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Abstract

Lewiner, Thomas; Lopes, Hélio Côrtes Vieira; Santos, Geovan Ta-
vares dos. Constructing Discrete Morse Functions. Rio de
Janeiro, 2002. 89p. MsC Thesis — Department of Mathematics,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Morse theory has been considered a powerful tool in its applications to

computational topology, computer graphics and geometric modeling. It

was originally formulated for smooth manifolds. Recently, Robin Forman

formulated a version of this theory for discrete structures such as cell

complexes. It opens up several categories of interesting objects (particularly

meshes) to applications of Morse theory.

Once a Morse function has been defined on a manifold, then information

about its topology can be deduced from its critical elements. The purpose

of this work is to design an algorithm to define optimal discrete Morse

functions on general cell complex, where optimality entails having the least

number of critical elements. This problem is proven here to be MAX–

SNP hard. However, we provide a linear algorithm that, for the case of

2–manifolds, always reaches optimality.

Moreover, we proved various results on the structure of a discrete Morse

function. In particular, we provide an equivalent representation by hyperfo-

rests. From this point of view, we designed a construction of discrete Morse

functions for general cell complexes of arbitrary finite dimension. The re-

sulting algorithm is quadratic in time and, although not guaranteed to be

optimal, gives optimal answers in most of the practical cases.

Keywords
Morse Theory; Forman Theory; Computational Topology; Computatio-

nal Geometry; Solid Modeling; Discrete Mathematics.
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Foreword

This whole work was originally motivated by 3D mesh compression.

When it begun, my teacher Hélio Lopes had just proved an extension of the

EdgeBreaker’s compression scheme for orientable surfaces with genus. He did

what I always admired: joining two fields of research (computer graphics and

algebraic topology) to improve both of them. The mixture of algebra and topo-

logy already attracted me for the same reason, although I have had no occasion

to learn it seriously. The mixing of topology with computer graphics has now

its lettres de noblesse: the growing field of computational topology. The need of

this discipline seems now obvious to me. First, topology and geometry always

had a tight relation in mathematics, and geometrical proofs and properties

frequently required some topological analysis. Second, the computational to-

pology approach is a good way of avoiding dirty programming. Moreover, it

helps improving algorithms, extending them to broader applications. There-

fore, I was eager to learn more on that field, when my teacher proposed me a

“simple” problem.

From my other teacher, Geovan Tavares, there has been a tradition at

the MatMı́dia laboratory to use Morse theory. This tool has contributed both

to strong mathematical theorems (as the Poincaré’s conjecture in dimension

above 4) and to computer graphics (for mesh generation and compression).

However, this theory was formulated for smooth manifolds, which require some

work before leading to rigorous implementation. The approximation of smooth

properties by discrete structures can be done efficiently mainly for specific

applications. However, leading discrete applications have usually emerged

from discrete theories. This approach has given at least two complementary

combinatorial differential geometries. One of them emerged from computer

graphics, led by Mathieu Desbrun [Mey02]. The other one, grounded in

topology and combinatorics, was stated by Robin Forman [For98].

The “simple” problem of my teacher was to build a discrete Morse

function as defined by Forman. The problem was actually not obvious at all,

and a mysterious paper of Ömer Eğecioğlu [Ege95] seemed to prove that it

was more difficult than NP–hard. This impression turned out to be true a few

months later.
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I first oriented my research on applications to mesh compression, and I

looked at related algorithms for some ideas. Compression schemes based on

topological surgery [Tau98] offered an attracting trail, and rapidly allowed

me to formulate a small algorithm. This algorithm had many implementation

difficulties, but worked well on small models. However, it failed on non–

manifolds, and gave bad results for non–spheres. Trying to understand the

error, I went back to my lecture notes of the Ecole Polytechnique. There was

a very simple demonstration of the Euler characteristic for spheres, based on

a spanning–tree of the dual graph and its complement. The main idea was

now obvious: define discrete Morse functions on forests, leaving the circuits as

critical.

Along this work, I discovered that this idea was actually the intrinsic

structure of a discrete Morse function. A remark that did not appear in

Forman’s work. The explication was not obvious. The general representation

of a dual of a cell complex is, in general, much more complex than a

graph. Looking in the literature, this structure was defined as a hypergraph.

Nevertheless, there was no extension of the notion of forest for hypergraph. It

took me quite a long time to have an elegant formulation for this structure,

which I called hyperforest. Once the mathematics was clear, the algorithm

followed directly. I knew the problem was worse than NP–hard, but I proved

the first algorithm was optimal for 2–manifolds, and the results I obtained in

the general case seem very close to the optimum.

My teachers enhanced computer graphics from their knowledge of topo-

logy. This work has perhaps a complementary approach. From computational

problems arose mathematical questions. I am still surprised of how fast we en-

countered opened problems of mathematics, such as the Poincaré’s conjecture.

But due to the existence of those computational problems we also found some

answers.



I
Introduction

I.1 Motivations and applications

Computational geometry [Boi98] has led to major improvements in

computer graphics, robotics, and computer–aided design. This field focuses

mainly on discrete problems involving point sets, polygons, and polyhedrons,

and uses combinatorial techniques to solve them, with emphasis on provable

correctness, efficiency, and robustness. Its applications now involve information

visualization, advanced scientific and engineering computation, and computa-

tional algorithms and methods.

Need for topological considerations. Earlier research in computatio-

nal geometry has led to inextricable connections with combinatorial geometry,

to the great benefit of both fields. Nowadays, some of the most difficult and

least understood issues in geometric computing involve topology: when the

emphasis lies on connectivity, continuity, on space, and on maps. This does

not mean that the more geometric notions are absent from those problems,

but rather that focusing on topological properties (i.e. separating global shape

properties from local geometric attributes) leads to better and more elegant

results. Many simple algorithms got stuck on topological singularities. Trying

to detect those problems by geometric notions required expensive geomtric

primitives, loosing robustness. For example, 3d mesh compressions scheme as

the famous EdgeBreaker has been considerably improved at a very low com-

putational cost by topological considerations [Lop02].

Computational Topology and its applications. The emerging field

of computational topology [Veg97] deals actually with a broader scope of pro-

blems. Dey & al. [Dey99] have introduced six areas of applications: image pro-

cessing, cartography, computer graphics, solid modeling, mesh generation and

molecular modeling. The first Workshop on Computational Topology [Ber99]

identified five other areas of applications: shape acquisition, shape represen-

tation, physical simulation, configuration spaces and topological computation.

They delimited this field to encompass both algorithmic questions in topo-
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logy (for example, recognizing knots) and topological questions in algorithms

(for example, whether a discrete construction preserves the topology of the

underlying continuous domain).
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Scope of this work. For the matter of this work, the applications of

computational topology include meshing, morphing, feature extraction, data

compression, surface coding and more, in areas such as computer graphics, solid

modeling, bio–informatics and computational medicine. With those objectives

in mind, we added a new theory of combinatorial topology, named discrete

Morse theory, [For98] to the toolbox of computational topology.

Morse theory [Mil63] is a fundamental tool for investigating the

topology of smooth manifolds. Particularly for computer graphics, many

applications have been deduced from the smooth case [Ede01, Har98, Lop96,

Shi91]. Morse proved that the topology of a manifold is very closely related to

the critical points of a real smooth map defined on it. The simplest example of

this relationship is the fact that if the manifold is compact, then any continuous

function defined on it must have a maximum and a minimum. Morse theory

provides a significant refinement of this observation.

Forman’s discrete Morse theory. The recent insights in Morse theory

by Forman [For95, For98] extended several aspects of this fundamental tool to

discrete structures. Its combinatorial aspect allows computation completely in-

dependent of a geometric realization: the algorithms we designed do not require

any coordinate or floating–point calculation, and geometrical constraints can

be applied independently. Forman proved several results and provided many

applications of his theory [For00, For01].

I.2 Results

Once a Morse function has been defined on a smooth manifold, then

information about its topology can be partly deduced from its critical points

(i.e. the points where the gradient vanishes). Similarly to the differential case,

Forman proved that the topology of a CW–complex can be partly read out of

the critical cells of a discrete Morse function defined on it.

Therefore, the starting point of direct applications of this theory is to

build a discrete Morse function. The topological information will be concise

if the discrete Morse function has few critical cells. Thus, we will say that a

Morse function is optimal if it has the minimum possible number of critical

cells. The main contribution of this work is to build such functions.

Algorithm for optimal discrete Morse functions. We provide in

chapter IV a linear algorithm to construct discrete Morse functions on 2–cell

complexes. This algorithm is shown to be optimal for 2–manifolds in section

IV.4. We extend this algorithm in chapter VI to build discrete Morse functions

and discrete gradient vector field on general cell complexes of arbitrary
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dimension. This algorithm is quadratic in execution time. It is not guaranteed

to be optimal, but it gives optimal results in most of the cases (cf section VI.5).

Theoretical results. From the theoretical point of view, we proved that

constructing an optimal discrete Morse function is MAX–SNP hard (theorem

III.19). We proved that the problem of finding a maximal hyperforest in a

hypergraph is also MAX-SNP hard (section V.2.3). By the way of exposing

discrete Morse theory, we provide a construction of optimal discrete Morse

function on a cartesian product, given optimal discrete Morse function on each

of its factor (cf section III.2.3). In chapter V, we develop a hypergraph repre-

sentation of discrete Morse functions. We introduce the notion of hyperforest

(section V.2.1) and prove the equivalence between discrete gradient vector fi-

elds and hyperforests in theorem V.8. We stated the equivalent of a critical cell

for a hyperforest in proposition V.10. The optimality of a hyperforest is discus-

sed in section VI.3. We finally proved for the case of 3–manifolds that discrete

Morse numbers are topological invariants related to the simple–homotopy type

(theorem V.14).

I.3 Outline

This work is organized as follow. Topological preliminaries and graph

structures, particularly hypergraphs and the Hasse diagram, are discussed

in chapter II. Forman’s discrete Morse theory is introduced in chapter III,

together with a proof of the complexity of finding an optimum discrete Morse

function. Chapter IV gives a linear construction of discrete Morse function

on cell complexes of dimension 2, as exposed in [Lew01]. This construction is

optimal in the case of 2–manifolds. Chapter V discusses most of the theoretical

results of this work, particularly the notions of hyperforest and its critical

elements, and the proof of topological invariance of discrete Morse numbers

for 3–manifolds. Finally, we give a construction of a discrete Morse function on

general cell complexes of arbitrary dimension in chapter VI. This is a complete

presentation of the algorithm partly introduced in [Lew02].



II
Preliminaries

II.1 Discrete structures

Figure II.1: An 8-squares cylinder model.

Morse theory was originally formulated for continuous structures (smooth

manifolds). Implementing tools related to this theory involves approximation of

those structures to more directly computable ones. One of the main advantages

of Forman’s theory is that it is directly formulated for discrete structures

such as cell complexes (cf figure II.1). A complete introduction to graphs and

hypergraphs structure can be found in [Ber70].

II.1.1 Graphs

The simplest discrete structures used in computation are simple graphs

(cf figure II.2. All the graphs of this work were drawn by GraphViz dot

[GFZdot] and neato [GFZneato] softwares.

Definition II.1 (Simple graph) A simple graph is a pair (N, L), where N

is a set of objects called nodes and L is a set of pairs of nodes. The elements

of L will be called links.

We say that a link joins its two end nodes, and that those nodes are

adjacent. A graph can be oriented by distinguishing for each link one of its end

nodes as its source node.
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Figure II.2: The 0/1 graph of an 8-
squares cylinder (figure II.1): nodes
represents vertices, links represents
edges.

Figure II.3: A tree extracted from
the graph of figure II.2.

A path in a graph is a sequence of pairwise distinct links, successively

adjacent. Such a path is a circuit if the first and the last node of the sequence

are identical. An oriented path in an oriented graph is a path where each link

between two consecutive nodes has the first node as its source node. A graph

with no circuit is called a forest, i.e. a union of trees (cf figure II.3):

Definition II.2 (Tree) A simple graph is a tree if it is connected and con-

tains no circuit.

A leaf is a node that is incident to aat most one link. A graph (N ′, L′) is

a subgraph of a graph (N, L) (or a graph extracted of it) if N ′ ⊂ N and L′ ⊂ L.

This subgraph is a spanning graph if N ′ = N .

II.1.2 Matching and bipartite graphs

Bipartite graphs became famous for matching problems [Lov86]:

Definition II.3 (Matching) A matching on a graph is a subset of its links

of such that no two of them have a vertex in common.

For example, pairing boys and girls at school could be represented by

a matching in a bipartite graph: the boys are one class of nodes, girls the

other one, and the affinity between boys and girls are represented by a link.

[Ber70] gives a complete introduction to bipartite graphs. Figure II.5 shows an

example of a (partial) matching on graph II.4.

Definition II.4 (Bipartite graph) A simple graph is a bipartite graph

when its set of node can be decomposed into two disjoint sets, called here the

N and L classes, such that no two nodes within the same set are adjacent.
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Figure II.4: A bipartite representa-
tion of the graph of figure II.2.

Figure II.5: A matching on the
graph of figure II.4.

II.1.3 Pseudographs

We will see in section II.2.4 that the dual graph of a manifold without

boundary is a simple graph. However, if the manifold has a boundary, the links

representing (n-1)–cells of the boundary would be incident to only one node.

For example, figure II.6 shows the dual graph of the 8-squares cylinder model

(figure II.1), and figure II.7 shows a (pseudo–) tree extracted out of it. This

would not fit in definition II.1, but in the following one:

Definition II.5 (Pseudograph) A pseudograph is a pair (N, L), where L is

a family of subsets of N each of which having either 1 or 2 nodes.

