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Abstract. Recent developments in data acquisition technology enable to directly capture real vector fields, helping
for a better understanding of physical phenomena. However measured data is corrupted by noise, puzzling the
understanding of the phenomena. This turns the task of removing noise, i.e. denoising, an essential preprocessing
step for a better analysis of the data. Nonetheless a careful use of denoising is required since usual algorithms
not only remove the noise but can also eliminate information, in particular the vector field singularities, which are
fundamental features in the analysis. This paper proposes a semi-automatic vector field denoising methodology,
where the user visually controls the topological changes caused by classical vector field filtering in scale-spaces.
Keywords: Vector Fields. Topology. Scale-Spaces. Denoising.

Figure 1: Topology-aware denoising of a measured fluid velocity field: (left) original field, (middle) gaussian denoising, (right) gaussian
denoising preserving topological singularities selected through our interface.

1 Introduction

Denoising is the process of removing noise from a signal.
It plays an important role as preliminary step for modeling
and analysis. The main reason is that any measuring device
are inherently susceptible to noise. As a consequence, signal
processing should filter out uncertain information contained
in the measured data in order to obtain a clean model. In
real data, noise can have magnitude in average similar to
the signal although not at coincident locations. Therefore,
filtering out the noise without losing important information
is, for sure, a very challenging task. In this context, this
paper proposes a semi-automatic topology-aware denoising
methodology for vector field data.

We focus here on vector fields and their topology since
the interpretation of several physical behaviors, in particu-
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lar fluid dynamics, is eased by a the detection and identi-
fication of its singularities, like sinks, sources and saddles.
Moreover, several recent devices allow for measuring such
vector fields: For example, Particle Image Velocimetry (PIV)
[8] is an imaging technique to measure fluid velocity field
that has been used on several applications in aerodynamics
and hydrodynamics research. However, such real data is typ-
ically corrupted by noise, which harms singularity detection
and further analysis, puzzling the interpretation.

Classical denoising approaches, such as convolution fil-
ters (14, [16]], rely on the assumption that the in-
formation is present in the measured data at a stronger scale
than noise. Successive applications of such convolution fil-
ters noise generate a scale space [3} 2]] representing the ori-
ginal data hierarchically, helping for subsequent analysis, in
particular topological singularities [2321]]. However, recon-
structing such vector field using a single scale may keep
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either both noise and information or neither, leading to a del-
icate tradeoff. The main characteristic of the vector field de-
noising methodology to be presented is that the user controls
the topological changes caused by classical vector field fil-
tering by the use of a suitable interface. The main part of
the user interaction is to provide local tradeoffs between in-
formation and noise. The reconstructed field is then a smooth
combination of different denoising scales.

2 Related Work

Denoising Among vector field filtering techniques on
structured grids, several are specifically dedicated to colored
image processing [[7]. In particular, color image filters focus
on the reduction of impulse noise [22} 10} 6]. More recently,
Westenberg and Erlt [14] proposed a 2D vector field de-
noising algorithm that suppress additive noise by threshold-
ing vector wavelet coefficients. Close to this work, a class
of vector field filters has been introduced as generalized
random walks: for images [13]], meshes [11} [12] and vec-
tor fields [19]. This work will use random walk filters with
Gaussian or anisotropic kernels as instances for the proposed
methodology, since they naturally represent the original data
in a hierarchical form as a scale space.

Scale spaces on vector fields Scale-space techniques have
become popular in computer vision for their capability to
represent the multi-scale information inherently contained
in real data. In particular, Bauer and Peikert [1] use scale
spaces to track vortices in 2D-time dependent computational
on fluid dynamics simulations. Klein and Ertl [23]] proposes a
strategy to track singularities over multiples scales in order to
evaluate the importance of the critical points to the analysis
and interpretation of the vector field. We propose here to em-
ploy such scale-space representations to let the user choose
locally which scale to utilize for reconstruction.

