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Abstract. Vector field analysis and visualization is a fundamental tool in science and engineering applications,
raising the need for robust methods to capture and represent the global vector field behavior. One such representa-
tion, the topological graph, partitions the domain into regions where the flow of the vector field is homogeneous.
This work introduces a topological graph construction based on streamlines. It is guaranteed to produce a coherent
result even when some singularities are not detected. This work also details an application of topological graphs to
improve the generation of self-animated images. In this application, the streamline-based approach carries almost
no overhead, since self-animated images already rely on streamlines, but leads to a threefold speed-up of the core
processing.

Keywords: Vector Field. Vector Field Topology. Visualization. Streamline. Topological Graph. Segmentation.
Topological Method. Self-Animated Image.

Figure 1: The topological graph of a vector field is built from a set of its streamlines (left) by grouping streamlines with similar
behavior. This partition captures the global behavior of the vector field (middle). This information can then be used directly to

improve visualization techniques using streamlines, such as optimizing self-animated images generation (right).

1 Introduction

Vector field analysis and visualization became a funda-
mental tool in science and engineering, raising interest not
only from the visualization community [6], but also from
many applications as fluid mechanics [17] or medicine [[15]].
While understanding the global dynamics of a complex vec-
tor field remains a challenge, in particular for turbulent flows,
there has been significant improvements on the visualiza-
tion of vector fields, for example using glyphs [5], stream-
lines [204 11} 113,10} [14], or illustrative images [3} 21} 14].

Most of those advances heavily rely on a better under-
standing and more robust computing of the vector field to-
pology [18| [16]]. This topology splits into the vector field’s
singularities and the behavior in-between them, which is es-
sentially tubular, i.e. locally equivalent to a constant field [8].
Thus, a simple way to capture the field behavior consists
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in partitioning the domain into regions of tubular flow (Fig-
ure [T). This segmentation is called the topological graph of
the vector field [[19]). This work introduces a construction of
the topological graph on top of a set of streamlines. Depend-
ing on the density of streamlines used, our construction may
not be exact, but it is guaranteed to be coherent, i.e. it builds
the topological graph of some simplified version of the field.
This streamline-based method can be benefited from the ad-
vances in streamline generation [[10} [14].

Moreover the topological information extracted with this
strategy is directly useable to streamline-based applications.
This work explores one example of such use, integrating the
streamline-based topological graph construction to acceler-
ate the generation of self-animated image [4]. This visualiz-
ation technique uses optical illusions to create a movement
effect that follows a vector field (Figure Ekright)). However,
it relies on a slow brute force optimization. For this applica-
tion, the use of the topological graph speeds up the original
optimization by a factor above 3, almost without overhead
since the self-animated image already relies on streamlines.
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2 Related work

In this section we review some work related to stream-
line generation, vector field topology visualization and self-
image images. We refer to the book of Hansen and John-
son [6]] for a greater review of vector field visualization.

Streamlines placement The global behavior of a vector
field is described by its flow and the associated stream-
lines. The efficiency of vector field analysis and visualiz-
ation through streamlines highly depends on their density
and placement: too many streamlines generate clutter and
redundant analysis, while too few may lead to a incomplete
representation. Turk and Banks [20] pioneered this area by
progressively placing streamlines to evenly distribute them.
This method was later improved using a single pass [11],
to favor long [13] or more uniform [10] streamlines. The
present work can use any streamline placement method and
can benefits from further improvements in that area.

Topological methods Another way to analyze the vector
field relies on topological methods to classify and local-
ize the different flow behaviors, in particular at the singular
points [7]. The dynamic in-between singular points can be
segmented into regions of tubular flow. Tricoche [19] pro-
posed to represent this segmentation through the topological
graph, computed from a few specific streamlines. Such meth-
ods can be extended to produce simplified representations
that capture the more persistent behaviors [18]]. The topolo-
gical information can also be used to assist the user for un-
derstanding [S]] or smoothing [16] the vector field. The com-
putations of topological information, in particular the topo-
logical graph may suffer from numerical imprecision [19],
motivating error-controlled streamline integrators [[14]. This
work proposes a topological graph construction based on
streamlines that always generate a coherent result, even if the
streamline set is too sparse to capture all the singularities.