Figure II.6: The dual graph of figure
II.1.

Figure II.7: A tree extracted from
the graph of figure II.6.

II.1.4 Simply oriented hypergraphs

In the dual graph of a non–manifold cell complex, links that join more

than two nodes may appear (cf figure II.8). This would not fit in definition

II.5, but in the following one:

Definition II.6 (Hypergraph) A hypergraph is a pair (N,L), where L is a

family of families of N . The elements of L are called hyperlinks.
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We will classify non–empty hyperlinks into the regular hyperlinks (or

shortly, link), which join two distinct nodes as in simple graphs, the loops,

which are incident to only one node, and the non–regular hyperlinks, which

either join three nodes or more or are multiply incident to one node. We

can extract the simple graph part of a hypergraph by considering its regular

components :

Definition II.7 (Regular components) The regular components of a

hypergraph (N, L) are the connected components of the simple graph (N,R),

where R is the set of the regular hyperlinks of (N, L).

We will give a hypergraph a simple orientation by distinguishes one node

of each hyperlink as its source node.

Figure II.8: A hypergraph example. Figure II.9: The dual hypergraph of
the graph of figure II.2.

II.1.5 Dual of a hypergraph

The dual of a hypergraph [Ber70] is obtained by reading the nodes as

hyperlinks and the hyperlinks as nodes. For example, figure II.9 shows the

dual hypergraph of the vertex/edge graph of the 8-squares cylinder (figure

II.2).

Definition II.8 (Dual of a hypergraph) The dual D (H) of a hypergraph

H is a hypergraph whose nodes are the hyperlinks of H and whose hyperlinks

joins the hyperlinks of H that share a node, loop for each leaf of H or are

empty for each isolated node.

If each node of an oriented hypergraph H is the source of at most one

hyperlink, then the dual D (H) of H can be partly oriented as follow: if a node

n is the source of a hyperlink l in H, the node representing l in D (H) is the

source of the hyperlink representing n. We notice that the dual operation is

an involution: D ◦ D (H) = H.
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II.1.6 Bipartite representation of a hypergraph

A hypergraph can be represented by a bipartite graph [Ber70]. For

example, figure II.4 gives a representation of the hypergraph of figure II.2.

This gives a simple but expensive representation of hypergraphs:

Definition II.9 (Bipartite graph of a hypergraph) The bipartite graph

B (H) of a hypergraph H is the simple graph whose N and L nodes are the

nodes and the links of H respectively. For every hyperlink l of H, there are #l

links of B (H) joining the node representing l in B (H) to each representing

node, in B (H), incident to l in H.

When H is oriented, B (H) will be oriented the following way:

If a node n of H is the source of a hyperlink l, then the node representing

l will be the source of the link of B (H) joining n to l.

If a node n of H is the not source of an incident hyperlink l, then its

representing node in B (H) is the source node of the link joining it to the

representing node of l in B (H)

II.1.7 Hypergraph representations of a bipartite graph

The operation of taking the bipartite graph of a hypergraph can be rever-

sed. Depending on which class of nodes becomes the links of the hypergraph,

we can obtain a hypergraph or its dual. For example, figure II.4 can be repre-

sented by both figures II.2 and II.9. The bipartite graph is not supposed to

have a consistent orientation in the general case. Therefore, the hypergraph

representing a bipartite graph will not always be oriented.

Definition II.10 (Hypergraphs of a bipartite graph) A bipartite graph

B admits two representations by hypergraphs: B−1 (B) and its dual

D (B−1 (B)). The nodes of B−1 (B) are the N class of nodes of B. For

every node l of the L class, there is a hyperlink of B−1 (B) joining all the

nodes adjacent to l.
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II.2 Basic concepts of algebraic topology

The intuition behind topology is the study of the properties of shapes,

which remain unchanged under deformation. Some of those can be expressed

algebraically as structures defined on topological spaces. This part of topology

is called algebraic topology.

II.2.1 Point set topology

A natural way to investigate the space we are living in consists of

analyzing what lies around us. We get information about our space by

considering local neighborhoods. This is the art of topology, which deduces

from those local observations some global properties, as living on a sphere

rather than on a disc.

Definition II.11 (Topological space) A topological space is a set of points

X with a collection V of subsets of X called open sets, with the following

restrictions:

The union of open sets is an open set.

The intersection of two open sets is an open set.

The empty set and the set X are open sets.

Those open sets define the notion of neighborhood : a neighborhood of

a point is any open set containing it. A simple way of defining a topology

on a set consists in using a metric d on that space. In that case, the open

sets can be generated as unions and intersections, of open balls Bc,r =

{x ∈ X : d (x, c) < r}.
In this work, we will consider Hausdorff spaces of finite dimension, i.e.

bounded spaces where there always exist disjoint neighborhoods for distinct

points. We would first notice that there are infinitely many different such

spaces, and topology aims at describing and classifying those topological

spaces. Among the tools for describing such spaces, one of the most important

is the notion of map.

Definition II.12 (Continuous function) Let X and Y be two topological

spaces. A function f : X → Y is a continuous function (or map) if the

inverse image by f of every set open in Y is open in X.

Definition II.13 (Topological equivalence) Two spaces X and Y are said

to be topologically equivalent, or homeomorphic, if there exists a continuous

function f : X → Y , invertible, whose inverse f−1 : Y → X is continuous.
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A genuine way for classifying topological spaces would require being able

to generate all of them and then to determine if two spaces are topologically

equivalent. Unfortunately, this problem is much too complex. For dimension

4 and above, this cannot be computed even with an ideal computer [Mar58].

Even from dimension 2 on, we will encounter in this work some NP hard

problems (cf section III.4.3).

However, there exist other computable tools that can describe topological

properties [Del93, Dey01] and that can prove, in some cases, that two spaces

are not homeomorphic. For example, if there is no homotopy (i.e. continuous

deformation) between two spaces, they cannot be topologically equivalent.

Morse theory [Mil63] unifies many of those tools.

II.2.2 Cell complexes

A cell complex is, roughly speaking, a generalization of the structures

used to represent solid models: it is a consistent collection of cells (vertices,

edges, faces. . . ). In particular, triangulations of topological spaces or 3D

meshes are cell complexes (cf figure II.10). Figure II.11 gives a minimal

construction of a torus cell complex. A complete introduction to cell complexes

can be found in [Lun69].

Figure II.10: A triangulated to-
rus.

Figure II.11: A construction of a torus
with 4 cells.

Definition II.14 (Cell) A cell α(p) of dimension p is a set homeomorphic to

the open p–ball {x ∈ Rp : ‖x‖ < 1}.

When the dimension p of the cell is obvious, we will simply denote α instead

of α(p).

Definition II.15 (CW–complex) A CW–complex K is built by starting off

with a discrete collection of 0–cells (vertices) called K0, then attaching 1–cells

(edges) to K0 along their boundaries, obtaining K1, then attaching 2–cells

(faces) to K1 along their boundaries, writing K2 for the new space, and so on,

giving spaces Kn for every n.
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A CW–complex will be said to be finite when it is built out of a finite

number of cells. In this work, we will consider only finite (and thus regular)

CW–complexes. This permits to compute them.

A p–cell α(p) is a face of a q–cell β(q) (p < q) if α ⊂ closure (β). If

q = p − 1, we will use the notation α(p) ≺ β(q), and say that α and β are

incident.

II.2.3 Hasse diagram of a cell complex

Cell complexes and graphs are discrete structures. In a sense, a cell

complex is a generalization of a graph, as a graph can be seen as a cell

complex of dimension 1. Nevertheless, we can also represent a cell complex

by a pseudograph, called the Hasse diagram.

Definition II.16 (Hasse diagram) The Hasse diagram of a cell complex K

is the oriented pseudograph H:

Each node of H represents a cell of K.

The links of H joins nodes representing incident cells of K. The source

node of each link is the one of highest dimension.

Figure II.12: The Hasse diagram of a simple cell complex.

The Hasse diagram is usually drawn with the nodes ranked by their

dimension. On figures II.12 and II.13, the faces (2–cells) are aligned on top

rank, the edges (1–cells) on the middle one and the vertices (0–cells) on the

bottom rank. A link between two nodes symbolizes that the corresponding

cells are incident.
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f0 f1 f2 f3

e0e1 e2 e3 e4e5

v0v1

Figure II.13: The Hasse diagram of a non–PL torus.

II.2.4 Manifolds

Definition II.17 (Manifold) An n–manifold is a topological space in which

every point has a neighborhood homeomorphic to either Rn or R+ × Rn−1.

In this work, the only topological space we will consider are cell com-

plexes, thus manifold will denote a cell complex which has the topology of a

manifold. Figures II.14 and II.15 gives example of non–manifold cell complexes.

The set of points whose neighborhood is R+×Rn−1 is called the boundary

of the manifold. Notice that the boundary of a compact n–manifold is an (n-

1)–manifold without boundary. It can be shown [Lun69] that if a finite cell

complex is an n–manifold, then each (n-1)–cell is incident to either one or two

n–cells.

Figure II.14: A non–manifold
example: non–regular edge.

Figure II.15: Another non–manifold exam-
ple: the neighborhood of the points of the
dangling edge is homeomorphic to R.

The dual graph of a manifold is the pseudograph whose nodes are the n–

cells and where each (n-1)–cell σ is represented by a link l in this pseudograph:

l joins the nodes representing n–cells incident to σ (cf figure II.16).
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Figure II.16: A part of a triangulation and its dual.

II.2.5 Homology theory and the Betti numbers

Homology theory is an efficient way of describing some connectivity

properties of cell complexes, as the number of connected components, of holes,

of voids. . . Its major invariants, the Betti numbers, appears in Morse theory

as a lower bound to the number of critical elements (cf section III.3.2). We

will here introduce the Z2 homology, as it leads to higher values of the Betti

numbers, and thus tighter bounds in the Morse inequalities (cf section III.3.2).

Definition II.18 (Chain) A p–chain c(p) is a subset of p–cells of a cell

complex K:

c(p) =
∑

σ(p)∈K

cσ.σ
(p), cσ ∈ {0, 1}.

The coefficients cσ ∈ Z2 indicate whether the cell σ belongs to the chain

c or not. The addition of two p–chains is trivially defined element–wise on each

cell. In other terms, the addition of two p–chains is the symmetric difference

of the two sets c + d = (c ∪ d) \ (c ∩ d). The group Cp of all p–chains is called

the chain group of order p of a given cell complex. The empty set is the zero

element of Cp.

The boundary ∂p

(
σ(p)

)
of a p–cell σ is the collection of its (p-1)–

dimensional faces, which is a (p-1)–chain. The boundary operator ∂p is extended

to p–chain by linearity:

∂p


 ∑

σ(p)∈K

cσ.σ
(p)


 =

∑

σ(p)∈K

cσ.∂p

(
σ(p)

)

Definition II.19 (Cycles and boundaries) A p–cycle z(p) is a p–chain of

K whose boundary is null: ∂p

(
z(p)

)
= 0. A p–boundary b(p) = ∂p+1

(
c(p+1)

)
is

the boundary of a (p+1)–chain.
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Since the boundary operator ∂p preserves the addition from Cp to Cp−1,

the set of the p–boundaries Im∂p+1 and the set of the p–cycles ker∂p are

subgroups of Cp.

An essential property of the boundary operators is that the boundary of

a boundary is always empty (∂p ◦ ∂p+1 = 0). So every p–boundary is a p–cycle

and Im∂p+1 ⊆ ker∂p.

Definition II.20 (Homology groups) For each p, the p–th homology

group Hp = ker∂p / Im∂p+1 (with coefficients in Z2) is obtained by equating

two p–cycles that only differ by a p–boundary:

∀z(p), t(p) ∈ ker∂p, z(p) ≡ t(p) ⇔ z(p) − t(p) ∈ Im∂p+1.

Those homology groups are commutative and finitely generated (the cell

complex is finite). Thus, they can be written as Hp = Zβp

2 , where βp is called

the p–th Betti number with coefficients in Z2:

Definition II.21 (Betti numbers) The Betti numbers are the ranks of the

Homology groups.

Figure II.17: Cycles in a 1–cell
complex are circuits.

Figure II.18: The cycles of a
map are around seas (holes),
where lands are faces and fron-
tiers are edges.

The basic interpretation for Betti numbers is a way of counting “holes” in

a given complex: β0 counts the number of connected component, β1 counts the

tunnels of a surface, β2 the voids of a solid. . . The cycles of a graph (i.e. 1–cell

complex) are the independent circuits (cf figure II.17). Thus, the homology of

a graph is its connectivity (the minimal number of edges to remove to obtain

a forest). On figure II.18, we can compare equated cycles (in yellow and red),

and null cycles (in green).
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II.2.6 Homotopy and simple homotopy

If two spaces are topologically equivalent, then they have isomorphic

homology groups. But the homology is not sufficient to distinguish two spaces.

A more refined tool to describe the topology of space is its simple homotopy

type [Coh73]. If two spaces have the same simple homotopy type, they have the

equivalent homology groups. But the contrary is not true. A famous counter–

example is the homological sphere of Poincaré. The question whether the

simple homotopy is sufficient is not solved yet, and part of it relies in the

Poincaré’s conjecture. Simple homotopy is a weak version of homotopy, but is

more directly linked to discrete Morse theory.

Definition II.22 (Homotopic functions) Two continuous functions f and

g from X to Y are said to be homotopic if there exists a continuous function

H from X × [0, 1] to Y such that ∀x ∈ X, H(x, 0) = f(x) and H(x, 1) = g(x).

Intuitively, the second argument of H can be viewed as time, and then the

homotopy describes a continuous deformation from f to g.