Topology-aware techniques Turbulent vector fields usu-
ally have structures in different scales that difficult their ana-
lysis. A possible solution to this problem is to analyze the to-
pology of the vector field in order to automatically simplify-
ing while keeping the most persistent features [18]]. Another
strategy, proposed in this work, relies on the user knowledge
of the vector field, letting him decide interactively which to-
pological singularities to keep or to smooth. Such approach
has already been proposed in the field of surface reconstruc-
tion [4} [17].

3 Basic Concepts of Vector Fields

A vector field v on a planar domain D C R? is a
function assigning to each point (z,y) € D a 2D vector
v(z,y) = (v*(x,y),vY(x,y)). Assuming that v* and v¥ are
differentiable bivariate functions, then the Jacobian matrix
of v at point (zg, yo) is:

%" (w0,50) % (w0, Yo)
Jv(x()a yO) = 881)% , égjyy 7

W(Jﬁmyo) Ty(wo,yo)

A point (xg, yo) € D is singular for v if v(zo, yo) = (0, 0).
Following Hartman-Grobman theorem, singular point can be
partly classified by looking to the eigenvalues of the Jacobian
matrix at that point:

— If the real parts of both eigenvalues are strictly negat-
ive, then the singular point is a sink.

— If the real parts of both eigenvalues are strictly posit-
ive, then the singular point is a source.

— If the eigenvalues are non-zero real number with dif-
ferent sign (one positive and one negative), then the
the singular point is a saddle.

— If the real part of one of the eigenvalues is zero, the the
singularity is of higher order.

In measured data, the vector field v is not given as a differ-
entiable function. We will suppose here that we have the val-
ues of vector field v at the points (x;, y;) of a regular grid of
size M x N. We will denote v; ; = (v ;,v ;) = v(zi, y;),
fori =1,...,M and 57 = 1,..., N. When needed, we can
interpolate those values in-between the sample points. The
simplest such interpolation is the bilinear interpolation:

bq’/’j : [0, 1]2 — R2 s
bij(z,y) =vij - (1—=2)(1—y)+ v -z(1—-y) (1)
+vijin - (1 —2)y+ Vi jn - 2y

4 Topology-Aware Vector Field Filter

The basic idea of our methodology is to let the user locally
select the noise scale to remove, defining a scale parameter
s(z,y) at each point. We start by generating a scale space
from the original vector field and let the user choose a central
scale sg. In order to avoid the arduous task of defining the
scale parameter s(x,y) sample by sample, we display to the
user the singularities that appear or disappear at different
scales nearby sg, where the distance can be set by the user
as a scale difference or as a number of topological changes.
When the user selects a topological change at a singular point
(z0,y0), we define s(xg,yo) to be the closest scale to sg
that reverts the change. Finally, we return the reconstructed
vector field as a smooth mixture of different scales of the
scale space.

Before entering in detail for each step, let’s illustrate our
technique on the example of Figure [2] This field contains
some relatively clean parts at the bottom, and noisy parts at
the top. The singular points at the bottom should be retained,
almost all the singularities at the top should be cleaned,
except for a sink that many streamlines point to.

Scale-space In this example, we use a simple Gaussian
filter to generate a scale-space (see Figure [3). Our method
can build on any denoising scale-space, as exemplified in
Section [5| using isotropic or anisotropic filters.
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Figure 2: An artificial vector field represented by its streamlines
(left) with its singularities marked (right).
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Figure 3: The vector fields at scale so = 10 of its Gaussian scale
space (left) with its singularities marked (right).

D

Singularity detection All the vector fields of the scale
space are available to the user at any time. Moreover, we
display the singularities of the field in each scale. There are
different methods to detect singularities however the detec-
tion mechanism can easily be replaced. In particular, we pro-
pose a new singularity detection, which tries to detect weak
regions of the field, as detailed at Section As it can been
seen in Figure 3] even though the field is still noisy at scale
so = 10, the meaningful singularity shown in the bottom left
of Figure 2] was lost in the denoising process. The top part of
the field is still noisy, needing more denoising.