Self-animated images Wei [21]] proposed the use of optical
illusion to visualize vector fields. The perceptual motion is
caused by an asymmetric pattern of repeated colors. Chi et
al. [4] extended this approach by using the pattern along the
streamlines, optimizing the pattern placement. As an applic-
ation of this work, the streamline-based topological graph is
exploited to speed up the generation of self-animated images,
accelerating its core optimization by a factor above 3.

3 Continuous vector field topology

This section reviews the basic concepts of vector field
topology. We refer the reader to the books of Andronov [1]]
and Hirsch and Smale [8] for a complete discussion, and to
the work of Tricoche [[19]] for the definition of topological
graph.

(a) Vector field, flow and streamline

Definition 1 (Vector field) A vector field v in a planar
domain D € R? is a function that maps each point
x = (x,y) € D to a bi-dimensional vector v(x) =
(v* (2,y) 0¥ (2,y)) € R?.

A vector field is usually understood as a steady velocity field,
where particles are advected by the flow [1]].

Definition 2 (Flow) The flow ¢ : U C R?> x R — R?
associated to a vector field v is defined for all time t € R
by the following differential equation.

0
E¢(x7 t) |t:T =V (¢ (x7T)) .

The flow maps the position x of a particle to its position
after being advected during a given period of time . Varying
time ¢, we obtain the trajectory of the particle, referred as the
streamline passing through x.

Definition 3 (Streamline) The streamline si(x), passing
through x with v (x) # 0, is defined as:

oo

s = |J o)

t=—o0

If the vector field vanishes at x, i.e.
0, then sl(x¢) = {xo}

%QS(XOJ) =v(xo) =

(b) Singular point

Definition 4 (Singular point) A point xo € D is called
singular for v if v vanishes at x, i.e. v(xo) = (0,0).

A streamline can converge when ¢ — £o0, in which case its
endpoint is a singular point. Since streamlines are integral
lines of the flow differential equation (Def. [2), they do not
intersect except at singular points [[1]].

Assuming that the vector field v is differentiable,
Hartman-Grobman theorem [8]] partially classifies the local
behavior around a singular point Xo from the eigenvalues of
the Jacobian matrix of v at Xq:

Throughout this work, we will consider that the vector field
is well approximated by its Jacobian at the singular points,
i.e. the real parts of its eigenvalues does not vanish. We will
also not consider closed streamlines. For the bi-dimensional
case, this linear classification of singular points is illustrated
in Figure 2]

The corresponding work was published in the proceedings of Sibgrapi 2013. IEEE Press, 2013.
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Figure 2: Singularities classification following Hartman-Grobman
theorem, where (R1 + iI1) and (Re + il2) are the complex
eigenvalues of Jy (xo).

(c) Separatrix, topological graph

In-between singular points, the flow is essentially tubu-
lar [8], where adjacent streamlines generally start from the
same source and end at the same sink. This constant beha-
vior changes at the separatrices, where the source or the sink
suddenly changes for a saddle.

Definition S (Separatrix) A separatrix is a streamline that
starts or end at a saddle x(. At the singular point x, the
separatrix is tangent to an eigenvector of Jy (xo).

When the vector field is defined in the whole plane, its
global behavior can be summarized in its fopological graph.

Definition 6 (Topological graph) The topological graph of
a vector field v is a graph whose nodes are the singular
points of v and whose arcs are its separatrices.

In particular, without closed streamline or non-linear singu-
larities, the topological graph arcs bound regions with two
saddles, a source and a sink. We will refer to this property as
the coherence of the topological graph.

The definition of a topological graph for bounded do-
mains is slightly more delicate, since some streamlines are
cut by the boundary. In this case, Tricoche [19] proposed to
add extra nodes to the topological graph for the endpoints of
the streamlines cut by the boundary. If two adjacent stream-
lines cut the boundary in the same manner (pointing in- or
outwards, or being tangent), their nodes are merged, as illus-
trated in Figure [3] The merged extra nodes then correspond
to segments of the boundary of D, and are called boundary
source when the adjacent streamlines point out of D, bound-
ary sink when they point to the inside of D and boundary
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Figure 3: Topological graph of a bounded domain D: the boundary
of D is split into boundary sources, sinks and saddles.

saddle when a streamline is tangent to the boundary of D.
This construction respects the definition of coherence in the
case of bounded domain.