Definition II.23 (Homotopy type) Two topological spaces X and Y have

the same homotopy type if there exists two continuous functions f : X → Y

and g : Y → X such that f ◦g is homotopic to the identity map of X and g ◦f

is homotopic to the identity map of Y .

A topological space is contractible if it has the same homotopy type of a

point. A way of showing that two spaces have the same homotopy type is to

show that they retract by deformation on homotopic spaces.

Definition II.24 (Deformation retract) A subspace Y of a topological

space X is a deformation retract of it if there exists a continuous map

H : X × [0, 1] → X such that:

– ∀x ∈ X,H(x, 0) = x.

– ∀x ∈ X,H(x, 1) ∈ Y .

– ∀y ∈ Y, ∀t ∈ [0, 1], H(y, t) = y.

In the case of cell complexes, a succession of cell collapses (cf figure II.19)

is a deformation retract:

Definition II.25 (Collapse) If σ(p) ≺ υ(p−1) are two cells of a cell complex K

and σ is not the face of any other cell of K, then K collapses onto K \ (σ ∪ υ).
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Figure II.19: An elementary collapse.

Figure II.20: The collapse of a tetrahedra onto a point.

If L can be obtained from K by successive elementary collapses, we also

say that K collapses onto L and that K is an extension of L. We write K ↘ L.

For example, figure II.20 shows the collapse of a tetrahedron onto a point.

The equivalence relation generated by collapses is called simple homotopy

equivalence [Coh73]:

Definition II.26 (Simple homotopy) A simple homotopy is a succession

of collapses and extensions. If two complexes can be obtidos one from the other

by a simple homotopy, we say they have the same simple homotopy type.

Discrete Morse theory characterizes the simple homotopy of a cell com-

plex from the critical elements of a discrete Morse function defined on it.



III
Forman’s discrete Morse theory

III.1 Discrete gradient vector field

Forman’s theory relies either on admissible functions on a cell complex,

called discrete Morse functions, or equivalently their gradient vector field. We

chose here to introduce the theory first from the second point of view.

III.1.1 Combinatorial vector field

Definition III.1 (Combinatorial vector field) A combinatorial vector fi-

eld V defined on a cell complex K is a collection of disjoint pairs of incident

cells {α(p) ≺ β(p+1)}.

We can define the combinatorial vector field as a function V : K →
K ∪ {0}:

{α(p) ≺ β(p+1)} ∈ V ⇒ V (α) = β and V (β) = 0.

If a cell σ does not belong to any pair, then V (σ) = 0.

We will represent a combinatorial vector field by an arrow from the cell

of lower dimension to its paired cell of higher dimension, i.e. from α to V (α)

(cf figure III.1).

Definition III.2 (V –path) A V –path is an alternating sequence of cells

α
(p)
0 , β

(p+1)
0 , . . . , α

(p)
r , β

(p+1)
r , α

(p)
r+1 satisfying:

V (α
(p)
i ) = β

(p+1)
i and β

(p+1)
i Â α

(p)
i+1 6= α

(p)
i .

A V –path is non–trivial and closed if r ≥ 1 and αr+1 = α0. For example,

figure III.2 shows in red the closed V –path of the combinatorial vector field of

figure III.1.
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Figure III.1: An example of a com-
binatorial vector field.

Figure III.2: The closed V –path of
the combinatorial vector field of fi-
gure III.1 (in red).

III.1.2 Discrete gradient vector field and its critical cells

Definition III.3 (Discrete gradient vector field) A discrete gradient

vector field is a combinatorial vector field with no non–trivial closed V –path.

Morse proved that the topology of a manifold is related to the critical

elements of a smooth function defined on it. Forman gave an analogous result,

with the following definition for the critical cells:

Definition III.4 (Critical cells) A cell α is critical if it is not paired with

any other cell, i.e.:

V (α) = 0 and α /∈ Im (V )

The example of figure III.1 is not a discrete gradient vector field as it

contains a closed V –path. On figure III.3, the critical cells of the discrete

gradient vector field are drawn in red.

We will denote by mp (f) the number of critical cells of dimension p. The

number of critical cells is not a topological invariant of the cell complex, as

it depends on the discrete gradient vector field considered. For example, with

an empty discrete vector field (i.e. no cells are paired) every cell is critical,

which would be the maximal number of critical cells. In this work, we are

more concerned in minimizing this number, as it would give a more concise

description of the topology.
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III.3(a): valid III.3(b): optimal

Figure III.3: Examples of discrete gradient vector field.

III.1.3 Hasse diagram of vector fields

A combinatorial vector field is a partial matching in the Hasse diagram:

each pair of V corresponds to matched nodes in the Hasse diagram.

III.4(a): valid III.4(b): optimal

Figure III.4: Hasse diagram of the examples of figure III.3.

We will represent such a matching by inverting the orientation of the

link between each pair in V : the arrow’s source node will be α(p) for each

{α(p) ≺ β(p+1)} ∈ V . For example, figure III.4 shows the Hasse diagram of the

discrete gradient vector fields of figure III.3.

With this modified orientation, a closed V –path is just an oriented circuit

in the Hasse diagram (cf figure III.5). A discrete gradient vector field contains

no closed V –path, and thus will be an acyclic matching.
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Figure III.5: The Hasse diagram of the combinatorial vector field of figure III.1,
and the circuit of its closed V –path (in red).

III.1.4 Canceling critical cells

Proposition III.5 Suppose V is a discrete gradient vector field such that α(p)

and β(p+1) are critical and there is exactly one V –path from a face of β to α.

Then there is another discrete gradient vector field W , equal to V away from

this V –path, with the same critical cells except that α and β are no longer

critical for W .

Although the demonstration of the same theorem in the smooth case is

rather technical, the demonstration here is very simple:

III.6(a): A unique gradient path joining two critical cells

III.6(b): Revering the gradient path

Figure III.6: Canceling critical cells

Proof. Let α0, β0, . . . , αr, βr, αr+1 be the unique V –path of the theorem, with

β0 = β and αr+1 = α. W is obtained from V by reversing the gradient vector
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field along the V –path (cf figure III.6):

W = V \ {{α1 ≺ β1}, . . . , {αr ≺ βr}}∪
∪ {{α1 ≺ β}, {α2 ≺ β1}, . . . , {αr ≺ βr−1}, {α ≺ βr}}.

¤

III.2 Discrete Morse functions

Actually, the topological information lies in the discrete gradient vector

field. However, some topological properties are more easily expressed in terms

of discrete Morse functions.

III.2.1 Discrete Morse functions and its critical cells

A discrete Morse function on a given cell complex is a real function

almost increasing with the dimension. There can be at most one exception of

the increasing per cell, and this exception relates to the pairing of the discrete

gradient vector field.

Definition III.6 (Discrete Morse function) A function f : K → R map-

ping each cell of a cell complex K to a real value is a discrete Morse function

if it satisfies, for every cell σ(p) ∈ K:

#
{
τ (p+1) Â σ(p) : f (τ) ≤ f (σ)

} ≤ 1

and #
{
υ(p−1) ≺ σ(p) : f (υ) ≥ f (σ)

} ≤ 1

In other words, for each cell σ, f assigns at most one face of σ to a value

greater than f (σ), and at most one bounding cell of σ to a value less than f (σ).

There is at most one “counterbalancing” face and one “counterbalancing”

bounding cell for every cell. It is easy to show that a cell cannot have both of

them. A cell that has none of them will be called critical :

Definition III.7 (Critical cell) A cell σ(p) is a critical cell of f if:

#
{
τ (p+1) Â σ(p) : f (τ) ≤ f (σ)

}
= 0

and #
{
υ(p−1) ≺ σ(p) : f (υ) ≥ f (σ)

}
= 0

Figure III.7 gives some example of discrete Morse functions. Of course,

not every function is valid: on figure III.7(b) for example, the face (with value
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III.7(a): trivial (valid) III.7(b): invalid III.7(c): valid (optimal)

Figure III.7: Examples of discrete Morse functions

4) and the edge with value 0 are assigned values invalid for definition III.6.

The critical cells of figure III.7(c) are assigned 0 and 5.

III.2.2 Integrating a discrete gradient vector field

For a given discrete Morse function, every cell has at most one “coun-

terbalancing” face or bounding cell. If there is one, we can define a pair of

the discrete gradient vector field with the cell and its “counterbalancing” one.

For example, the discrete Morse function of figure III.7(c) corresponds to the

discrete gradient vector field of figure III.3(b).

Theorem III.8 For every discrete Morse function f , there exists a discrete

gradient vector field V with the same critical cells as f .

Proof. We can define V for every cell σ(p) by:

V
(
σ(p)

)
=

{
τ (p+1) such that τ Â σ and f (τ) ≤ f (σ) if such τ exists

0 otherwise

¤
Trivial discrete Morse function We saw in section III.1.2 that the

empty set is a discrete gradient vector field, for which every cell is critical. This

corresponds to a trivial discrete Morse function f which assign to every cell its

dimension: f
(
σ(p)

)
= p (cf figure III.7(a)). This process of deducing a discrete

Morse function from a discrete gradient vector field can be generalized for a

general discrete gradient vector field.

Theorem III.9 For every discrete gradient vector field V , there exists a

discrete Morse function f with the same critical cells as V .
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Figure III.8: A discrete gradient vector field and its corresponding discrete
Morse function.

The proof of this theorem can be found in [For98, theorem 9.3]. Another

way of constructing f out of V can be found in the algorithm of section VI.2.4.

Figure III.8 shows a result of this algorithm.

III.2.3 Operations on discrete Morse elements

Let f and g be discrete Morse functions defined respectively on two cell

complexes K and L, and V and W their corresponding discrete gradient vector

fields.

Restriction. If L is a subcomplex of K, then g = f|L is a valid discrete

Morse function.

Figure III.9: Refining a discrete gradient vector field: all the new vertices, edges
and faces are paired easily.

Refinement. If L is a subdivision of K, one can construct g out of f

in order to get the same number of critical cells. This can be done by refining

locally the discrete gradient vector field on each subdivided cell, as on figure

III.9. A complete demonstration can be found in [For98, section 12].

Cartesian product. The cartesian product K×L is a cell complex with

the following incidence relation: (αK , αL) ≺ (βK , βL) if either αK = βK and

αL ≺ βL, or αK ≺ βK and αL = βL. A discrete gradient vector field V ×W

can be defined on K × L in order to have
∑

q mq(f) ·mp−q(g) critical cells of
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index p:





if αK is not critical, V (αK) = 0, (V ×W ) ({αK , αL}) = 0

if αK is not critical, V (αK) = βK , (V ×W ) ({αK , αL}) = {βK , αL}
if αK is critical, W (αL) = 0, (V ×W ) ({αK , αL}) = 0

if αK is critical, W (αL) = βL, (V ×W ) ({αK , αL}) = {αK , βL}

s2

s0 s1

III.10(a): Segment

t6

t5 t4t3

t0 t1t2

III.10(b): Triangle

Figure III.10: The Hasse diagram of an optimal discrete gradient vector field
on a Segment and on a Triangle.

s2t6

s0t6s1t6 s2t3 s2t4s2t5

s0t3 s0t4s0t5s1t3 s1t4s1t5 s2t0 s2t1s2t2

s0t0 s0t1s0t2s1t0 s1t1s1t2

Figure III.11: The Hasse diagram of the cartesian product of the discrete
gradient vector fields of figure III.10.

This process is a kind of lexicographic priority. Figures III.10 and III.11

give an example for the simple case of a segment cartesian a triangle.
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III.3 Topological properties

With the definition of a discrete Morse function, we would like to get

the same intuition as with smooth Morse functions, in particular the notion

of height. We will thus define the cut K(c) of a cell complex K at a certain

height c as follow:

K(c) =
⋃

σ∈K, f(σ)≤c

⋃
τ≺σ

τ.

III.3.1 Homotopy properties

III.12(a): K(10): Initial com-
plex

III.12(b): K(9): A collapse
triangle / boundary edge

III.12(c): K(8): A collapse
triangle / edge

III.12(d): K(7): Removing a
critical cell

III.12(e): K(6): A collapse
edge / vertex

III.12(f): K(2): Last steps
until the critical vertex

Figure III.12: Steps of the collapse of a simple cell complex.

Morse proved that moving the height at which the manifold is cut does

not change topology if we do not go across a critical height. The same theorems

state for the discrete case:

Theorem III.10 If a < b are real numbers such that [a, b] contains no critical

values of f , then K(b) ↘ K(a).

Theorem III.11 If a < b are real numbers such that f−1 ([a, b]) contains a

unique critical cell σ(p), then K(b) is homotopy equivalent to K(a)
⋃

∂ep ep,

where ep denotes a p–cell with boundary ∂ep.

The proofs of those theorems can be found in [For98, theorems 3.3 and

3.4]. As a direct corollary of the above theorems, we can enounce:
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Corollary III.12 K is simple–homotopy equivalent to a cell complex with

exactly mp(f) cells of dimension p.

Those results are of great significance for the field of computation

topology: once a discrete Morse function has been defined on a cell complex,

one can calculate its homotopy and homology groups from a very reduced

number of cells. This would allow in some cases to use exponential algorithm

in an admissible time.

III.3.2 Discrete Morse inequalities

Other topological properties originally proved by Morse are grouped in

the Morse inequalities. They follow directly from the sub–additivity of the

Betti numbers and the retraction mentioned above. Those inequalities are valid

whatever the field is chosen to calculate the Betti numbers [For98, corollary

8.3]. A proof of those inequalities can be found in [Mil63].

