

characteristic of the surface after a combination of the
Handle operators by just a matrix-vector multiplication:

[v′]B = Λ[v]H.

For example, a vector (2, 1, 0, 0, 0, 0)H says that two
Handle operators of type 0 and one Handle operator of
type 1 (a) has been applied. Multiplying this vector by Λ
we obtain (4, 5, 2, 1, 0, 1)B, which means that the resulted
surface has 4 vertices, 5 edges, 2 faces, 1 boundary curve,
0 genus, and 1 connected component.

In order to compute the number of Handle operators
needed to build a surface with boundary, we can use the
inverse matrix of Λ:

Λ−1 =
1
12


−1 1 11 −1 −2 2
−3 3 9 −3 −6 −6
−2 −4 10 4 −4 4
−2 2 −2 −2 8 4
3 −9 15 −3 −6 6
1 −1 1 1 2 −2



In order to illustrate the use of Λ−1, suppose now that
we would like to build a tetrahedron that has 4 vertices,
6 edges, 4 faces, no boundary curves and no genus, and
1 connected component. Thus, such surface is represented
by the vector (4, 6, 4, 0, 0, 1)B. If we multiply such vector
by Λ−1 we obtain the vector (4, 3, 1, 0, 2, 0)H. This means
that one way to obtain a tetrahedron is to apply 4 Handle
operators of type 0, 3 Handle operator of type 1(a), 1
Handle operator of type 1 (b) and 2 Handle operators of
type 2. It is important to observe that this procedure has to
be exercised with care since the unbuilding operators count
as -1.

Using this algebraic properties, we could also verify
that the Zip operator can be obtained by the application
of consecutive Handle operations. Figure 11 shows two
possible ways to zip two boundary edges:

– One is by the two uses of the Zip operator. The trans-
ition caused by two Sip operators on the surface is
(−2,−2, 0, 0, 0, 0)B, i.e. the resulted surface has -2
vertices and -2 edges than the original one (see figure
11(a)).

– An other is by the use of a Handle operators of type 1
(b) and one of type 2. To obtain such transition by the
use of Handle operators, we multiply this vector by the
matrix Λ−1 whose result is (0, 0, 1, 0, 1, 0)H, which is
the desired result (see figure 11(b)).

Remarks on Handle Operators

With the set of Handle operators presented above one
can build and unbuild all kinds of orientable combinatorial
surfaces with or without boundary. The unbuilding Handle
operators shall be used to perform cut operations on the sur-
face, while the building Handle operators shall be used to
make paste operations. More formally, we could proclaim
the following results:

Theorem 11 If S is a connected and oriented combinat-
orial surface with or without boundary, then there is a fi-
nite sequence of unbuilding Handle operators that can com-
pletely remove S.
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Sketch of the Proof. The procedure to destroy the surface
is the following: For every interior edge e on S, apply one
of the unbuilding Handle operators (including the inverse of
the Zip operator). Observe that in section 5.a(ii) we study
all the possible cases to apply such operators to an interior
edge, and that is always possible to do that. After that, the
resulted surface S ′ has |F (S)| surface components, where
each component has only one face. Then, we can apply the
unbuilding Handle operator of type 0 to each one destroying
all of them. �

If we apply this sequence of operators in the other way
round, we obtain the Handlebody decomposition of the
surface.

Corollary 12 Every orientable combinatorial surface with
or without boundary can be created with a finite sequence
of building Handle operators

Observe that all Handle operators presented in sections
5.a(i) and 5.a(ii), except the Handle operator of type 0 and
its inverse, are applied to edges. The building operators
identify two boundary edges to make an interior edge and
the unbuilding operators split an interior edge to build two
boundary edges. In those sections we investigate all the
possibilities to paste that could occur. In all the cases the
resulted surface is a valid one.

Theorem 13 Handle operators cannot generate invalid
combinatorial surface.

To conclude, from now on we will call the Handle oper-
ators presented in this section as low-level Handle operat-
ors. This is because in section 6 we will present a suitable
API that uses them in a higher level.

(b) Stellar Operators

The Stellar theory presented in Section 4(b) studies
structural modifications to the neighborhood of a simplex
that do not alter the topology. These modifications are the
stellar moves, stellar subdivision and welds. They can be
used to change the connectivity and the resolution of a
mesh.