Interface 1In order to allow the user to denoise more of
the top part while denoise less of the bottom to keep the
meaningful singularity, we display to the user the topological
changes at scales around 10 (see Figure f). The user then
selects which topological changes he wants to revert by a
simple click.

Reconstruction Each user selection defines a scale at the
chosen point as the closest scale to so = 10 that reverts the
topological change. This gives a sparse sampling of the per-
point scale parameter, which is smoothly interpolated to the
whole domain. Our scheme supports different interpolations,
and we provide two examples in Section [7] From this inter-
polation we can reconstruct an adaptively denoised vector
field (see Figure3).

Toplogy aware vector field denoising

in nearby scales, here from 5 to 15 (left). The user then selects which
topological changes he wants to revert (in purple on the right).

A=

—

ingk

a smooth function (left) which defines the reconstructed vector field
(right).

5 Scale-space for Vector Field Filtering

The scale-space representation of the vector field is a
collection of progressively denoised versions of the vec-
tor fields. Each version is associated to an increasing scale
parameter s. We denote ¥(s,x,y) the vector value of the
field at scale s and point (z,y). The fundamental example
of a scale-space on continuous vector fields is the Gaus-

sian scale space, obtained by convolving with a Gaussian
> +y° )

kernel of increasing variance: G, (x,y) = exp(— *5'

V(s,z,y) = v(z,y) * Gs(z, y) [23].

In the discrete setting, this convolving approach fits into
the more general framework of random walks [9], which
ensures nice scale-space properties from local convolution
masks. The scale parameter is then the number of convolu-
tions applied. We exemplify our editing interface using two
types of scale-space: using the Gaussian kernel G, and an
anisotropic kernel [11 [19]:

x2+y2 v 2
AU,T(xa y,V) = €Xp <_ 20_ ) exp (_ ||27|_| ) 9

which takes into account the direction of the vector field
and better preserves discontinuities. The scale space is then
directly generated by the repeated application of a 3 x 3 mask
with the above kernels.
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6 Detection of singularities

We use two classical approaches for the detection of
critical points on a regular 2D grid. The first one is to search
where the bilinear interpolation of the vector field vanishes.
The second one computes the winding numbers of the same
bilinear interpolation. Also we propose a detection of weak
regions of the vector field, where the bilinear interpolation
almost vanishes. This introduces a threshold, which let the
user be more precise in his interaction.

(a) Singularities of the bilinear interpolation

In the bilinear interpolation case, the detection boils down
to solving the system of quadratic equations by o = (0,0),
where b; ; is defined in Equation (I). This can be explicitly
solved by computing the roots of the polynomial in y:

T Y T Yy x Yy _ T Y
( —vd voo + V&1 vip + VT Voo — Vi1 Vipt

x Y x .Y x Y x .Y 2
+080 Vo1 — Voo V11 — Vip Vo1 + VoV ) ¢ Y
x Y x Y x Y
+ (298 v50 — 295, vg; — Vi Voo~
x Yy T Y x Y
—Vp1 V1p + V10 Vo1 + Voo V11 ) -y
+ Vo Vo1 — Vo1 Yoo

To obtain the value of the x coordinate of the singular point
we use the following expression:
y y y
(vgo — v01) " ¥ — Vo
(vgo — vio — Vo1 + v11) - ¥ — Voo + i

xr =

Eventually, this system may degenerate to a lower degree
polynomial. It can then have zero, one or two solutions. Each
of them must be tested to lie in the quadrilateral.

(b) Winding numbers

The winding number counts the number of turns the vec-
tor fields achieves along a given closed curve I'. It can be
computed from the angular component of the vector field
6(v) by:

wr(v) = - § ao(w)

This winding number is zero if the region inside I" does not
contain critical points. If I" contains a single saddle, then
wr(v) = —1. If it contains a single sink or source, it will
be +1.