Theorem III.13 (Strong Morse inequalities) For a given finite cell com-

plex K, any discrete Morse function f defined on it satisfies:

∀p, mp (f)−mp−1 (f) + · · · ±m0 (f) ≥ βp (K)− βp−1 (K) + · · · ± β0 (K)

Theorem III.14 (Weak Morse inequalities) For a given finite cell com-

plex K of dimension n, any discrete Morse function f defined on it satisfies:

∀p, mp (f) ≥ βp (K)

χ (K) = #n (K)−#n−1 (K) + · · · ±#0 (K)

= mn (f)−mn−1 (f) + · · · ±m0 (f)

= βn (K)− βn−1 (K) + · · · ± β0 (K)

where χ (K) is the Euler characteristic and #p (K) the number of p–cells of

K.

III.3.3 Collapse and discrete Morse functions

Collapsing a complex does not change its (simple) homotopy type. So we

should be able to extend a discrete Morse function with a cell complex without

adding any critical cell:

Theorem III.15 Let L be a subcomplex of K such that K ↘ L. Let f be a

discrete Morse function on L and let c = maxσ∈Lf(σ). Then f can be extended
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III.13(a): K(0): critical ver-
tex

III.13(b): First critical edge III.13(c): Second critical edge

III.13(d): Extension III.13(e): More extension III.13(f): Critical face

Figure III.13: The critical steps of the extension of a torus.

to a discrete Morse function g on K with L = K(c), and such that there are

no critical cell in K \ L.

Proof. By induction on the number of elementary collapses required, it is

sufficient to prove it when K = L ∪ σ ∪ τ , where σ is a cell of K and τ ≺ σ

one of its free faces. We can define g on K by ∀ α ∈ L, g(α) = f(α) and

g(σ) = c + 1, g(τ) = c + 1. ¤
Figure III.13 shows different steps of the extensions of a Morse function

as described in proposition III.15, except for the critical values (in red).

III.3.4 Sphere theorems

We just mention here another very interesting theorem of Morse theories.

A proof of those discrete versions can be found in [For98, section 5].

Theorem III.16 If K is a cell complex with a discrete Morse function f with

exactly two critical cells, then K is homotopy equivalent to a sphere.

Proposition III.17 If S is a PL n–sphere, then, by performing a finite

sequence of bisections, S can be subdivided to a polyhedron K which has a

Morse function with exactly 2 critical cells.
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III.4 Optimality in discrete Morse functions

As we mentioned above, the critical cells of a discrete Morse function

defined on a cell complex describe its simple homotopy type. Having a

small number of critical cells would accelerate the computation of topological

properties.

Definition III.18 (Optimal discrete Morse function) We will say a dis-

crete Morse function is optimal when it has the minimum possible number of

critical cells.

Unfortunately, the general problem of finding an optimal discrete Morse

function is MAX–SNP hard, i.e. an NP–hard problem for which any polynomial

approximation algorithm can lead to a result arbitrary far from the optimum.

III.4.1 Existence of an optimum

Figure III.14: The number of matchings in the Hasse diagram is finite.

Although there is an infinity of discrete Morse function for a given cell

complex K, there is only a finite number of discrete gradient vector field

(cf figure III.14). In fact, a discrete gradient vector field can be seen as a

matching in the Hasse diagram (cf section III.1.3). There is less than 2(#K)2

such matchings. Thus, there exists a minimum to the possible numbers of

critical cells of K.
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III.4.2 A related problem

We know from theorems III.10 and III.11 that the critical cells have a

tight relation with collapsibility. Eğecioğlu and Gonzalez studied the Erasabi-

lity and the Collapsibility problem for simplicial1 complexes of dimension 2 in

[Ege95]:

Collapsibility problem

Instance: A pair (K,n), where K is a finite simplicial complex of dimen-

sion 2 and n is a non–negative integer

Question: Does K contain a subset F of 2–simplicies of cardinality at most

n such that K \ F collapses to a point?

Figure III.15: A “gadget” used in Eğecioğlu and Gonzalez proof.

In particular, they proved that this problem is MAX–SNP hard, reducing

the problem to the Vertex Cover problem by 2–cell complexes as the one of

figure III.15.

III.4.3 Complexity of the optimum

We will cf that the problem of determining the minimum possible num-

ber of critical cells of any discrete Morse function defined on a cell complex is

also MAX–SNP hard, by reduction to the Collapsibility problem.

Morse optimality problem

Instance: A pair (K, n), where K is a finite cell complex of dimension at

least 2 and n is a non–negative integer

Question: Does there exist a discrete Morse function on K with at most

n critical cells?

Let’s consider a simplicial complex K of dimension at most 2. Suppose

we find a discrete Morse function on K with the minimum number of critical

cells. The number of critical vertices is the number of connected components.

1a simplex is a particular type of cell
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Thus, the discrete Morse function has the minimum number of critical faces (cf

hteorem III.14). Then, by theorem III.10, the subset F of the critical faces (i.e.

cells of dimension 2) would answer the question of the Collapsibility problem.

We deduce the following theorem:

Theorem III.19 The problem of finding optimal discrete Morse functions is a

reduction of the Collapsibility problem, and is thus a MAX–SNP hard problem.



IV
Optimal discrete Morse functions on surfaces

IV.1 Optimality conditions

We saw in section III.4.3 that the general problem of finding an optimal

discrete Morse function is NP–hard. However, for the case of 2–manifolds,

this problem can be solved in linear time by the algorithm presented in section

IV.2. The proof of the optimality relies on the classification theorem for surfaces

introduced in the next section. A proof of those theorems can be found [Arm79].

IV.1.1 The surface classification theorem

Theorem IV.1 (Classification theorem for surfaces) Any compact con-

nected surface without boundary is homeomorphic to exactly one of the fol-

lowing surfaces: a sphere S2, a connected sum of g > 0 tori T (g), or connected

sum of g > 0 projective planes M(g). No two of these surfaces are homeo-

morphic.

IV.1(a): 2–sphere. IV.1(b): Sum of 2 tori. IV.1(c): Klein bottle: connec-
ted sum of 2 projective pla-
nes.

Figure IV.1: Examples of surfaces without boundary.

The sphere (figure IV.1(a)) and connected sums of tori (figure IV.1(b))

are orientable surfaces, whereas surfaces with Möbius strips are not orientable

(figure IV.1(c)). g is called the genus of the surface. Actually, the Betti
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numbers (with coefficient in Z2) and the orientability completely characterize

the topology of a surface, as we can explicitly calculate the homology groups

of the standard surfaces [Arm79]:

Proposition IV.2 (Homology groups of the standard surfaces)

H0 (S2) = Z2 , H1 (S2) = 0 , H2 (S2) = Z2 .

H0 (T (g)) = Z2 , H1 (T (g)) = 2g · Z2 , H2 (T (g)) = Z2 .

H0 (M(g)) = Z2 , H1 (M(g)) = g · Z2 , H2 (M(g)) = Z2 .

IV.1.2 Surfaces with boundary

Proposition IV.3 Any compact connected surface with a non–empty boun-

dary is homeomorphic to exactly one of the following surfaces: a sphere, a

finite connected sum of tori, or finite connected sum of projective planes, in

each case with some finite number of open disks removed.

A proof of this extension of the theorem for closed surfaces can also

be found in [Arm79]. The homology group H0 remains unchanged, and H2

vanishes for surfaces with boundary.

IV.2(a): Cylinder. IV.2(b): Möbius strip.

Figure IV.2: Examples of surfaces with a non–empty boundary.

For example, identifying the boundaries of two disks with the boundary

of a cylinder (figure IV.2(a)) creates a space homeomorphic to the sphere.

Identifying the boundary of a disk with the boundary of a Möbius strip (figure

IV.2(b)) creates a space homeomorphic to the projective plane.



Constructing Discrete Morse Functions 47

IV.1.3 Sufficient conditions for reaching optimality

We have now all the elements to enounce sufficient conditions to guaran-

tee that a discrete Morse function is optimal (definition III.18):

Proposition IV.4 (Surfaces without boundary) Let f be a discrete

Morse function defined on a compact connected surface without boundary. If f

has exactly one critical vertex and one critical face, and possibly many critical

edges, then it is optimal.

Proposition IV.5 (Surfaces with boundary) Let f denote a discrete

Morse function defined on a compact connected surface with a non–empty boun-

dary. If f has one critical vertex, no critical face, and possibly many critical

edges, then it is optimal.

Proof. In the two cases of the theorem, we suppose that m0 (f) = β0 (K) = 1

and m2 (f) = β2 (K). From the second weak Morse inequality (theorem III.14),

we know that χ (K) = m2 (f)−m1 (f) + m0 (f) = β2 (K)− β1 (K) + β0 (K).

So we deduce that m1 (f) = β1 (K). From the first weak Morse inequality

(theorem III.14), which states that mp (f) ≥ βp (K), we reached the lower

bound to the number of critical cells. Therefore, f is optimal. ¤

IV.2 Algorithm

Given a finite cell complex K that has the topology of a 2–manifold, the

algorithm proceeds on each connected component in 4 steps:

1. Construct a spanning tree T on the dual pseudograph of K.

2. If K has a boundary, add one loop to T .

3. Define a discrete Morse function on T .

4. Define a discrete Morse function on the complement of T .

First step: Construction of a face–spanning tree. The face–

spanning tree T can be constructed out of the dual pseudograph (cf section

II.2.4) by any of the standard algorithms [Hop73]. In particular, we can use

some mesh compression’s strategies. For example, the EdgeBreaker’s compres-

sion algorithm [Lop02] (figure IV.3) constructs a spiraling face–spanning tree

(figure IV.4).

Second step: Addition of one loop. We test whether the manifold

has a boundary during the first step. If we found a loop, we add it to T , so T
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Figure IV.3: EdgeBreaker mesh compression codes on a triangulated torus.

IV.4(a): T IV.4(b): G

Figure IV.4: The resulting face–spanning tree T and its complement graph G.
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Figure IV.5: Loop added at step 2
to a face–spanning tree T of figure
II.1 (no critical cell)

Figure IV.6: The discrete Morse
function on the spanning tree T of
figure IV.3 (1 critical face).

becomes a pseudograph. For example on figure II.7, the loop (with value 21)

has been added to T .

Third step: Definition of the function on T . We select a root of T ,

and we assign to every node of T (i.e. 2–cells of K) its height in the tree plus a
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constant c. We assign to every link of T (i.e. 1–cells of K) the minimum value

of its two end nodes (cf figure II.7). The result of this process on the example

of figure IV.3 is shown on figure IV.6.

In our construction, the initial value of c must be at least #0K + 1.

0

3

2

3 4

3

4

5 66

7 88

7
7

711

2

3

4

4

512

Figure IV.7: The complement graph
G of the cylinder model and its dis-
crete Morse function (1 critical ver-
tex and 1 critical edge).

Figure IV.8: The discrete Morse
function on the complement graph
G of figure IV.3 (1 critical vertex
and 2 critical edges).

Fourth step: Definition of the function on the complement of

T . We will now consider G, the complement of T : G is a graph with no loop

whose nodes are the vertices of K, and whose links are the edges of K that

are not represented in T .

We build another spanning tree U on G. We assign to every node of G its edge

distance to a selected root of U ; and to every link of U the maximum value of

its two end nodes.

We finally assign the value (c-1) to each link of G \ U (cf the critical edge of

figure II.3 with value 12). The result of this process on the example of figure

IV.3 is shown on figure IV.8.
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IV.3 First extension to non–manifolds

If our complex does not have the topology of a 2–manifold, some links can

be incident to 3 faces and the above demonstration does not work anymore.

However, the algorithm still produces a valid discrete Morse function, which

is still optimal in several cases.

In fact, a cell complex of dimension 2 is not a manifold if it combines

some of the following 3 reasons:

1. Dangling edge (cf figure IV.9).

2. Singular vertex (cf figure IV.10).

3. Non–regular edge (cf figure IV.11).

The neighborhood of a point of a face is always R2.

Figure IV.9: A non–manifold complex with a dangling edge (on the left) and
its critical cells (on the right): 1 critical vertex and 2 critical faces.

Figure IV.10: A non–manifold complex with a corner vertex (on the left) and
its critical cells (on the right): 1 critical vertex and 2 critical faces.

Figure IV.11: A non–manifold complex with a non–regular edge (on the left)
and its critical cells (on the right): 1 critical vertex and 2 critical faces.

1. dangling edge. That case resumes to a graph glued to a complex.

The graph will not appear in steps 1, 2 and 3 of the algorithm, and will be

processed in step 4. The homology of a graph is its connectivity, therefore the

algorithm still reaches the optimality in that case.
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2. singular vertex. This corresponds to several cell complexes glued at

a vertex or a pinched manifold. At step 1 of the algorithm, there would not be

one spanning tree T , but several. The optimality of the function resumes to

the optimality on each cell complex. Step 4 will generate a connected graph,

and there would be only one critical vertex. So, this case doesn’t affect the

optimality of our result.

3. non–regular edge. That case is the most difficult one. We will only

give a heuristic that always build valid discrete Morse function, but we know

from the theory (cf section III.4.3) that for some special cases the resulting

functions can be arbitrary far from the optimum. Some other heuristics are

discussed further on in section VI.4. In that case, we will define the dual

pseudograph with the same nodes, and with the links that are incident to 1 or

2 nodes only (i.e. only the regular edges). The algorithm then runs normally,

and the non–regular links that cannot be part of the spanning tree of step 4

will remain critical.

IV.4 Proof and analysis

Valid discrete Morse function. From the construction on the trees T

(step 3) and U (step 4), the function f , resulting of the algorithm run on one

connected component K, respects the inequalities of definition III.6. Moreover,

there is exactly one critical vertex: the root of U . If K has no boundary, the

root of T will be the unique critical face. In the other case, there is no critical

face in K.