We classify the Stellar operators in terms of their effect
in the number of faces, |F |, in the mesh. Accordingly, there
are three groups of operators:

– isolevel;

– refinement; and

– simplification.

Isolevel Stellar Operators

The isolevel operators keep the resolution of the mesh at
the same level. Thus, they do not change |F |. The operator
in this group is the bistellar 1-move, also called 1-flip (or
edge flip). It simply exchanges two existing triangles by two
new triangles. This operator is shown in Figure 3(b).

The edge flip is a very powerful operator for changing
the combinatorics of the mesh structure without altering
its resolution or topology. For this reason, it is the basis of
many computational geometry algorithms.

Refinement Stellar Operators

The refinement operators increase |F |, and thus the res-
olution of the mesh. The operators in this group are the 2-
split (face split), and 1-split (edge split).

The face split replaces one existing triangle with three
new triangles, and thus, it increases |F | by 2. This operator
is shown in Figure 3(a).

The edge split has two cases. When the edge is an
internal edge, the edge split replaces two existing triangles
sharing that edge with four new triangles. When the edge
is a boundary edge, it replaces one existing triangle with
two new triangles. This operator increases |F |, by 1 or 2,
depending of whether the edge belongs to the boundary or
not. Figures 4 and 5 show the 1-split of an internal and a
boundary edge.

Simplification Stellar Operators

The simplification operators are the inverse of the re-
finement operators. The inverse of the face split is the face
weld, and the inverse of the edge split is the edge weld, In
the case of simplification of an element in the interior of the
mesh, the face weld replaces three faces incident in a ver-
tex with one face removing that vertex, and the edge weld
replaces the four faces incident in a vertex with two faces
such that the vertex is substituted by one of the two possible
edges that gives a triangulation of the region defined by its
link.

Observe that, weld operations (σ, ν)−1, are specified
through a vertex ν, whose star defines the neighborhood to
be changed.

Remarks on Stellar Operators

At this point it is appropriate to note that Stellar operat-
ors can be used as primitives to define other multiresolution
operators.

For example, edge collapse and its inverse, vertex split,
can be decomposed into a sequence of elementary stellar
operations. This is a natural consequence of Theorem 7.
More specifically, the edge collapse is given by a compos-
ition of edge flips and a final edge weld, while the vertex
split is given by an edge split composed wit a sequence of
edge flips. This is shown in Figure 12.
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Figure 12: Decomposition of an edge collapse (top) into an edge swap followed by an edge weld (bottom).

We remark that stellar operations are more flexible in
general. In the case of edge collapse / vertex split, it is easy
to see that there are many possible sequences of edge flips
leading to the final edge weld. Therefore, those edges flips
can be chosen in such a way that the quality of the mesh
is improved, for example, those with bad aspect ratios [21].
The geometric result of this flips could generate singularit-
ies on the geometric polyhedron, in order to avoid that the
well known link condition has to be verified [5].

6 Implementation Framework
In this section we propose an application program inter-

face (API) for a mesh library based on the Handle and Stel-
lar operators. To implement such API, we adopt an edge-
based data structure similar to the half-edge that supports
manifolds with boundary, although the operators can be
defined on any data structure representing the connectivity
of the mesh. Such data structure shows to be very suitable
for a simple implementation of the proposed mesh operat-
ors. Its detailed description is on the appendix. All the code
and examples are available on the web [19],

The API consists of the set of queries, Handle operat-
ors, Stellar operators and an additional set of higher-level
derived operators.

(a) Queries

The mesh operators need answers of queries and navig-
ation on the mesh structure. The main useful queries are:
c = link(s); and c = star(s). Note that they can take as
arguments a simplex s of dimension 0 (vertex), 1 (edge)
or 2(face). In our implementation, we use only the vertex
star, which returns an adjacency iterator object c, called cir-
culator [43]. Another useful query, that is directly derived
from the star of a vertex is the function degree(v), which
is |star(v)|.

We also have the basic operators of the edge al-
gebra [36]: v = org(e) (origin vertex v of a half edge e);
f = left(e) (face f to the left of a half edge e); h = sym(e)
(symmetric half edge h); and n = lnext(e) (next half edge
n on left face). These functions are trivially computed from
edge-based data structures.