For a bounded domain, the topological graph also induces
a decomposition of the domain into regions of equivalent
streamlines, bounded by separatrices and the domain bound-
ary. Throughout this work we will refer to the topological
graph as this domain decomposition, since it contains more
information on the boundary of the domain than the graph.

4 Topological graph construction from stream-
lines clustering

Tricoche [19]] proposed to construct the topological graph
by first computing all the singular points. The separatrices
are obtained by integrating the flow equation starting tangent
to every saddle xq in the direction of the eigenvectors of
Jyv(Xo), as in Def.

Although those elements are topologically stable, they
may be hard to compute numerically. In particular, detecting
all singularities of an analytic field may require infinite preci-
sion. If a saddle is not detected, and its separatrices missing,
then the topological graph may become incoherent.

In this work, we propose to build on the existing work
on streamlines generation to construct the topological graph.
The streamlines are clustered in order to obtain the same de-
composition of the domain as the topological graph. On the
one hand, the result will depend on the streamline genera-
tion method, in particular on the generated streamline dens-
ity. On the other hand, the topological graph is always coher-
ent, even if some singular points are not detected.

The streamline clustering is straightforward for unboun-
ded domains. For bounded domains, we propose to progress-
ively partition the boundary, increasing the complexity of the
captured interactions between boundary singularities, as fol-
lows.

Step 0: Streamline extensions. We first generate a set of
streamlines. Most vector field visualization methods try to
capture the complexity of a given vector field, so we can
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use any streamline placement and generation technique. In
particular, they tend to approximate the separatrices, which
helps our generation of the topological graph, although it is
not necessary. Usually, those methods do not fully integrate
the streamlines to avoid clutter, but here we extend those
streamlines until we reach a singular point, the boundary,
or eventually loop. Although we do not display those exten-
sions, we use it to assign to each streamline its start and end,
those being singular point or boundary.

j 18

\

Figure 4: Step 1: segmentation of the streamlines considering the
boundary as a single singularity. The streamlines are segmented
into three groups: orange, purple, and blue.

Step 1: Boundary as a single singularity. We first create
a single node for the boundary and a node for every source
and sink. We group the streamlines with the same starting
and ending node. For simple examples, this already gives the
correct domain partition, as in Figure [3] with three groups
of similar streamlines: source 2 to sink 1, source 2 to the
boundary and boundary to sink 1.

Step 2: Boundary subdivision into connected compon-
ents. Among the streamlines crossing the boundary, the pre-
vious step distinguishes those originating or ending at differ-
ent singularities (Figure [6). However, the regions delimited
by the topological graph are simply connected. Therefore,
the intersection of a group of streamlines with the bound-
ary should be a (connected) segment. To ensure this prop-
erty, each group is subdivided along the connected compon-
ents of the boundary. For example in Figure [3] the stream-
lines of Group 1 are split into Groups 1 and 4 depending on
whether they cross the boundary through the top and sides of
the domain (Group 1) or through the bottom of the domain
(Group 4). This step is efficiently performed by first storing
at the boundary pixels which streamlines are crossing, to-
gether with its other end-node (that may be a boundary seg-
ment). Then we walk along the boundary and split the group
of streamlines each time the other end-node changes.

Step 3: Boundary to boundary streamlines. After Step 2,
adjacent streamlines crossing the boundary at their begin-
ning and end belong to the same group. However, a sep-
aratrix may exist between them, so that they should belong
to different groups (Figure [6). We prefer to avoid marking
the streamlines crossing the boundary as entering or going
out of the domain, which is subject to numerical instabilities
near boundary saddles. Therefore, we walk again (or simul-
taneously with Step 2) along the boundary, queue each new
streamline we cross and pop it the second time it is crossed.

Figure 5: Step 2: the streamlines of Group 1 (left) all start at
the same singularity and all cross the boundary. However, the
intersection of Group 1 and the boundary is disconnected, and
new groups (here Groups 1 and 4) are created for each connected
component (right).

Since the streamline group we would like to refine cross the
boundary twice, and since those streamlines do not intersect
inside the boundary, the queue will necessarily pop a whole
group before entering the next one. We thus create a new
group each time the queue size passes a minimum. As a com-
parison, Figure [f]shows our construction and the topological
graph computed from the separatrices, following Tricoche’s
approach [[18].