We now just need to check that the edges of K are assigned valid Morse

values. From the initial value of the constant c, the critical edges are the links

of G \U , which are assigned a value greater than the value of any vertex, and

inferior to the value of any face (there is #0K < c nodes in G, so at most

#0K different regular values). The inequalities of definition III.6 are obvious

for each cell represented in the trees T and U . From the choice of the initial

value of the constant c, every cell of T has a value greater than any cell of G.

Thus, those inequalities are strictly respected between the edges of T and the

vertices of G, and between the edges of U and the faces in T .

Optimal discrete Morse function. Thus, our construction yields a

valid discrete Morse function f with exactly 1 critical vertex (m0 (f) = 1),

possibly many critical edges, and 1 critical face (m2 (f) = 1) if K is a manifold

without boundary, and no critical face (m2 (f) = 0) if K is a manifold with

boundary. From propositions IV.4 and IV.5, we know that f is optimal.
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Complexity. Once the spanning trees are built, the algorithm visits each

node and link at most once. Therefore, the steps 2, 3 and the second part of

step 4 are of linear complexity. Building a spanning tree can be linear with

a simple greedy algorithm [Hop73]. So, the whole algorithm is linear in time

with respect to #K.

IV.5 Mixing with geometry

The above construction is completely independent of the geometry. One

of the powers of Forman’s discrete Morse theory reflects here on two points.

First, the whole algorithm is done without any floating–point operation.

Second, it is possible to add some external constraints, for example geometrical

ones. There are different constraints we can add on our discrete Morse function:

– The face–spanning tree T can be chosen to be a minimal spanning tree.

This leads to a complexity in O(#K · log #K).

– The loop added at step 2 can minimize the same function, in order to

have the root of the face–spanning tree at a minimal position.

– The roots of the face–spanning trees T of step 1 and U of step 4, can

also be at a minimal position.

– The value assigned at steps 3 and 4 can be augmented for some branches

of the tree to separate a part when reconstructing the complex by

successive heights, as in theorems III.10 and III.11.

IV.12(a): Without geometrical constraint IV.12(b): With geometrical constraint

Figure IV.12: Two discrete gradient vector fields on a 2–sphere, both with 2
critical cells.

The way we include geometric constraint does not change the optimality

of the resulting function. For example, figure IV.12 shows two discrete gradient
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vector field on a 2–sphere, both with 2 critical cells. This can be used to imagine

or justify geometrical algorithms.

IV.6 Results

Figure IV.13: Execution time vs. the
number of cells of the cell complex
K: the complexity is linear.

Figure IV.14: Ratio execution time
/ size of K vs. the number of critical
cells of K: independence.

We tested our algorithm on more than 150 models from various types:

triangulations, quadrangulations and general polygons; manifolds and non-

manifolds; models with a consistent topology and raw scans or VRML impor-

tation with deficient topology (figures IV.15, IV.16 and IV.17). The algorithm

always built a valid discrete Morse function. For all the manifolds cases, the

resulting function was optimal. For the non-manifolds complexes (in particu-

lar for the examples of Moriyama and Takeuchi [Mor00]), the function had at

most 4 redundant critical cells. The experimental results on a Pentium III, 550

MHz, confirm the linear complexity with respect to #K (figure IV.13) and the

independence of the execution time towards the topology (figure IV.14).

Figure IV.15: An optimal discrete Morse function on a VRML–imported model.
Each tooth is a different connected component (here a topological sphere), and
has two critical cells. So there are 65 critical vertices and 65 critical faces (64
teeth + 1 for the body).
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Figure IV.16: An optimal discrete gradient vector field on a beetle model with
2 connected components.

Figure IV.17: An optimal discrete gradient vector field with the complement
graph U .



V
Structure of a discrete Morse function

V.1 Layers of a combinatorial vector field

The graph structure is usually used to represent complex objects and

their relations. We already did so in section II.2.3 where we represented a cell

complex by its Hasse diagram, and in section II.1.6 where we represented a

hypergraph by bipartite graphs. This allowed us to give a simple definition

of a discrete gradient vector field as an acyclic matching on this diagram (cf

section III.1.3).

However, the Hasse diagram is still a complex object to visualize, and

we will cf in this section how to represent it in a more simple way. Seeing the

Hasse diagram as a collection of bipartite graphs, we will be able to visualize

a cell complex as a collection on hypergraphs and a discrete Morse function as

hyperforests on those hypergraphs.

V.1.1 Layers of the Hasse diagram

We saw in section II.2.4 that, in an n–combinatorial manifold, a (n-1)–

cell is incident to either 1 or 2 n–cells. So the dual layer n/(n-1) of the Hasse

diagram will be represented by a pseudograph, called the dual pseudograph.

This pseudograph can be seen as the hypergraph representation of the dual

layer n/(n-1) of the Hasse diagram.

Definition V.1 (Layer of the Hasse diagram) The layer p/q of the

Hasse diagram, |p− q| = 1, of a cell complex K is an oriented simple bipartite

graph. Its N and L class of nodes are the p– and q–cells of K respectively. Its

links joins nodes representing incident p– and q–cells of K.

This definition puts a difference between layers of type p/q and q/p by

differentiating the N and L classes of nodes. The orientation of those layers

is the same as the one of the original Hasse diagram. For example, figure V.2

shows the hypergraph of the layer 2/1 of the Hasse diagram of figure V.1.
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Figure V.1: The Hasse diagram of the
double cube of figure IV.11.

Figure V.2: The hypergraph of
the layer 2/1 of figure V.1.

V.1.2 Interpretation of the algorithm for surfaces

One of the most efficient compression strategies relies on topological

surgery [Tau98]: cutting the surfaces along a dual spanning–forest and encoding

the remaining disc. We used a similar method for constructing optimal discrete

Morse function on 2–manifolds (cf chapter IV).

At steps 1 and 2 of the algorithm of section IV.2 we built a discrete gradi-

ent vector field as a face–spanning tree extracted from the dual pseudograph.

Therefore, a discrete gradient vector field restricted to the top layer of the

Hasse diagram of a manifold can be represented by a tree. At step 4, we built

a vertex–spanning tree of K, and defined our discrete gradient vector field on

it. Step 3 and last part of step 4 are the integration of this vector field, in the

sense of theorem III.9.

Thus, the construction of optimal discrete Morse function on surfaces

can be seen as processing the top dual layer of the Hasse diagram, and then

its first layer. The process on each layer consists of removing the circuits, i.e.

constructing a spanning–tree. This is easy for simple graphs and pseudographs.

Unfortunately, for the general case of hypergraphs this is a much harder

problem. This is why the optimality problem is NP–hard (cf theorem III.19).

V.1.3 Reduced layer of a combinatorial vector field

Considering successive layers of the Hasse diagram is redundant: each

p-cell of K appears in 4 layers (p/(p+1), p/(p-1), (p+1)/p, (p-1)/p). When the

Hasse diagram is oriented by a discrete gradient vector field (cf section III.1.3),

the matching splits on the different layers, with no redundancy. The following

reduction allows such partition:

Definition V.2 (Reduced layers of a combinatorial vector field) Let

K be a cell complex, V a combinatorial vector field defined on it and B the
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layer p/q of the Hasse diagram oriented by V, with |p − q| = 1. The reduced

layer B′ is an oriented bipartite graph defined as follow:

The N class of nodes of B′ is the p–cells of K unpaired or paired with a

q–cell of K in V
The L class of nodes of B′ is the q–cells of K paired with a p–cells in V
The orientation of B′ is the same as the one of the original Hasse

diagram.

Figure V.3: The reduced layer 2/1 of the
double cube (blue nodes).

Figure V.4: The hypergraph of the
reduced layer 2/1 of figure V.3.

For example, figure V.3 shows in blue the edges in the Hasse diagram of

figure V.1 that belongs to the reduced layer 2/1. The corresponding hypergraph

(cf section V.2.2) is a forest (cf figure V.4). We can deduce from the definition

the following proposition:

Proposition V.3 With the notations of the definition

(i) If V is a discrete gradient vector field, the critical p–cells of V appears in

reduced layers in the N class.

(ii) A p–cell of K is an N node of exactly one reduced layer.

(iii) Any V–path is entirely represented in two reduced layer.

Proof. (i). The critical cells of a discrete gradient vector field are unpaired.

Therefore, item (i) follows directly from definition V.2.

(ii). If a p–cell is unpaired in V , it appears in the N class of the reduced

layers p/(p+1) and p/(p-1). If it is paired with a q–cell in V , it appears in the

N class of the reduced layer p/q and in the L class of the reduced layer q/p.

(iii). A V–path is an alternate sequence of paired p– and (p+1)–cells.

From definition V.2, all the paired p– and (p+1)–cells appear twice: once in

the layer p/(p+1), and once in the layer (p+1)/p. ¤
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V.2 Discrete Morse functions, acyclic matchings and hyperforests

We saw in section III.2.2 that the notions of discrete Morse function and

discrete gradient vector field are equivalent. A discrete gradient vector field has

been defined as an acyclic matching in the Hasse diagram (cf section III.1.3).

This involves two problems: creating a matching, and removing cycles. Those

two problems are separately well understood (cf [Lov86] for matching theory,

and [Hop73] for graph algorithms). However, when combined, they create NP

hard problems (cf section III.4.3). In this section, we will give another point

of view on discrete Morse theory in terms of the simplest (linear instead of

quadratic) of those two problems: creating forests. We will prove our combined

problem can be seen as a hyperforest creation problem.

V.2.1 Hyperforests

We defined a forest as a graph with no circuit in section II.1.1. Here is a

natural extension of forests for hypergraphs [Ber70]:

Definition V.4 (Oriented hypercircuit) An oriented hypercircuit in a

hypergraph is a sequence of distinct nodes n0, n1, . . . , nr+1 such that nr+1 = n0

and for all 0 ≤ i ≤ r, ni is the source of a hyperlink leading to ni+1.

Definition V.5 (Hyperforest) We will say that a simply oriented hyper-

graph is a hyperforest if each node is the source of at most one hyperlink, and

if it does not contain any hypercircuit.

Figure V.5: A hypercircuit (in red).

Figure V.6: A part of the hyperfo-
rest 2/1 resulting while processing a
solid 2-sphere.

For example, figure V.5 shows a hypercircuit, and figure V.6 shows a part

of a hyperforest. We can deduce from this definition the following properties:

Proposition V.6 Let HF be a hyperforest, and R one of its regular compo-

nent.

(i) The regular components of a HF are simple trees.
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(ii) There is at most one node in R which is the source of either a loop or

non–regular hyperlink.

(iii) The dual D (HF ) of HF is also a hyperforest.

Figure V.7: The hyperforest 2/1 resulting while processing a model of S2×S1.

On figure V.7 for example, we can see how the non-regular hyperlink (in

green) form a kind of forest.

Proof. (i). Suppose R had a (simple) circuit n0, n1, . . . , nr+1 = n0. So there is

(r + 1) nodes and (r + 1) regular links in this circuit. As a node cannot be the

source of two links, each node is the source of exactly one link.

Suppose, without loss of generality, that n0 is the source of the link {n0, n1}.
n1 is incident to two links of the circuit: {n0, n1} and {n1, n2}. As it is not

the source of the first one, so it is the source of {n1, n2}. Continuing those

deductions, we prove that all the links of the circuit are oriented in such a way

to form an oriented hypercircuit.

As HF is a hyperforest, this leads to a contradiction. Therefore, R is a simple

tree.

(ii). Let k be the number of nodes of R. As R is a tree, it has (k-1)

(regular) links. The end nodes of those links are nodes of R, as those links

are regular (cf definition II.7). Therefore, among those k nodes, there are

(k-1) nodes that are the source of regular hyperlinks. So there is at most

k− (k− 1) = 1 node in R which is the source of either a loop or a non–regular

hyperlink.
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(iii). Let l0, l1, . . . , lr+1 = l0 be a hypercircuit of D (HF ). Let ni be a

common node of li and li+1 in HF , different from ni−1 (li−1 is different from

li). Let nt+1 be the first node of the sequence to be equal to a precedent node ns.

Then ns, ns+1, . . . , nt+1 = ns is a hypercircuit of HF . But HF is a hyperforest.

Therefore, D (HF ) has no hypercircuit. From the orientation defined at section

II.1.5, D (HF ) is a hyperforest. ¤

V.2.2 Discrete gradient vector field and hyperforests

We defined a discrete gradient vector field as an acyclic matching in

the Hasse diagram (cf section III.1.3), and a hyperforest as a hypergraph

without hypercircuits. It seems natural to cf a discrete gradient vector field

as a collection of hyperforests, extracted from the hypergraphs of the different

layers of the Hasse diagram.

There are two hypergraphs representations of ranks p and q (|p− q| = 1)

of the Hasse diagram: the direct layer p/q and the dual layer q/p. But the dual

of a hyperforest is also a hyperforest. Therefore, considering a discrete gradient

vector field as a collection of hyperforests is consistent.

Definition V.7 (Hypergraphs of a combinatorial vector field) Let K

be a cell complex, V a combinatorial vector field defined on it and B′ the redu-

ced layer p/q of V (|p−q| = 1). The p/q–hypergraph of V, H, is the hypergraph

representation of B′: H = B−1 (B′). H is oriented as follow: the source node

of a hyperlink of H is the node representing its paired cell in V.

Figure V.8: The Hasse diagram of
a discrete gradient vector field on a
4 cubes solid model.

Figure V.9: The 1/0–hyperforest of the
discrete gradient vector field of figure
V.8.