In order to have an efficient implementation of the
Handle operators, it is important to have an explicit rep-
resentation of the boundary components. Since with that it
is possible to identify whether two boundary edges are on
the same boundary component or not. For that reason, we
also have the query: is boundary(s), that returns true if the
simplex s belongs to the mesh boundary.

(b) Handle operators

The building and unbuilding Handle operators allow cut-
ting and pasting on the surface. They are: f = create(v0, v1,
v2) (creates a new triangular face f); destroy(f) (destroys
an existing face); glue(e0, e1) (“identifies” two boundary
edges to make one interior edge), and unglue(e) (splits one
interior edge to make two boundary edges).

The glue(e0, e1) operator internally decides whether
to use a Handle operator of type 1, a Handle operator of
type 2 or a Zip operator. This decision is done in constant
time using our data structure, by simply identifying the
boundary components of e0 and e1 and counting how
many vertices in common e0 and e1 have. The low level
implementation of the Handle operator of types 1 and 2
and the Zip operator has constant time complexity, using
a union–find data structure for the boundary.

The unglue(e) operator internally decides whether to
use an unbuilding Handle operator of type 1 or type 2
or the unzip operator. The complexity in the worst case
of this decision is done in linear time on the number of
faces. Given an interior edge we first have count how many
interior vertices are incident to it. If it has two incident
interior vertices, we have to apply the unbuilding Handle
operator of type 2. In the case it has only one incident
interior vertex, we have to apply the unzip operator. Both
of them have constant time complexity. Otherwise, we have
to apply the unbuilding Handle operator of type 1, whose
complexity is linear in the number of faces, since we have to
identify whether the surface component will be subdivided.

(c) Stellar operators

The Stellar operators allow changing the resolution and
structure of the mesh. They are: flip(e) (swaps the edge e);
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split(e) (bisects the edge e and its incident faces); split(f)
(trisects the face f); weld(v) (inverse of the split operators,
which applies to edges and faces).

Note that flip is only defined for internal edges. In our
C++ implementation, split is defined using overload of
operators. weld deduces the type operation from the star
of the vertex v.

Using our data structure, we can affirm that the operators
flip(e), split(e), split(f), and weld(v) have constant time
complexity.

(d) Derived, higher-level operators

Although the Handle and Stellar operators described in
the previous subsections form a complete set of atomic
operators to manipulate the combinatorial structure of a
mesh, it may be convenient to define some derived mesh
operators that are instrumental in common applications.

These operators can be constructed by a composition of
basic Handle or Stellar operators. They encapsulate abstract
higher-level operations on a mesh.

Here we will define the operators attach, detach, and
remove, that will be useful in the next section.

The operator attach(e, v) augments the mesh by adding
to its boundary a new triangle defined by some boundary
edge e, and a new vertex v, as shown in pseudo-code below.

procedure attach(Edge e, Vertex v)
Require: e ∈ boundary
f← create(org(e), org(sym(e)), v)
glue(e, f.edge[0])

The operator detach(f) is the inverse of attach, it shrinks
the mesh by deleting a triangle from the mesh. It can be a
triangle on the boundary or an internal triangle.

procedure detach(Face f)
for e ∈ f do

if not is boundary(e) then
unglue(e)

destroy(f)
The operator remove(v) decreases the resolution of the

mesh by eliminating one arbitrary vertex v. In order to
be able to apply the stellar weld operator, it first needs to
perform some edge swaps to make the degree D of the
vertex compatible with the desired operation (i.e., in the
case of an internal vertex, degree D = 4 for edge weld or
degree D = 3 for face weld, and in the case of a boundary
vertex, degree D = 3 for edge weld). Note that the selection
of edges to be swapped may take into account the aspect
ratio of resulting triangles.

procedure remove(Vertex v, int D)
while degree(v) > D do

e← select edge(star(v))
flip(e)

weld(v)
We could also define an operator insert(v), which would

be the inverse of remove. However, this type of operator
not only increases the mesh resolution, but usually also
changes the mesh geometry (for example, in the context of
mesh subdivision). Because of this dependency, we prefer
not defining it here.

7 Applications and Examples
Mesh operators embody the fundamental transforma-

tions for combinatorial manifolds. Applications that adopt
meshes as a surface representation can greatly benefit from
our operators, because they provide the correct level of ab-
straction for algorithm design and guarantee that the repres-
entation is always valid.