Guarantees. A generated streamline may cross the boundary
zero, one or two times. Step 1 guarantees at least the classi-
fication for streamlines that do not cross the boundary. Step
2 guarantees the classification of streamlines crossing the
boundary once, and may correctly classify the boundary-to-
boundary streamlines. Step 3 guarantees the classification of
the latter, grouping streamlines in a coherent manner. Finally,
if all the singularities are detected and if enough stream-
lines are generated, the groups of streamlines correspond to
the decomposition of the domain induced by the topological
graph.

5 A simple implementation

In order to show the feasibility of the topological graph
computation proposed in the previous section, we describe
here a very simple implementation for vector fields sampled
on regular bi-dimensional grids with bilinear interpolation
and equally-spaced streamlines [[11].

In that case, vector values associated to points (z;, ;) of
a regular grid is denoted v;; = (v§;,v;) = v(xi,y;). The
bilinear interpolation b;; returns the value inside a grid cell.
Up to a translation of vector (—x;, —y;) and a scaling of
Fop— along the z axis and of = along the y axis,
we can assume that coordinates  and y both vary from 0
to 1 inside grid cell (¢,j) = (0,0), which simplifies the
expression for b:

bool [0, 1]2 — R2,

boo(z,y) = (1 —2)(1 —y)voo + =(1—y)vio
+(1-2) vy Vo + z Yy v

The corresponding work was published in the proceedings of Sibgrapi 2013. IEEE Press, 2013.
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Figure 6: Three steps of the topological graph refinement (left), matching the one generated from the separatrices [18] (right). Observe that
at Step 3 (middle left to middle right), adjacent boundary to boundary streamlines may be separated by a separatrix (here at the right side of

the domain).

The singularities can be detected based on the bilinear
interpolation based on a direct solution of v(z,y) = 0, the
winding number or noise-tolerant methods [16].

For example, the first option is equivalent to solving sys-
tem boo(z,y) = (0,0), which is equivalent to finding the
roots of the polynomial in y:

T Y x Yy T Yy T Y
( —vd vgo + V81 vip + V11 Voo — Vi1 Vipt ,
+vdo vo1 — V8o Vi1 — v vy + VT vY; )y
x Y x Y x Yy
+ (208 voo — 250 vo1 — Vi1 Vpo—
x Yy x Y x Y
—p1 V10 t V10 Vo1 t Voo V11 )y
xT Yy x Yy
+ Vo Vo1 — Vo1 Yoo
For each root 3, the associated coordinate = value is:

(V8o — vb1) - ¥ — Vo

r=—— )
] 7 7 7 7 7
(V9o — V1o — Vg1 T v11) - Y — v + vip

If both the root y and the associated x are inside [0, 1], there
is a singular point in the cell at (z, y). The singularity type is
computed from the eigenvalues of the Jacobian according to

Sec.[3(b)

We use one of the first and most simple streamline genera-
tion algorithm due to Jobard and Lefer [11]], which produces
evenly-spaced streamlines. Starting from a random seed, a
streamline is integrated, leaving seeds on both sides at a fixed
distance d and filling an occupation grid of width %. From
those seeds, streamlines are integrated in the same fashion,
but the integration stops when the streamline enters the oc-
cupied cells of the grid. We use a Runge-Kutta scheme of
fourth-order with the bilinear interpolation for the streamline
integration.

In order to capture the topological graph even with a
sparse set of streamlines (i.e. a large value of d), we put seeds
near the saddles, in the direction given by the eigenvectors
of the Jacobian matrix at the saddle point. This is not enough
to guarantee the generation of all separatrices as discussed
earlier, but even without all of them, the topological graph
will be coherent.

6 Application to self animated images

In this section we propose a direct application of our
streamline-based topological graph construction to improve
the generation of self-animated images. Although the ori-
ginal work used a refined streamline placement [13]], we gen-
erate all the results using the method described in the previ-
ous section, in order to maintain this paper self-contained.

D
]
7 m

; —
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B
=
TYPE I

TYPE Ila TYPE IIb

Figure 7: Types of Fraser-Wilcox illusion (extracted from [4]).

(a) Self-animated images from streamlines

Chi et al. [4] generated self-animated images using optim-
ized Fraser-Wilcox optical illusions [12]]. Such illusions rely
on Repeated Asymmetric Patterns RAP [2], which causes a
motion impression to most observers. Chi et al. apply the
type Ila pattern (Figure [7) to render the streamlines, which
creates an illusory motion following the vector field.