For example, figure V.9 shows the hyperforest of the Hasse diagram of

figure V.8.
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Theorem V.8 Let V be a combinatorial vector field. V is a discrete gradient

vector field on an n–cell complex K if and only if the 0/1, 1/2, . . . (n-1)/n

hypergraphs of V are hyperforests.

As the dual of a hyperforest is a hyperforest (proposition V.6), the

theorem is valid for any sequence obtained by replacing the p/q–hypergraph

by the q/p–hypergraph of V .

Proof. The orientation of HF ensures the first condition of definition V.5. By

proposition V.3, every cell of K is represented in one of the reduced layers and

any V–path is represented in one of the hypergraphs. Therefore, we just need

to prove that a closed V–path is a hypercircuit in one of the hypergraphs.

Let n0, n1, . . . , nr+1 = n0 be an oriented hypercircuit in the p/q–

hypergraph HF . From definition V.4, ni is the source of a hyperlink li incident

to ni+1. This hyperlink li represents a q–cell βi of K, and ni represents a p–cell

αi. As ni is the source of li, we know form the orientation of definition V.7

that αi and βi are incident and form a pair in V . So α0, β0, . . . , αr, βr, αr+1 is

a V–path. As nr+1 = n0 and r ≥ 1, this is a closed V–path.

This argument can be reversed to prove that a closed V–path is hyper-

circuit in one of the p/q–hypergraphs. ¤
We will now define the analogue of critical cells for hyperforests. This

will be the foundation of the algorithm of chapter VI. A critical element of

a discrete gradient vector field will be represented by a regular component

of one of its hyperforest. For example, on figure V.7, the critical node in red

corresponds to a critical component of the hyperforest (connecting 3 nodes).

Definition V.9 (Critical component) A regular component of a hyperfo-

rest will be called critical if none of its node is the source of either a loop or a

non–regular hyperlink.

Proposition V.10 Let HF be the p/q–hyperforest of K. The number of

critical components of HF is exactly the number mp (K) of critical p–cells

of K.

Proof. From proposition V.3 every possible critical p–cell is represented HF

and its corresponding reduced layer B′.

The isolated nodes of B′ are not matched with any cell of K, and remain

isolated nodes in HF . Those nodes are critical components, according to

definition V.9.

We know from proposition V.6 that each regular component R is a simple

tree. In such a tree with k nodes, there is (k-1) (regular) links. All links are

oriented, so among those k nodes, (k-1) are the sources of links of R, and is
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therefore not critical. If R is not a critical component, there is exactly one

node of R which is the source of either a loop or a non–regular hyperlink, i.e.

it is not critical.

If R is a critical component, this node is neither the source of a loop nor

of a non–regular hyperlink. From the definition II.7 of a regular component,

this node is not incident to any regular hyperlink not in R. All those links of

R are already paired with other nodes. So this node is unpaired in B′. From

definition V.2, it cannot be paired with a cell outside B′. Therefore, it is an

unpaired node, i.e. a critical cell. ¤

V.2.3 3 points of view for optimality in discrete Morse theory

Theorems III.8, III.9 and V.8 prove the equivalence of the building blocs

of discrete Morse theory:

Discrete

Morse func-

tion

A function f :

K → R, almost

increasing with

the dimension.

.

Discrete gra-

dient vector

field

An acyclic mat-

ching in the

Hasse diagram.

Collection of

hyperforests

Hypergraphs

with no hyper-

circuits.

In chapter IV, we were mainly interested in optimality: Morse theory

is a powerful tool to describe topological properties, and a small number of

critical cells give a more concise information. This characterization can be

done for the hyperforests: an optimal discrete Morse function will have the

minimal possible number of critical components in each hyperforest extracted

from the p/q layer. There are as many non–critical elements in a hyperforest

as its number of hyperlinks (non–critical elements are paired with an incident

hyperlink). Therefore, an optimal discrete Morse function has the maximum

number of hyperlinks in each of its hyperforests. Therefore, the problem of

finding a maximal hyperforest in a hypergraph is MAX–SNP hard also.
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V.3 Discrete Morse numbers as topological invariants for 3–
manifolds

We know that the critical elements of a Morse function on K are related

to the topology of K. But are those elements a complete characterization of

the topology of K? We already know part of the answer. We will show in

this section that the discrete Morse numbers are topological invariants for

3–manifolds.

V.3.1 Accuracy of Morse numbers

Definition V.11 (Morse numbers) The p–th Morse number Mp (K) of a

cell complex K is the minimum possible number of critical p–cells, considering

all possible discrete Morse functions defined on K.

V.10(a): Torus V.10(b): Klein bottle

Figure V.10: A torus and Klein bottle with both a minimal discrete gradient
vector field: 1 critical vertex, 2 critical edges, 1 critical face.

Morse theory is related to the simple homotopy [Coh73] type of a

topological space. For example, an optimal Morse function defined on a knot

and on the unknot will give rise to the same decomposition. Moreover, if we

only consider the number of critical cells, and not their incidences, we are not

able to distinguish between a torus and a Klein bottle (figures V.10). The

homotopy type is able to make such a distinction. However, we know from the

sphere theorem III.16 that they give a complete characterization of the sphere.

Finally, Morse numbers are more precise than the Betti numbers: consider the

homological sphere of Poincaré. The Morse number for this space cannot be 1–

0–0–1, as the Betti numbers, because the homological sphere is not homotopic

to a sphere. In fact, our algorithm of chapter VI gives the optimal answer

1–2–2–1 (there is a need of 2 generators for the fundamental group).

Those Morse numbers could be seen as an information between homology

and simple homotopy.
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V.3.2 Invariance proof for 3–manifolds

Discrete Morse numbers are linked to simple homotopy. To prove their

invariance, we could prove that topologically equivalent cell complexes are

simple homotopic, and that simple homotopic spaces have the same discrete

Morse numbers. Unfortunately, the first affirmation is not true in the general

case. We will use the following theorems, which demonstration can be found

respectively in [Moi52] and [Coh73, 25.1].

Theorem V.12 (3–Manifold Hauptvermutung) Any two triangulations

of a topological 3–manifold have a common subdivision.

Theorem V.13 If K∗ is a subdivision of K, then K and K∗ are simple–

homotopy equivalent.

The proof of the invariance now follows:

Theorem V.14 (Invariance of discrete Morse numbers) Let K and L

be homeomorphic 3–manifolds. Then for all p, Mp (K) = Mp (L).

Proof. Let f be an optimal discrete Morse function defined on K. We will prove

the theorem by the absurd. Suppose L would have its Morse number of index

n higher than the one of K: Mn (L) > mn (f). We will construct a discrete

Morse function g on L with the same number of critical elements as f .

From theorem V.12, there exists a common subdivision to K and L. We

deduce from theorem V.13 that L can be obtained from K by a finite number

of collapses and extensions.

If M∗ is an extension of M , and f is a discrete Morse function defined on

M , we know from section III.2.3 that we can define a discrete Morse function

f∗ on M∗ with the same number of critical elements as f . If M collapses on

M∗, we know by proposition III.15 that we can extend f∗ on M without adding

any critical element.

Therefore, we can build a discrete Morse function g on L with the same

number of critical elements as f . This contradicts Mn (L) > mn (f). ¤



VI
Constructing discrete Morse functions

VI.1 Data structure

In this chapter, we aim to build a discrete Morse function on a cell

complex K. Such a function assigns to every cell of K a real value, so we

need at least a cell structure and one entry per cell. The cell structure will be

composed of the following fields:

– an identifier (unsigned long)

– the dimension (unsigned char)

– the value of the Morse function (unsigned long)

– the value of the discrete gradient vector field (0 or cell identifier)

– a list with the star cells’ identifiers

– a list with the boundary cells’ identifiers

– a flag to indicate being an edge of one of the hyperforests

– a “non–regular” flag

– a “loop” flag

– a “critical” flag

– a “visited flag” for graph traversals

– a component identifier for the forest creation

The component identifier will be used when mixing with geometry to

create a minimal spanning forest, and will be used as a union–find structure

[Tar75]. A cell complex structure will just be a matrix of every cell in each

dimension. We also added a coordinate matrix for rendering those models.
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VI.2 Algorithms for constructing discrete Morse functions out of
hyperforests

The algorithms introduced here are extensions of the algorithm of section

IV.2. They are also a natural deduction of the theory developed in chapter V.

The algorithms process each layer or dual layer of the Hasse diagram. For

each of those, they define a hyperforest extracted from the layer’s hypergraph.

Then they give an orientation to those hyperforests, i.e. they define a discrete

gradient vector field. At the same time, they can define the discrete Morse

function on each cell.

VI.2.1 Hypergraph of the regular components

Constructing a hyperforest on a regular component can be done the

same way as constructing a spanning tree [Hop73]. The problem resides in the

hyperlinks that join those regular components. We can represent them, again,

with a hypergraph. This reduction is the principle of one of the heuristics of

section VI.4.2.

Definition VI.1 (Hypergraph of the regular components) Let H be a

hypergraph. The hypergraph C (H) of the regular components of H is the hyper-

graph with one node for each regular component of H, and whose hyperlinks

are the loops and the non–regular hyperlinks of H.

Figure VI.1: A 1/0–hyperforest of a
pile of 3× 3× 1 cubes.

Figure VI.2: The hypergraph of the
regular components of figure VI.1.

Notice that the hypergraph of the regular components of a hyperforest

HF is also a hyperforest (cf figures VI.1 and VI.2). In that case, we know

from section V.2.3 that there are exactly r − h critical p–cells, where r is the

number of regular components of a p/q–hyperforest, and l its number of loops

and non–regular hyperlinks.
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VI.2.2 Choosing the roots

For a given hyperforest HF , we will process its regular components from

the root to the leaves. Therefore, we need to choose a root regular component

R in the hyperforest C (HF ) of the regular components of HF .

In each connected component of C (HF ), there is either a critical com-

ponent R or at least one loop incident to a regular component R. If not, there

would be the same number of nodes and non–regular hyperlinks. As a node

can be the source of at most one hyperlink, there would be a hypercircuit in

C (HF ). And as C (HF ) is a hyperforest, this is impossible.

In each regular component R, we will choose a root. If the component is

a critical component, the root can be any node of R. If the component is not

critical, we know from definition V.9 that exactly one node is the source of a

loop or a non–regular hyperlink. The root node of R will be that one.

The root regular component R and the roots of the regular components

can be chosen among the different nodes incident to a loop to comply with

geometric conditions (cf section VI.4.4).

VI.2.3 Construction of a discrete gradient vector field

Figure VI.3: A part of the hyperfo-
rest 2/1 of S2 × S1.

Figure VI.4: Orienting the hyper-
graph of figure VI.3.

For each regular component R, we need to pair each of its nodes, except

one if R is critical. For example, figure VI.4 shows the result of this process

on the model of figure VI.3. We first choose a root node in the component as

described in section VI.2.2. We pair the leaves of R with their unique incident

link. Considering R(1) composed of the unpaired nodes and links of R, we pair

the leaf nodes of R(1) with their unique incident link. And we repeat the process

on R(2) composed of the unpaired elements of R(1), and so forth.

After this process, the last node is the root node. If the component is

critical, it remains unpaired and will be critical. If the component is not critical,

we pair the root node with its incident loop or non–regular hyperlink. So every

hyperlink of the hyperforest and every node except one per critical component

have been paired.
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VI.2.4 Construction of a discrete Morse function

We will discuss the different heuristics used for hyperforest creation in

section VI.4. Depending on the heuristic used, two kinds of hyperforests can

appear: direct hyperforest (of type p/(p+1)) and dual hyperforest (of type

(p+1)/p).

Direct hyperforest. In a direct hyperforest HF , the nodes represent

cells of lower dimension than the hyperlinks. Therefore, the nodes of HF should

be assigned a smaller value than their incident links. This will be our primary

construction.

Dual hyperforest. In a dual hyperforest HF , the nodes represent

cells of higher dimension than the hyperlinks. Therefore, the nodes of HF

should be assigned a greater value than their incident links. We can transform

the primary construction to satisfy with this observation by considering the

discrete Morse function g : x 7→ C − f(x), and we can choose C in such a way

that Img = Imf .
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Figure VI.5: The edge distances on a small tree example.

For the root regular component R of HF , we assign the value c to its root

node and its incident loop or non–regular hyperlink if any (cf section VI.2.2).

Then, we assign to each node of R its edge distance (cf figure VI.5) to the root

of R plus c, and to every link of R the maximum value of its two end nodes,

as in step 4 of algorithm of section IV.2.

If the root regular component was isolated in C (HF ), we already assigned

all the elements of this connected component of C (HF ). If this root component

was not isolated, we repeat the process above on a regular component incident

to this root regular component, with the initial value of c equal to the greatest

value already assigned. Processing this way each connected component of

C (HF ) we assign all the elements of HF .

However, to ensure the inequalities of definition III.6, we must avoid

that a cell of another layer of the hypergraph interferes with the cells of the
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hypergraph we considered. A simple way of doing so is to set the initial value

c to the number of cells of K of dimension less or equal to p.

Notice that this discrete Morse function will have the same critical

elements as the discrete gradient vector field of section VI.2.3. This gives

another proof of theorem III.9: considering a discrete gradient vector field,

we can build its Hasse diagram and a collection of the direct hyperforests of

the layers 0/1, 1/2,. . . , (n-1)/n. Then we can construct the discrete Morse

function as above, and thus prove the theorem.

VI.3 Optimality considerations

The main part of the algorithm is to create the hyperforest. As we have

seen in sections VI.2.3 and VI.2.4, we do not need to care about orientation.