In this section we discuss how our framework fits into
graphics applications. Below we give examples of the sev-
eral algorithms for geometric modeling that employed some
of the concepts presented in this paper. We also describe
how these prototypical applications can fully exploit our
mesh operators.

(a) Mesh construction

Mesh construction is perhaps the most basic geometric
modeling application. In this context, advancing front al-
gorithms constitute a flexible and principled way to create
a mesh representation. This type of algorithm starts with a
seed triangle and grows the surface by gluing new triangles
to the surface boundary. The Handle operators, create and
glue, allow a very robust and concise implementation of this
algorithm [12].

Ball-pivoting [1] reconstructs a polygonal surface from
point samples using an advancing front algorithm. The
name of this method comes from the geometric criterium
to select new points to be added to the mesh, which uses a
ball of radius α such that the generated mesh is a subset of
the Delaunay triangulation. See Figure 13.

e
v

Figure 13: Advancing front with Ball Pivoting.

The ball-pivoting method is very suited to the recon-
struction of uniform point samplings of a surface, as for
example in the case of 3D scanning. Algorithm 1 shows the
pseudo-code of the method.

Besides the Ball Pivoting, there are several other mesh
construction methods that are based on the advancing front
algorithm [30, 29]. These methods differ mainly in two as-
pects: the type of surface definition (i.e., parametric, impli-
cit, points, etc); and the geometric criterium to get sample
points.
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Figure 14: Edgebreaker CLERS moves: C create, L left, E end, R right, S split.

Algoritm 1 Ball Pivoting
while points to process do

while (e← candidate edge) ̸= ∅ do
v ← ball pivot(e)
attach(e, v)

if (v0, v1, v2)← find seed then
f ← create(v0, v1, v2)
new front(f)

(b) Mesh encoding and Compression

Once a mesh has been constructed we are left with the
problem of storing and transmitting it. In other words, we
need an external representation that encodes the geometry
and connectivity of the mesh.

Additionally, since meshes give only a piecewise linear
surface approximation, they are often very big, which lead
to the need for compression.

Among the different strategies to compress the con-
nectivity of meshes, many of the successful approaches are
based on G. Taubin and J. Rossignac’s topological surgery
[18]. The Edgebreaker scheme [47] is one example. This
kind of algorithm cut the surface along a set of edges dur-
ing the encode step. Therefore, they could be naturally ex-
pressed in terms of unbuilding Handle operators and the
unzip. As an important consequence, the Handle operators
together with the Zip operator are the natural ones to recon-
struct the surface during the decoding process.

The Edgebreaker compression represents mesh con-
nectivity as a dual graph of the triangle mesh that has been
cut. For compact surfaces homeomorphic to the sphere this
graph is a tree, and the technique guarantees a compression
of less than 2 bits per triangle.

The encoding algorithm visits each triangle of the mesh
in a depth-first order using five types of moves, called C, L,
E, R, and S. Each triangle is labeled with the code indicating
the way it was traversed. Figure 14 shows the CLERS
moves.

The resulting CLERS string is a compact encoding of
the mesh connectivity.

Algorithm 2 shows the pseudo-code of the Edgebreaker
encoding procedure. It uses the concept of a gate, i.e., the
current edge for traversing the dual graph. The algorithm
starts with an initial gate e, and it writes the opposite vertex
v and performs a default move to the right (code C). Note
that, subsequently the algorithm has four more options to
continue at a gate: move to the left (code L); move to the
right (code R); move both to left and right (code S) and no
move (code E). In all these cases, the mesh has already been
cut, such that the vertex opposite to the gate was previously
visited and stored.

Algoritm 2 EdgeBreaker(e)
repeat

v ← org(lprev(e))
if v not visited then

write geometry(v); mark v as visited
output C; e← lprev(e)

else if right face visited then
if left face visited then

output E; return
else

output R; e← lnext(e)
else

if left face visited then
output L; e← lprev(e)

else
output S; EdgeBreaker(lprev(e)); e ←

lnext(e)
until true

We remark that this encoding process is equivalent to
unbuilding the mesh. In fact, this could be accomplished by
using the operation detach after visiting each triangle.

The decoding of a CLERS string builds the mesh
essentially by the reverse of the encoding process. The
method Spirale Reversi [49], shown in Algorithm 3 does
exactly that. It reads the string backwards while construct-
ing the mesh.