To do so, each streamline is divided into segments of
equal length SegLen. The segments are colored according
to a Type II optimized Fraser-Wilcox illusion respecting
the 1:2:1:2 rule. In our results, we use such colored RAP:
{Black-Blue-Blue-White-Yellow-Yellow}. However, the illus-
ory motion effect of the RAP is affected by the patterns
on close-by streamlines. Bad pattern coordination produces
color blocks disturbing the illusion (Figure[§|top)). The pat-
tern assignment, in particular the initial color and the seg-
ment length SegLen, must be optimized to avoid such blocks.
We propose an alternative to the optimization proposed by
Chi et al. [4] using our streamline-based topological graph.
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Figure 8: Badly coordinated pattern (top line) gather color blocks
across streamlines. Pattern placement is optimized one streamline
at a time (middle). The quality of the pattern placement is measured
rendering a red/green pattern instead of dark/light, and counting
overlapping yellow pixels (illustration extracted from [4]).

(b) Original optimization

Chi et al. [4] optimized the pattern placement by maxim-
izing the difference of intensities between RAP fragments of
close-by streamlines. To compute this quality measure, they
render an optimization image blending the streamlines with
their current RAP parameters, but using red for the darker
parts of the RAP and green for the lighter ones (Figure [8).
The quality of the RAP placement increases when more light
parts of the RAP of one streamline overlap the dark parts
of its adjacent streamlines, and vice-versa, i.e. when the op-
timization image of the streamlines has more yellow pixels
(Figure [8).

There are basically two parameters in the optimization:
the initial color of the segment and the length of each seg-
ment SegLen. To avoid large discrepancies, SegLen may vary
by a factor between 0.8 and 1.3 of the initial length. The op-
timization starts with a random streamline, placing its RAP
with a random initial color and the initial SegLen. Then,
several RAP initial colors and SegLen assignments for the
closest streamline are tested in a Monte Carlo fashion, keep-
ing the one that maximized the quality so far. This image-
based optimization is then repeated on an adjacent stream-
line until processing all the streamlines. Eventually, no RAP
parameter for the current streamline can satisfy a minimal
quality, leading to a deadlock (Figure Q]left)). In this case,
the whole process starts over with a new streamline, ran-
domly chosen. This rebooting of the optimization is quite
frequent in practice, and greatly harms the performance of
the optimization.

(c) Optimization using streamline-based topological
graphs

Although Chi et al. obtain high quality images, their
method is computationally intensive. Indeed, the brute force
optimization has a very slow convergence (Tab. [I). Some
choices of the initial streamline surely lead to a deadlock
(Figure P(left)), which significantly increases the time used
to generate the self-animated image. We propose here to ex-
tract from the topological graph an ordering of the deadlines
that usually avoids deadlocks.
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Figure 9: Optimization performance depending on the initial
streamline. (left) Following the order from I to 6 creates of a ver-
tical pattern between the first and last one that cannot be avoided
by changing the start color (from blue to yellow), or segment length
of streamline 6. (right) A different order leads to a high contrast
greedily.

In the topological graph decomposition, all the stream-
lines of the same group have the same behavior, equivalent
to a tubular flow [1]]. Optimizing the RAP placement inside
a group is thus straightforward and deadlock-free.

Figure 10: Optimization through the topological graph: when a
conflict between streamlines is detected (left), it can be solved by
starting over only the RAP placement on the streamline group,
here Group 2 (middle), leading to a high quality result without
recomputing Group 1 (right).

Deadlock may occur between groups, usually near sin-
gular points. With the topological graph, there is no need
to systematically start the whole optimization from scratch.
Indeed, only the RAP placement on the streamlines of one
group (preferentially the smallest) needs to be re-optimized
(Figure [T0). We thus optimize the RAP placement group by
group. Furthermore, in each group we optimize first the sep-
aratrices (or the closest streamlines to the transition), since
those may create deadlocks if processed after the group.

We use the same image-based RAP optimization on a
single streamline, but the streamline-based topological graph
allows us to decouple the optimization per group, signific-
antly accelerating the convergence of the algorithm as shown
in the next results section.