Our goal is to reach optimality. Unfortunately, this is not possible in polynomial

time (unless P=NP). Moreover, we saw in section III.4.3 that any polynomial

approximation can be arbitrary far from the optimum. Therefore, we chose

to extend our algorithm of chapter IV, which is proven to be optimal for 2–

manifolds.
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VI.3.1 Validity of local optimization

As we have seen in section V.3, the minimal number of critical cells is

an invariant at least for 3–manifolds. Therefore, maximizing the number of

hyperlinks in each layer of the Hasse diagram gives a global maximum:

VI.6(a): Original model VI.6(b): C1 VI.6(c): C2

Figure VI.6: A contractible space and the complement cell complexes C1 and
C2 of two different hyperforests HF1 and HF2 defined on it.

Consider two different n/(n-1)–hyperforests HF1 and HF2 giving the

same number of critical cells (or critical components). Now call C1 and C2 the

two cell complexes represented by the cells of dimension ≤ n and whose (n-

1)–cells are not in HF1 and HF2 respectively (cf figure VI.6). From theorems

III.10 and III.11, C1 and C2 are simple homotopic. Therefore, they have the

same discrete Morse number. We conclude by induction that, in the case of 3–

manifolds, maximizing the number of hyperlinks in each hyperforest generates

an optimal discrete Morse function.

VI.3.2 Regular components

Each regular component R of H is determined before any construction of

HF . For any hyperforest HF , consider RT the simple graph which nodes are

the n nodes of R and which links are the regular hyperlinks of HF incident to

those nodes. As R is a regular component of H, there is no regular hyperlink

incident to a node of R and a node out of R, so RT is well defined. As HF is a

hyperforest, there is no circuit in RT : RT is a collection of k trees. So RT has

(n−k) links. The maximum number of links will thus be for k minimal, i.e. RT

being a unique (connected) tree. This optimum can be reached by constructing

a spanning tree on each regular component of H [Hop73].
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Figure VI.7: Replacing a non–regular hyperlink by a loop.

VI.3.3 Loops

Each connected component of C (HF ) is either critical or incident to

either a loop or a non–regular hyperlink. The problem of regular hyperlinks

has been resolved optimally, and we want now to maximize the number of

loops and non–regular hyperlinks of HF . If a critical component is incident to

a loop in H, then adding this loop to HF generates another hyperforest with

one more hyperlink and one less critical component. If a regular component is

incident to a loop l in H and to a non–regular hyperlink nl in H and HF , then

replacing nl by l in HF generates another hyperforest with the same number

of hyperlinks (and less risk to create a hypercircuit). This process is illustrated

on figure VI.7. Therefore, we can always generate a hyperforest HF with the

maximum possible number of hyperlinks such that every regular component

incident to a loop in H is incident to a loop in HF .

VI.4 Different heuristics

Figure VI.8: Detail of a hyperlink insertion in the dual hyperforest appearing
with a solid torus model.

In section VI.3, we proved that reaching an optimal discrete gradient

vector field can be obtained, at least for 3–manifolds, by maximizing the

number of hyperlinks of the hyperforests HF extracted from the layers H

of the Hasse diagram (definition V.1). This maximum can always be reached

by, for each regular component R of H, generating a spanning tree, adding
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the links of this tree to HF , and if R is incident to a loop, adding it to HF .

Then, we can process the non–regular hyperlinks of H. We aim that HF has

the maximum number of hyperlinks, as it will minimize the number of critical

cells. For example, adding the hyperlink on the left side of figure VI.8 allows us

to pair it with the node on the left. Thus, there will be less critical (unpaired)

nodes.

VI.4.1 Algorithm outline

We must first choose which layers of the Hasse diagram we process. In

fact, we can process all of them, indifferently from their direct or their dual

hypergraph representation. We know that the dual pseudograph of a manifold

has no non–regular hyperlink, and that the direct hypergraph of the first layer

is a simple graph. Those two simple cases could be useful as the construction

of hyperforest is linear on pseudograph and quadratic on general hypergraphs.

For example, a solid model could be processed by the following sequence of

layers: 0/1,1/2,3/2; or 3/2,2/1,0/1.

In this work, all the algorithms to extract a hyperforest HF out of a

hypergraph H process by the following steps (cf figures VI.9(a), VI.9(b) and

fig:s2xs1 2):

1. Initiate HF with the nodes of H.

2. Generate a spanning tree on every regular component of H.

3. Add all the links of those spanning trees to HF .

4. If a regular component is incident to some loops, add one of them to

HF .

5. Process the non–regular hyperlinks of H.

The 4 first steps of the algorithm are linear, and guaranteed to be optimal

in any case. The last step requires some heuristics as detailed below.



Constructing Discrete Morse Functions 73

VI.9(a): steps 1–3: Forest of the regular components.

VI.9(b): step 4: Adding loops.

VI.9(c): step 5: Adding non–regular hyperlinks.

Figure VI.9: Steps of the algorithm on a part of the hyperforest 2/1 of S2×S1.

VI.4.2 Hypergraph simplification

Let HF be the hyperforest being created out of the hypergraph H. There

is one critical cell of HF in each of its critical component (proposition V.10).

There is one obvious case for non–regular hyperlinks. A non–regular

hyperlink nl can create a hypercircuit in a regular component R when it is

incident more than one time to R1, and when the source of nl is a node of R.

A hyperlink can be added to HF only if it is incident to at least one critical

component. If a hyperlink loops in all of its incident regular critical components

of HF , we can remove it from H as it will never be part of HF . This condition

is satisfied if the hyperlink is not incident to any critical component.

There are two obvious configurations for a regular component R of H:

when the regular component is incident to a loop and when it is incident to

1hyperlinks are families of nodes, and not set of nodes
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only one hyperlink. In the first case, we can add the loop to HF , and remove

R and its loop from H (step 4). In the second case, if the hyperlink does not

create a hypercircuit in R, we add it to HF , and remove R and this hyperlink

from H. The two graphs of figure VI.7 are obvious in that sense.

Figure VI.10: Successive simplifications of a hypergraph (3 per step).

Completely simplifying the hypergraph C (H) of the regular components

(cf section VI.2.1) require a quadratic time of execution (cf figure VI.10.

However, if some hyperlinks of C (HF ) have not been removed, we need

some further process. We can either apply an exponential algorithm to reach

optimality if the size of the hypergraph would allow it, or apply one of the

other heuristics to complete the hyperforest.
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VI.4.3 Greedy methods

Let HF be the hyperforest being created out of the hypergraph H. We

can try to add the hyperlinks of H to HF in order they appear after a sort.

The criterion for a hyperlink not to be added to HF (and to be removed from

H) is the obvious case of section VI.4.2: when it is multiply incident to every

critical component it is incident to.

The priority on links (which appears in the sort) can be quite arbitrary,

as there is no polynomial approximation. We tested 3 of them:

– minimal number of incident regular components.

– minimal number of incident critical components in HF .

– maximal number of incident non–critical components in HF .

The problem that appears with those criterions is that the priority

must be calculated again each time a hyperlink is added to HF (as some

components change status from critical to non–critical). So the complexity of

such a heuristic is quadratic, as the one of section VI.4.2.

VI.4.4 Mixing with geometry

As for the algorithm of chapter IV (cf section VI.4.4), we can impose some

more conditions on our discrete Morse functions. However, there is a difference

with that case: the geometry can influence the result, as the hyperforest of a

layer will be different if the hyperforest of the precedent layer processed is a

geometrical minimum (cf tables 6.21 a 6.26).

There are different constraints we can add on our hyperforest HF :

– The spanning tree of the regular components of HF can be chosen to be

a minimal spanning tree.

– The loops added to the regular components of HF can minimize the same

function, in order to have the root of the spanning trees at a minimal

position.

– The roots of the spanning trees of the critical components of HF can

also be at a minimal position.

– The priority used in the greedy heuristics (cf section VI.4.3) can be

derived from the same geometrical function.
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VI.11(a): No geometrical
constraint

VI.11(b): Minimal distance
to origin

VI.11(c): Minimal Z coordi-
nate

Figure VI.11: Discrete gradient vector fields with geometrical constraints.

HG Simpl Min Deg Min Def Max Cpl

Direct 1208 530 14 402
Dual 7258 728 8 934

Sym Direct 3580 658 50 702
Sym Dual 3842 566 6 722

Table VI.1: Number of redundant cells per method on the panel of models of
tables VI.2 and VI.3. Robust Morse: 56.

VI.5 Results

We compared the different heuristics of section VI.4 on two kinds

of models: Hachimori’s examples [HacModels] (mainly non–constructible, cf

Table VI.2) and other solid models at the Mat&Mı́dia Laboratory (Table VI.3).

The different heuristics we implemented are:

– Direct: processing the layers 0/1, 1/2, 2/3.

– Dual: processing the layers 3/2, 2/1, 1/0.

– Sym Direct: processing the layers 0/1, 1/2, 3/2.

– Sym Dual: processing the layers 3/2, 2/1, 0/1.

– HG Simpl: only simplifying the hypergraph, with no further proceeding.

– Min Def: priority to the hyperlinks incident to the minimum of critical

components.

– Min Deg: priority to the hyperlinks of minimum degree.

– Max Cpl: priority to the hyperlinks incident to the maximum of non–

critical components.

We added a simple comparison called “Robust Morse”, which is a reinforced

version of Direct/Min Def. The algorithm is optimal for surfaces in the case of
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Sym Dual (chapter IV. The results of those processes are given on Table VI.1.

The detailed results appear on Tables 6.4 to 6.26.

To illustrate the effect of geometry constraints on hyperforest creation,

we applied different geometrical constraints on the solids models of Table VI.3:

– No geometrical constraint: the hyperlinks appear in the order of the

model importation (cf figure VI.11(a)).

– Minimal distance to origin: the hyperlinks are first ordered by their

distance to a reference point, and the spanning–trees are geometrically

minimal, with the closest root to the origin (cf figure VI.11(b)).

– Minimal Z coordinate: the hyperlinks are first ordered by their height,

and the spanning–trees are geometrically minimal, with the lowest height

root (cf figure VI.11(c)).

Model Topology Number of cells Euler Robust Best Morse

bing 3–ball (480,2511,3586,1554) 1 (1,2,2,0) (1,1,1,0)
bjorner projective

plane +
one facet

(6,15,11) 2 (1,0,1)

c-ns contractible (12,37,26) 1 (1,2,2) (1,1,1)
c-ns2 contractible (13,39,27) 1 (1,2,2) (1,0,0)
c-ns3 contractible (10,31,22) 1 (1,1,1)
dunce hat Dunce hat (8,24,17) 1 (1,1,1)
gruenbaum 3–ball (14,54,70,29) 1 (1,0,0,0)
knot 3–ball (380,1929,2722,1172) 1 (1,1,1,0)
lockeberg 3–sphere (12,60,96,48) 0 (1,0,0,1)
mani-walkup-
C

3–sphere (20,126,212,106) 0 (1,0,0,1)

mani-walkup-
D

3–sphere (16,106,180,90) 0 (1,0,0,1)

nonextend contractible (7,19,13) 1 (1,1,1) (1,0,0)
poincare homology

sphere
(16,106,180,90) 0 (1,2,2,1)

projective projective
plane

(6,15,10) 1 (1,1,1)

rudin 3–ball (14,66,94,41) 1 (1,0,0,0)
simon contractible (7,20,14) 1 (1,1,1) (1,0,0)
ziegler 3–sphere (10,38,50,21) 1 (1,0,0,0)

Table VI.2: Results on Hachimori’s models [HacModels].
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Model Topology Number of cells Euler Robust Best

Pile of Cubes contractible (572,1477,1266,360) 1 (1,0,0,0)
s2xs1 S2 × S1 (192,588,612,216) 0 (1,3,4,2) (1,1,1,1)
s3 3–sphere (162,522,576,216) 0 (1,1,1,1) (1,0,0,1)
solid 2sphere 2–sphere (64,144,108,26) 2 (1,0,1,0)
Furch knot-
ted ball

3–ball (600,1580,1350,369) 1 (1,1,1,0)

Table VI.3: Results on solid models.
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HG Simpl Min Deg Min Def Max Cpl
Direct (1,526,572,46) (1,119,119,0) (1,1,1,0) (1,84,88,4)
Dual (410,1084,675,0) (32,186,155,0) (3,5,3,0) (40,179,140,0)
Sym Direct (1,526,526,0) (1,119,119,0) (1,1,1,0) (1,84,84,0)
Sym Dual (1,675,675,0) (1,155,155,0) (1,3,3,0) (1,140,140,0)

Table VI.4: bing. Cells: (480,2511,3586,1554). Robust Morse: (1,2,2,0).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,1,2) (1,0,1) (1,0,1) (1,0,1)
Dual (2,2,2) (1,0,1) (1,0,1) (1,0,1)
Sym Direct (1,0,1) (1,0,1) (1,0,1) (1,0,1)
Sym Dual (1,1,2) (1,0,1) (1,0,1) (1,0,1)

Table VI.5: bjorner. Cells: (6,15,11). Robust Morse: (1,0,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,8,8) (1,2,2) (1,2,2) (1,1,1)
Dual (2,2,1) (1,1,1) (1,1,1) (1,1,1)
Sym Direct (1,3,3) (1,2,2) (1,2,2) (1,2,2)
Sym Dual (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table VI.6: c-ns. Cells: (12,37,26). Robust Morse: (1,2,2).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,3,3) (1,2,2) (1,2,2) (1,2,2)
Dual (3,2,0) (1,0,0) (1,0,0) (1,0,0)
Sym Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Dual (1,0,0) (1,0,0) (1,0,0) (1,0,0)