Observe that the structure of this algorithm is very sim-
ilar to the the one for Advancing Front mesh construction.
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Algoritm 3 Spirale Reversi
e← initial edge
while c← read code do

v ← get vertex(e, c)
if c = C|L|R|S then

attach(e, v)
switch (c)
case C: e← lprev(e)
case R: e← lnext(e)
case L: e← lprev(e)
case S: pop(lprev(e))

e← lnext(e)
else // c = E

push(e)
e = (get vertex(), get vertex())
create(v, org(e), dest(e))

Edgebreaker can be further extended to encode and de-
code surfaces with genus (see [11]). The operators of our
framework prove to be useful in the design and analysis of
algorithms based on topological surgery.

(c) Mesh refinement and Subdivision surfaces

Classical modeling techniques employ polynomial or ra-
tional patches, such as B-splines or NURBS, in the geomet-
ric design of smooth surfaces. In these applications a path
is represented by a control polygon.

Subdivision surfaces generalize spline patches to non-
regular meshes. In this setting, the surface is the limit of
applying a subdivision scheme to a control polygon. The
subdivision scheme is defined by topological rules for mesh
refinement and geometric rules for vertex smoothing.

A simple subdivision scheme for triangle meshes is the√
3 [38]. It employs for mesh refinement a combination of

the stellar operators face splits and edge flips. The two basic
topological rules are shown in Figure 15.

Figure 15:
√

3 subdivision rules: face split and edge flip

The
√

3 subdivision algorithm consists in the repeated
application of the refinement and smoothing rules to a
control mesh. The pseudo-code is given in the Algorithm 4,
below.

Most refinement methods for subdivision surfaces can be

Algoritm 4 sqrt3 Subdivide(M)
for face f ∈M do

v ← split(f)
smooth new vertex(v)

for all old edges e do
flip(e)

for all old vertices o do
smooth old vertex(o)

implemented with stellar operators. Velho [40] showed that
both primal [27] and dual [32] schemes can be factorized
using edge splits. Other schemes, such as the

√
2 subdivi-

sion [26] also use edge splits.

(d) Mesh simplification and Hierarchical structures

In many applications, a surface is densely sampled and
approximated by a triangular mesh. This is the case, for
example, of 3D scanning and some scientific simulations.

A consequence of such a process is that these meshes
are usually very redundant taking more memory space than
necessary for a given approximation accuracy. The solution
to this problem is simplification! Mesh simplification al-
gorithms work by eliminating vertices that do not convey
relevant geometric information.

Simplification is essentially an optimization problem:
we want to compute a mesh with the minimum number
of elements such that a surface is approximated with small
error.

The full optimization problem is intractable and most
methods employ a “greedy” strategy to find suitable local
minima. The basic structure of these methods is as follows:
mesh vertices are kept in a priority queue according to
some error function. Then, simplification is performed by
removing vertices with smallest error until the desired mesh
size is reached.

In that way, simplification algorithms can also used to
generate approximations of the surface at multiple levels
of detail and build a hierarchical structure. This is done by
globally simplifying independent regions that completely
cover the mesh.

One such algorithm is the four-face cluster simplifica-
tion [20] that adopts the quadric error metric [34] and di-
vides the mesh into regions of four triangles that are sim-
plified using edge weld, after appropriate edge flips. See
Figure 16.

Figure 16: Four-Face cluster simplification: flips, and weld
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Figure 17: Histograms of triangle aspect ratio for QSlim and 4-face cluster simplification.

The method employs the stellar vertex remove operator,
and its pseudo-code is shown in Algorithm 5

Algoritm 5 Stellar Simplification
assign quadrics to vertices of M
for all v ∈M do

compute error E(v)
for j = 1, N do

put v ∈ V j into priority queue Q
while (v ← pop(Q)) ̸= ∅ do

if v not marked then
remove(v)
locally recompute quadrics and update Q

Any simplification method that is based on edge collapse
can be implemented using edge flips and edge splits [20,
21]. One major advantage of the stellar vertex removal over
edge collapse is that it produces meshes with better quality,
since aspect ratio of triangle are taking into account in
the optimization. Figure 17 shows a histogram of a mesh
simplified from 80k to 40k triangles by both the QSlim and
four-face cluster algorithms.