We compute the winding number for each cell of the
discrete grid using for I' the square that bounds the cell. With
the linear interpolation on edges, we get the contribution of
edge (2o, y0) — (21, yo) to the above integral explicitly:

x 2 x T y Y y 2
Yoo~ — Yoo Y10 — Yoo Vio T Yoo )

Wpo—10 = arctan TR T
V10 Yoo — Yoo V10

T T x 2 Yy Y y 2
Vi Vig — U + v Vi — U
— arctan 00 710 7 1(; ?OJO ;0 10
V10 V5o — Yoo V1o

Summing over the four edges gives the desired winding
number.

~

Figure 6: A weak region of a vector field, with no singular point
(b(z,y) # 0 and w = 0) (left). Using the weak region detection,
we can let the user keep the vector field close to the original one
near the “almost singular” point (middle). Selecting those points
better preserves the original features of the vector field (right).

(c) Weak regions

Finally we propose a method to detect weak regions.
Instead of searching for zero values of the vector field, we
give some leeway, controlled by the parameter ¢, to find
“almost singular” points. Formally, we search for

(4,7) such that min|/b; ;|| <e.

This reduces to find the roots of a 3¢ degree polynomial sys-
tem in two variable, which leads to a 5" degree polynomial
in one variable.

This is useful in our context, since some regions of the
vector field may contain too few singularities, but still re-
quires adapted scale to preserve weak subregions (see Fig-

ure [6)).
(d) Singularity classification

For the reader interested in implementing a classification
of the singularities, we provide the explicit Jacobian matrix
of the bilinear interpolation bgg:

T xT AT xT 1 T . T T m xT xT ~
V1Y — Voo Y +V10Y — V1Y V11 L — Voo T —Vp T+ U5 T
y YooY =y Ly Yo~y Y
V1Y Voo ¥ T VY — Vo1 Y V1T — Vool — Vo T+ V5 T

where £ = 1 —x and y = 1 —y. The eigenvalues are directly
computed using the trace and determinant of the matrix.

The topological changes we can display to the user cor-
respond to the creation, destruction, or change of type of a
singularity at a fixed grid point.

7 Reconstruction

The singularities selected by the user provides a sampling
of the scale function s(z,y) on the domain. To reconstruct
the whole vector field, we need to interpolate this sampling.
Denoting ¥; ;(s) the vector field sample at scale s, we define
the reconstructed vector field v at grid point (z;,y;) by:

Vi = Vij(s(xi,yy)) -

Virtually any interpolation scheme may work, although
with different resulting qualities. If the interpolation is not
smooth enough, the rapid changes in the scale parameter
may create artifacts in the reconstructed field. Moreover, the
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Table 1: Timings, in milliseconds, for each step of the edition.

Singularity Scale
type (ms) | select | type solve eval

Reconstruction

Data Fig | Size Filter
type  (ms)
Analytic 7 2500 | G, 18.9
Granular 8 2500 | A, 5875
PIV 1 1 15624 | G, 135.0
PIV 9 9 | 15624 | G, 182.8

interpolation must maintain the scale in a neighborhood of
the singularity to preserve it. We implemented two methods
for the interpolation of s that gave satisfactory results: ra-
dial basis functions (RBF), with Gaussian basis, and kernel
Shepard interpolation [[15] with Gaussian kernel.

The RBF interpolation of s(z,y) from the scales of the
used selected singularities sy at (xy,yx) is obtained by a
least-squares minimization on the coefficients oy, of

?ﬂil% > Nsrop (@, yi) = skll*, where (2)

ag

K

srof (2, y) = Z%Ga (T — Tk, ¥ — Yk) - 3)
p

The kernel Shepard method modifies the original Shepard
interpolation [20] by using kernels instead of the Euclidean
distance:

1
ZGa(ﬂﬁ—mk, y—ur) %

k

Sks(x7y) =

A important property of this method is that the image is
limited to [miny, sy, maxy si].