Table VI.7: c-ns2. Cells: (13,39,27). Robust Morse: (1,2,2).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,5,5) (1,2,2) (1,1,1) (1,1,1)
Dual (2,2,1) (1,1,1) (1,1,1) (1,1,1)
Sym Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Dual (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table VI.8: c-ns3. Cells: (10,31,22). Robust Morse: (1,1,1).
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HG Simpl Min Deg Min Def Max Cpl
Direct (1,7,7) (1,2,2) (1,1,1) (1,2,2)
Dual (2,2,1) (1,1,1) (1,1,1) (1,1,1)
Sym Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Dual (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table VI.9: dunce hat. Cells: (8,24,17). Robust Morse: (1,1,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,5,5,0) (1,0,0,0) (1,0,0,0) (1,1,1,0)
Dual (10,18,9,0) (1,2,2,0) (1,0,0,0) (1,1,1,0)
Sym Direct (1,5,5,0) (1,0,0,0) (1,0,0,0) (1,1,1,0)
Sym Dual (1,9,9,0) (1,2,2,0) (1,0,0,0) (1,1,1,0)

Table VI.10: gruenbaum. Cells: (14,54,70,29). Robust Morse: (1,0,0,0).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,408,439,31) (1,83,83,0) (1,2,2,0) (1,75,77,2)
Dual (270,734,465,0) (25,134,110,0) (2,3,2,0) (21,120,100,0)
Sym Direct (1,408,408,0) (1,83,83,0) (1,2,2,0) (1,75,75,0)
Sym Dual (1,465,465,0) (1,110,110,0) (1,2,2,0) (1,100,100,0)

Table VI.11: knot. Cells: (380,1929,2722,1172). Robust Morse: (1,1,1,0).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,7,20,14) (1,2,3,2) (1,0,0,1) (1,0,0,1)
Dual (11,23,13,1) (1,2,2,1) (1,0,0,1) (1,2,2,1)
Sym Direct (1,7,7,1) (1,2,2,1) (1,0,0,1) (1,0,0,1)
Sym Dual (1,13,13,1) (1,2,2,1) (1,0,0,1) (1,2,2,1)

Table VI.12: lockeberg. Cells: (12,60,96,48). Robust Morse: (1,0,0,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,31,68,38) (1,10,16,7) (1,0,0,1) (1,5,7,3)
Dual (19,56,38,1) (2,11,10,1) (1,0,0,1) (2,9,8,1)
Sym Direct (1,31,31,1) (1,10,10,1) (1,0,0,1) (1,5,5,1)
Sym Dual (1,38,38,1) (1,10,10,1) (1,0,0,1) (1,8,8,1)

Table VI.13: mani-walkup-C. Cells: (20,126,212,106). Robust Morse: (1,0,0,1).
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HG Simpl Min Deg Min Def Max Cpl
Direct (1,26,58,33) (1,7,10,4) (1,0,0,1) (1,2,4,3)
Dual (16,54,39,1) (2,8,7,1) (1,0,0,1) (1,9,9,1)
Sym Direct (1,26,26,1) (1,7,7,1) (1,0,0,1) (1,2,2,1)
Sym Dual (1,39,39,1) (1,7,7,1) (1,0,0,1) (1,9,9,1)

Table VI.14: mani-walkup-D. Cells: (16,106,180,90). Robust Morse: (1,0,0,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Dual (2,1,0) (1,0,0) (1,0,0) (1,0,0)
Sym Direct (1,0,0) (1,0,0) (1,0,0) (1,0,0)
Sym Dual (1,0,0) (1,0,0) (1,0,0) (1,0,0)

Table VI.15: nonextend. Cells: (7,19,13). Robust Morse: (1,1,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,28,63,36) (1,9,12,4) (1,2,3,2) (1,7,10,4)
Dual (14,47,34,1) (2,12,11,1) (1,2,2,1) (3,12,10,1)
Sym Direct (1,28,28,1) (1,9,9,1) (1,2,2,1) (1,7,7,1)
Sym Dual (1,34,34,1) (1,11,11,1) (1,2,2,1) (1,10,10,1)

Table VI.16: poincare. Cells: (16,106,180,90). Robust Morse: (1,2,2,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,2,2) (1,1,1) (1,1,1) (1,1,1)
Dual (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Dual (1,1,1) (1,1,1) (1,1,1) (1,1,1)

Table VI.17: projective. Cells: (6,15,10). Robust Morse: (1,1,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,11,12,1) (1,3,3,0) (1,0,0,0) (1,1,1,0)
Dual (12,29,18,0) (1,4,4,0) (1,0,0,0) (1,4,4,0)
Sym Direct (1,11,11,0) (1,3,3,0) (1,0,0,0) (1,1,1,0)
Sym Dual (1,18,18,0) (1,4,4,0) (1,0,0,0) (1,4,4,0)

Table VI.18: rudin. Cells: (14,66,94,41). Robust Morse: (1,0,0,0).
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HG Simpl Min Deg Min Def Max Cpl
Direct (1,4,4) (1,1,1) (1,1,1) (1,1,1)
Dual (1,0,0) (1,0,0) (1,0,0) (1,0,0)
Sym Direct (1,1,1) (1,1,1) (1,1,1) (1,1,1)
Sym Dual (1,0,0) (1,0,0) (1,0,0) (1,0,0)

Table VI.19: simon. Cells: (7,20,14). Robust Morse: (1,1,1).

HG Simpl Min Deg Min Def Max Cpl
Direct (1,3,3,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)
Dual (7,12,6,0) (1,1,1,0) (1,0,0,0) (1,0,0,0)
Sym Direct (1,3,3,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)
Sym Dual (1,6,6,0) (1,1,1,0) (1,0,0,0) (1,0,0,0)

Table VI.20: ziegler. Cells: (10,38,50,21). Robust Morse: (1,0,0,0).

HG Simpl Min Deg Min Def Max Cpl

Direct (1,258,303,45) (1,56,66,10) (1,0,0,0) (1,64,74,10)
Dual (199,327,129,0) (12,35,24,0) (1,0,0,0) (14,28,15,0)
Sym Direct (1,258,258,0) (1,56,56,0) (1,0,0,0) (1,64,64,0)
Sym Dual (1,129,129,0) (1,24,24,0) (1,0,0,0) (1,15,15,0)

(a) No geometrical constraint

Direct (1,20,20,0) (1,0,0,0) (1,0,0,0) (1,3,3,0)
Dual (48,73,26,0) (1,0,0,0) (1,0,0,0) (5,6,2,0)
Sym Direct (1,20,20,0) (1,0,0,0) (1,0,0,0) (1,3,3,0)
Sym Dual (1,26,26,0) (1,0,0,0) (1,0,0,0) (1,2,2,0)

(b) Minimal distance to origin

Direct (1,32,32,0) (1,3,3,0) (1,0,0,0) (1,2,2,0)
Dual (126,228,103,0) (8,17,10,0) (1,0,0,0) (9,14,6,0)
Sym Direct (1,32,32,0) (1,3,3,0) (1,0,0,0) (1,2,2,0)
Sym Dual (1,103,103,0) (1,10,10,0) (1,0,0,0) (1,6,6,0)

(c) Minimal Z coordinate

Table VI.21: Pile of Cubes. Cells: (572,1477,1266,360). Robust Morse: (1,0,0,0).
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HG Simpl Min Deg Min Def Max Cpl

Direct (1,104,216,113) (1,20,27,8) (1,1,1,1) (1,24,31,8)
Dual (99,208,110,1) (8,28,21,1) (1,1,1,1) (8,33,26,1)
Sym Direct (1,104,104,1) (1,20,20,1) (1,1,1,1) (1,24,24,1)
Sym Dual (1,110,110,1) (1,21,21,1) (1,1,1,1) (1,26,26,1)

(a) No geometrical constraint

Direct (1,53,103,51) (1,6,8,3) (1,1,1,1) (1,10,15,6)
Dual (6,8,3,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)
Sym Direct (1,53,53,1) (1,6,6,1) (1,1,1,1) (1,10,10,1)
Sym Dual (1,3,3,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)

(b) Minimal distance to origin

Direct (1,69,124,56) (1,12,15,4) (1,1,1,1) (1,16,24,9)
Dual (32,79,48,1) (1,1,1,1) (1,1,1,1) (2,11,10,1)
Sym Direct (1,69,69,1) (1,12,12,1) (1,1,1,1) (1,16,16,1)
Sym Dual (1,48,48,1) (1,1,1,1) (1,1,1,1) (1,10,10,1)

(c) Minimal Z coordinate

Table VI.22: s2xs1. Cells: (192,588,612,216). Robust Morse: (1,3,4,2).

HG Simpl Min Deg Min Def Max Cpl

Direct (1,73,154,82) (1,11,16,6) (1,0,0,1) (1,12,18,7)
Dual (74,166,93,1) (6,18,13,1) (1,1,1,1) (7,20,14,1)
Sym Direct (1,73,73,1) (1,11,11,1) (1,0,0,1) (1,12,12,1)
Sym Dual (1,93,93,1) (1,13,13,1) (1,1,1,1) (1,14,14,1)

(a) No geometrical constraint

Direct (1,99,208,110) (1,20,26,7) (1,1,1,1) (1,11,17,7)
Dual
Sym Direct (1,99,99,1) (1,20,20,1) (1,1,1,1) (1,11,11,1)
Sym Dual

(b) Minimal distance to origin

Direct (1,44,90,47) (1,0,0,1) (1,0,0,1) (1,5,7,3)
Dual (34,66,33,1) (1,0,0,1) (1,0,0,1) (4,6,3,1)
Sym Direct (1,44,44,1) (1,0,0,1) (1,0,0,1) (1,5,5,1)
Sym Dual (1,33,33,1) (1,0,0,1) (1,0,0,1) (1,3,3,1)

(c) Minimal Z coordinate

Table VI.23: s3. Cells: (162,522,576,216). Robust Morse: (1,1,1,1).
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HG Simpl Min Deg Min Def Max Cpl

Direct (1,16,17,0) (1,2,3,0) (1,0,1,0) (1,2,3,0)
Dual (19,25,8,0) (2,1,1,0) (1,0,1,0) (1,0,1,0)
Sym Direct (1,16,17,0) (1,2,3,0) (1,0,1,0) (1,2,3,0)
Sym Dual (1,7,8,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)

(a) No geometrical constraint

Direct (1,5,6,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)
Dual (21,27,8,0) (1,0,1,0) (1,0,1,0) (3,2,1,0)
Sym Direct (1,5,6,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)
Sym Dual (1,7,8,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)

(b) Minimal distance to origin

Direct (1,1,2,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)
Dual (13,16,5,0) (1,0,1,0) (1,0,1,0) (2,1,1,0)
Sym Direct (1,1,2,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)
Sym Dual (1,4,5,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)

(c) Minimal Z coordinate

Table VI.24: solid 2sphere. Cells: (64,144,108,26). Robust Morse: (1,0,1,0).

HG Simpl Min Deg Min Def Max Cpl

Direct (1,221,235,14) (1,46,47,1) (1,1,1,0) (1,47,48,1)
Dual (241,446,206,0) (18,62,45,0) (1,1,1,0) (14,53,40,0)
Sym Direct (1,221,221,0) (1,46,46,0) (1,1,1,0) (1,47,47,0)
Sym Dual (1,206,206,0) (1,45,45,0) (1,1,1,0) (1,40,40,0)

(a) No geometrical constraint

Direct (1,52,52,0) (1,6,6,0) (1,1,1,0) (1,7,7,0)
Dual (165,302,138,0) (3,5,3,0) (1,2,2,0) (11,36,26,0)
Sym Direct (1,52,52,0) (1,6,6,0) (1,1,1,0) (1,7,7,0)
Sym Dual (1,138,138,0) (1,3,3,0) (1,2,2,0) (1,26,26,0)

(b) Minimal distance to origin

Direct (1,50,50,0) (1,9,9,0) (1,1,1,0) (1,9,9,0)
Dual (159,302,144,0) (2,11,10,0) (1,1,1,0) (10,34,25,0)
Sym Direct (1,50,50,0) (1,9,9,0) (1,1,1,0) (1,9,9,0)
Sym Dual (1,144,144,0) (1,10,10,0) (1,1,1,0) (1,25,25,0)

(c) Minimal Z coordinate

Table VI.25: Furch. Cells: (600,1580,1350,369). Robust Morse: (1,1,1,0).



VII
Future Works

This work was focused on Forman’s discrete Morse theory. We analyzed

the building blocs of this theory, and proved the layered structure of discrete

Morse functions. We represented this layer structure by a collection of hyper-

forests and gave a complete characterization of the critical cells in terms of re-

gular components of hyperforests. We used this analysis to introduce a scheme

for constructing discrete Morse function on finite cell complexes of arbitrary

dimension. This construction is quadratic in time in the worst cases, and is

proven to be linear and optimal in the case of 2-manifolds. The experimental

results showed our algorithm gave an optimal result in most of the cases. This

opens the question of which conditions on the cell complex would ensure the

optimality of the resulting function.

An important application of this work to computer graphics would be in

the field of geometric compression. The algorithm Grow&Fold of A. Szymczak

and J. Rossignac [Szy00] could be justified and enhanced by our algorithm

to minimize the number of so-called “glue faces” in order to achieve a better

encoding. This work has been done in an optimal way for the case of surfaces

with handles in [Lop02].

We plan to continue this work in three directions. First, as mentioned

above, apply Forman’s theory and the analysis of our algorithm for solid mesh

compression. Second, we will try to apply discrete Morse theory to resolve

singularities that arise from shape reconstruction. Finally, we look forward to

produce a topologically consistent morphing based on mapping directly the

discrete gradient field between two objects of the same homotopy type.
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