Furthermore, their locality properties make Stellar op-
erators very suitable for creating multiresolution structures.
Progressive meshes [8] and binary multi-triangulations [50]
are examples of hierarchical data structures that can be built
with these operators.

(e) Mesh adaptation

Multiresolution structures constitute the foundation for
selecting the appropriate level of detail and adapt a mesh to
different situations in modeling and visualization, such as
display resolution in view dependent rendering.

However, in most applications the level of detail must
vary spatially across the mesh and in time as the conditions
change. To resolve this issue, variable resolution adaptation
comes into play! The process amounts to coupling an ad-
aptive mechanism on top of a multiresolution structure.

A powerful variable-resolution structure for mesh ad-
aptation is the semi-regular 4-8 mesh [41]. It is the two-
dimensional version of the n−D Restricted Binary Multi-
Triangulation [25]. The 4-8 mesh has the underlying struc-
ture of a triangulated quadrangulation (or tri-quad mesh).
The properties of this structure makes possible to construct

a “virtual” multiresolution, while enforcing that adjacent
triangles do not differ by more than one level of resolu-
tion. Such a restriction guarantees a gradual transition in
the mesh adaptation.

Another advantage of the adaptive 4-8 mesh is that,
thanks to its regular structure, the hierarchy does not need
to be explicitly stored. For this, it is assumed that we are
given a base mesh and a function to compute samples of
the surface over this base domain.

The dynamic 4-8 adaptation mechanism consists in re-
peatedly coarsening and refining the mesh while conditions
change. For that, two priority queues guide the simplifica-
tion and subdivision based on some application dependent
adaptation function. Note that this is a conservative strategy,
since the mesh is first simplified and only then refined. The
pseudo-code of the method is show in Algorithm 6.

Algoritm 6 Dynamic 4-8 Adaptation
read 4-8 base mesh
initialize priority queues Qr and Qs

repeat
change mesh and update queues
while (v ← pop(Qs)) ̸= ∅ do

if priority(v) < T then
SIMPLIFY(v)

else break
while (e← pop(Qr)) ̸= ∅ do

if priority(e) > T then
REFINE(e)

else break
until (quit)

In order to maintain the mesh invariant that enforces a
limit of one-level difference, the concepts of split edge and
weld vertex are employed. The split edge is the internal
edge of a tri-quad block. As the mesh is refined, neigh-
bor triangles must have the same split edge to form a block
(and therefore, be at the same resolution level). When this is
not the case one of the neighbors must be subdivided first,
propagating the resolution restriction. The same reasoning
applies in the case of simplification for weld vertices. Fig-
ure 18 illustrates the restriction mechanism.

The implementation of the restricted adaptation mechan-
ism for refinement / simplification has a very simple recurs-
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Figure 18: Dependency propagation for refinement and sim-
plification.

ive implementation, as shown in Algorithm 7. Note that the
overall structure of both procedures is essentially the same,
revealing the symmetry of the process.

Algoritm 7 Restricted 4-8 Refinement / Simplification
procedure REFINE(Edge e)

for f ∈ star(e) do
if f.split edge() ̸= e then

Refine(f.split edge())
split(e)

procedure SIMPLIFY(Vertex w)
repeat

v ← max level neighbor(w)
if level(v) > level(w) then

Simplify(v)
until (degree(v) ̸= degree(w))
weld(w)

The adaptive 4-8 mesh can be used in many types of ap-
plications where a surface is modified dynamically or even
when the surface is static by the computation requirements
change over time.

One example of such an application is the approximation
of deformable surfaces [22]. In that case, may be the result
of a physical simulation or some other form of procedural
animation. Figure 19 shows the visualization of a numeric
simulation using the level-set method. The surface is the
zero-set of a signed distance function representing an inter-
face between two materials. It is a front tracked and evolved
by the level-set simulation. For the example in this figure
we used a spiraling analytical field from [6], which advects
a sphere of radius 0.15 centered at (0.35, 0.35, 0.35) with
velocity:

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz),
v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz),
w(x, y, z) = − sin(2πx) sin(2πy) sin2(πz).

(1)

Note how the mesh resolution is nicely adapted to the
geometric features of the deforming surface. Table 1 gives
the times for each stage of the computation. We remark
that the adaptation is very efficient and the total time is
dominated by the level-set simulation.

stage Init Deform Adapt Total
ms 475 3208 562 3770

Table 1: Time statistics in milliseconds. We measure the initialization
time, an average time for deforming and adapting the current mesh,
and the total average time.