The corresponding work was published in the proceedings of Sibgrapi 2013. IEEE Press, 2013.
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Table 1: Experimental results on a core 2 duo laptop: the topological graph computation has very little overhead, while its use significantly

accelerates the self-animated image optimization.

Data Fig. Number of | Number of | Number of | Topological Proposed Chiet. al. [4] | Gain
L samples singularities regions graph optimization | optimization
2 singularities Figure|13] 2,500 2 5 2 ms 1.42s 3.07s 2.2x
4 singularities Figure 2,500 4 9 2 ms 1.30s 3.00s 2.3x
6 singularities Figure 2,500 6 9 3 ms 1.54s 3.77s 2.4x
canceling singularities | Figure 2,500 5 4 4 ms 1.57s 398s 2.5x
PIV 1 Figure 15,624 9 12 300 ms 9.26s 3245s 3.5x
PIV 2 15,624 28 15 300 ms 6.96s 38.92s 5.6x
7 Results

We tested our topological graph construction mainly on
analytical fields (Figs. [I2} [[3]and [IT)) where we could valid-
ate the correctness of the result, and on a field measured by
a PIV method from fluid dynamics experiments (Figure [T4).
In all cases, the computation of the topological graph is ex-
tremely fast (Table[T). As expected, its speed decreases with
the size of the image and the complexity of the vector field.

The correctness of the result depends on the streamline
placement algorithm, in particular its density, as can be ob-
served in Figure @ However, at all the resolutions the to-
pological graph is coherent, even when some singular points
are not detected.

We also tested our optimization for self-animated images.
To compare with the algorithm proposed by Chi et al. [4], we
fix a target quality of the image, measured as the number of
non-yellow pixels in the optimization image. In all the results
presented here the target was 30% of yellow pixels. With this
target quality criterion, the self-animated images obtained
by both methods have very similar quality, as observed in
Figure 3] Furthermore, the generated self-animated images
capture most of the vector field dynamics even with more
singularities (Figure[TT).

We report the time spent by each optimization to reach
the target quality in Table[T] The use of the streamline-based
topological graph improves the execution time of the op-
timization by a factor greater than two on simple examples.
Moreover, since self-animated images already require a set
of streamlines, the use of the topological graph has a very
little overhead. On data with more complex topology, the
gain increases substantially. For example on the PIV ex-
ample (Figure[T4), the gain reaches a factor of 3.5.

Figure 11: Topological graph (left) and self-animated images
(right) on a synthetic field with six singularities.

8 Discussion

Aiming at assisting vector field analysis and visualization,
this work proposes a topological segmentation built on top
of existing streamline placement technique. This domain de-
composition is equivalent to the topological graph, identi-
fying streamlines with similar behaviors. This construction
suits particularly for methods that already use streamlines,
such as self-animated images generation [4], where it speeds
up the image optimization time by several factors.

The current method still has some limitations and sev-
eral possible extensions. First of all, we do not consider
closed streamlines, which is a non-local type of singularities
that would affect the topological graph. Such closed stream-
lines can be efficiently detected in our implementation con-
text [9], and require a treatment in our segmentation similar
to the boundary. We also aim to handle higher order (non-
linear) singularities for the streamline seeding. Second, the
method relies on a streamline generation. Although recent
work provides some topological guarantees on the streamline
integration [14], a low density of streamlines may still lead to
a coherent but incorrect result (Figure @ Finally, our cur-
rent implementation handles vector fields sampled on regular
grid, which is well suited for image. Most of our construc-
tion extends straightforwardly to our method to unstructured
grid, mesh-less data or higher dimensional vector fields.
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FAPERIJ and CAPES for partially financing this work.
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Figure 12: Topological graph on a synthetic field with almost canceling singular points (left of each image), increasing the streamlines
densities (from left to right): d = 0.15,0.2,0.4,0.9. Although the graph is not exact for low densities, it always define coherent regions
delimited by two saddles (indicated with a cross) , a source, and a sink (as a boundary segment, or indicated with a circle).

Figure 13: Topological graph (top) and self-animated images gen- “. Ty
erated by the original optimization (middle) and our optimization
(bottom) on a synthetic field with two singularities (left) and four
singularities (right).

Figure 14: LIC view [3] (top left), topological graph (top right)
and self-animated images (bottom) on a smoothed PIV data.

The corresponding work was published in the proceedings of Sibgrapi 2013. IEEE Press, 2013.
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