8 Results

In this section we will present our experimental results
on synthetic, simulated and measured vector fields. Since we
work with relatively small 2D vector fields stored in regu-
lar lattices compared to the computing power of actual hard-
ware, the interface responds in real-time to user interactions,
except for the initial scale-space generation (see Table [I).
In all the experiments presented in this paper, the singularit-
ies detected by the winding number method and the bilinear
one were the same, although they may differ in very partic-
ular cases. Moreover, those detected singularities are always
a subset of the weak region detection, therefore only the in-
terface and not the final results are not altered by the choice
of the singularity detection method.

Synthetic data We first validate our approach on a syn-
thetic vector field, corrupted by an artificial, non-Gaussian
noise (see Figure [7). We can denoise adaptively the vec-
tor field, recovering the original singularities. We use Gaus-
sian scale-space with a kernel Shepard interpolation. Ob-
serve that, varying the o of the kernel, we can carry larger
portion of the fields at the selected scale.

> Golz—k,y—yr)-sk -

98.0 7.3 | KS 0.1
110.8 8.3 | RBF 0.8 09

b=0 947.6 | 656 | RBF 0.1 76
I[bl|<e 966 | 667 |RBF 0.1 36

=

l ) /
S /\J/
S
N

Figure 7: Experiments on an analytic vector field (top left) artifi-
cially corrupted by non-Gaussian noise (top right). The user can
choose between singularities that disappeared before scale so (in
blue) or singularities that could be smoothed out at scale s > sg
(in red) (middle left). From the user selection (middle right), we re-
construct the vector field maintaining the selected scale in a small
(bottom left) or larger radius (bottom right).

Simulation data 'We then experimented on a vector field
of 2500 samples issued by a granular simulation [3]]. The
shearing of the granular system generates five main vortices
between the shear bands, which are clearly visible in Figure[§]
besides the noise. We use an anisotropic filter to generate
the scale space, requiring around s = 40 steps to denoise
the granular bands at the top and bottom. However, this
smoothens out one of the main vortices. Selecting it in our
interface allows to reconstruct a clean vector field with the
main singularities, using here the RBF interpolation.
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Figure 8: On a vector field from a simulated shear band granular system (left) 40 steps of denoising recovers the granular bands but loses
one of the main vortices (middle). Selecting that vortex in our interface allow for a denoised reconstruction with the main singularities (right).

Measured data We finally experimented our method on
real measured vector field of 15624 samples, acquired
through PIV imaging. The experiments of Figure [T]and Fig-
ure 9] are measured from a wall-jet setup, where water is in-
jected from the left of the image and kicks on the wall on
the right. The images correspond to the top half of the jet.
The water injection is stronger in the experiment of Figure[I]
as compared to the one of Figure [9] In both case, the top
left part of the image is very noisy since there is less wa-
ter, while the right part is turbulent. This leads to several
important singularities on the right part of the field, which
disappear before the singularities caused by the noise. In the
reconstructed vector field, those singularities are recovered.
We used a Gaussian scale-space for this experiment.

Limitations The method proposed here has a few short-
comings. First of all the detection of singularities is only
done locally and the reconstruction is done on a local base.
Therefore, it does not handle non-local singularities such as
a closed orbit. Also the technique works on a structured grid,
while many recent vector field datasets are meshless to better
take into account errors in the measure-point localization. Fi-
nally, large-scale denoising may displace the location of the
singularity. Our interface then displays two very close-by to-
pological changes, which are not relevant. A tracking of the
singularities [24] would certainly improve our technique
on larger datasets.

9 Conclusion

We proposed a methodology to denoise vector fields that
takes advantage of the user knowledge of the data. Our in-
terface displays topological contents to guide the user in ad-
apting the local filtering scale in order to preserve important
information while aggressively removing noise. The method
supports different techniques for singularity detection, scale
function interpolation or scale-space generation. Using 3D
versions of each technique would allow to extend this work
to 3D vector fields.
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