Another application that takes advantage of the adapt-
ive 4-8 mesh is the animation of facial expressions [48],
where the deformation comes from tracking human faces
in videos.

8 Conclusions
We presented in this paper an unified framework for

the representation of combinatorial 2-manifolds with or
without boundary. This representation includes two kinds
of primitive operators on the underlying meshes: operators
that change the topological characteristic of the mesh and
operators that just modify its combinatorial structure.

The main characteristics of the proposed framework are:

– The operators don’t generate, in any moment, non-
manifold objects. Which is the case of several Euler
operators.

– They are based on two important theories, and they do
not depend where the surface is embedded.

We also introduced a new data structure that explicitly
represents the boundary curves. This data structure shows
to be very useful for the implementation of those operators.
A prototype implementation is available online [19].

We note that other data structures for mesh representa-
tion, such as OpenMesh[45], may use the topological op-
erators proposed in our framework. Also, canonical de-
scriptions for combinatorial manifolds could be constructed
using Handle and Stellar operators (for example: Normal
Meshes with a non-regular triangulation).

The Handlebody and the Stellar theories apply as well
in the three-dimensional context. Thus, the authors pretend
extend this work to volumetric meshes.

For the non-manifold extension, one can use the combin-
atorial stratification of cell complexes proposed by Pesco et
al. [14], to stratify the complex in several manifold parts.
And then, use the extension of Handle and Stellar operators
for one and three-dimensional manifolds.
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Figure 19: Adapted meshes generated with a spiraling field at iterations 0, 20, 30, 35, and 63, using 0.012 as time step.
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APPENDIX: Mesh Representation
Different data structures can be used to implement the

mesh operators defined above. We have chosen an edge-
based topological data structure because it gives a good
compromise between simplicity and generality.

In our topological data structure, a mesh is a collection
of surface components pointers.

struct Mesh {
Container<Surface*> surfaces;
}

The surface is structured as S = (V, E, F, B) where
V , E, F , B are the collections of vertices, edges, faces
and boundary curves respectively. These sets are stored in
containers of pointers to the correspondent topological data
structures.

struct Surface {
Container<Face*> faces;
Container<Edge*> edges;
Container<Vertex*> vertices;
Container<Edge*> bndries;
}

The face structure stores a pointer to the first half-edge
of its outer loop. Here, we assume triangular faces and thus,
the face loop contains exactly three edges.

struct Face {
Half Edge* he ref;
Mesh* sm ref;
}

An edge is formed by two half-edges. In the case it is
representing a boundary edge one of these half-edges points
to a null face.

struct Edge {
Half Edge he[2];
}

The half-edge is the central topological element of the
data structure. It stores a pointer to its initial vertex, a

pointer to the next half-edge in the face loop, and pointers to
the edge and face it belongs to. Note that the mate half-edge
can be accessed through the pointer to its parent edge.

struct Half Edge {
Vertex* org ref;
Half Edge* next ref;
Face* f ref;
Edge* e ref;
}

The vertex structure stores one pointer to an incident
half-edge. In the case of a boundary vertex, this half-edge
is part of the boundary curve. This representation makes it
trivial to identify if a vertex is on the boundary or is in the
interior of the surface. Also, it is instrumental not only for
the implementation of the vertex star iterator, but also for
the boundary curve iterator. The vertex structure also holds
a pointer to vertex geometry.

struct Vertex {
Half Edge* star i;
Point* p;
}

The point data structure stores a pointer to the vertex.
It represents a ”bridge” between geometry and topology. It
also stores geometric data of the vertex and can also hold
additional data, such as normals, texture and parametric
coordinates.

struct Point {
Vertex* v;
Data* d;
}

These last two data structures separate the roles of points
and vertices which are to represent geometry and topo-
logy of the mesh, respectively. This is a robust approach
to compare geometric coincidences between vertices. Sur-
faces reconstruction is a typical example where this is ne-
cessary. Indeed the geometric operations acts on sample
points (some may belong to the boundary or not) whereas
mesh vertices attach them by handle operations whenever
new triangles are created. See for example [12].

For a more detailed description of the data structure
and to obtain the source code of the Handle and Stellar
operators using it see [19].
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