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Abstract. The acquisition of high-resolution 3D models still requires delicate and time-consuming processes.
In particular, each detail of the object should be scanned separately, although they may be similar. This can be
simplified by copying a small set of details at different places of the model, synthesizing high geometric resolution
from details exemplars, as introduced in this paper for three different contexts : when the detail exemplars are
scanned separately at high resolution, when they are synthesized or edited from other models, or when they are
obtained by accumulating repeated instances of the detail in the low-resolution scan. The main challenge here
is to correctly register the high-resolution details with the low resolution model. To address this issue, this work
proposes a careful resolution manipulation of 3D scans at each step of an automatic registration pipeline, combined
with a robust selection of alignments. This results in a fully automatic process for geometry super-resolution by
example. Experiments on synthetic and real data sets show applicability in different contexts, including resolution
increase, noise removal by example and geometric texture insertion.
Keywords: Super-resolution. 3D Registration. 3D Scanning. Surface Reconstruction.

Figure 1: Super-resolution of a scanned keyboard with a high-resolution scan of one of its keys: original model (top), reconstructed with
the detail exemplar of a key scanned at high resolution (middle) and reconstructed with the exemplar key generated by low resolution
accumulation (bottom).

1 Introduction
With the advent of cheaper scanning devices, 3D model

acquisition became more popular. However, the scanning
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of high-resolution model remains a complex and time-
consuming task. Regardless of the equipment used, the 3D
scanning hardware imposes a limit in the highest achievable
resolution of a single scan. Additionally, the acquired data
is contaminated by sensor noise, further compromising the
effective model resolution.
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Figure 2: Intelligent geometry insertion: substituting the exemplar detail for a synthetic texture, a new object can be obtained by super-
resolution, incorporating the texture automatically at the right places.

There is an inherent trade-off between scanning time and
model resolution: While for digitizing an object in low resol-
ution only a few broad scans may suffice ; To scan the same
object in high resolution many close scans would be needed
to capture each fine detail, even if they are repeated in the
model. This trade-off can be improved if we reuse a single
exemplar of each fine detail, turning the scan process sim-
pler, faster and still producing models with high resolution.
This goal can be accomplished using super-resolution by ex-
ample!

The main idea consists in exploiting the fact that most
human-made objects have a very coherent local structure
that can be summarized by few exemplar features. In this
context, an efficient strategy for high-resolution scanning is
to quickly digitize the entire object in low-resolution with
a small number of scans, and to subsequently scan or ex-
tract the few characteristic features of the object in high res-
olution (Figure 1). The scanning process stops here. As a
post-process, the super-resolution method reconstructs the
model in high resolution by extrapolating the global geo-
metry based on the local exemplars.

Contributions Super-resolution is a powerful method that
has already been applied to images and video. However, its
adaptation to geometric models is non-trivial due to several
technical difficulties, among which registration with differ-
ent resolutions and the robust identification of many detail
occurrences in large low-resolution models. The contribution
of this paper is the development of a fully automatic method
for geometric super-resolution by example that overcomes
these issues. To do so, we propose a careful resolution ma-
nipulation of 3D scans at each step of an automatic regis-
tration pipeline, combined with a robust selection of valid
alignments.

This approach actually applies to slightly different con-
texts than classical super-resolution, when the resolution of
the exemplar detail is higher than the whole model. Depend-
ing on the context, the exemplar can be obtained from a
separate scan at high resolution (Figure 1), when the user
has access to the scanning process, or synthesized artificially
for intelligent geometry texture insertion (Figure 2). The ex-
emplar can also be retrieved by accumulating the repeated
low-resolution instances of a selected detail, identified by the
same mixed-resolution registration (Figure 11).

2 Related Work
There are two basic approaches for super-resolution: re-

moving noise from the accumulation of samples and detail
synthesis by example.

Super-resolution from multiple samples exploits redund-
ancy in replicated data sets of the same scene in order to
filter out noise and enhance the signal, effectively recover-
ing information beyond the sampling frequency [19]. This
approach suits well for video sequences, as proposed for ex-
ample by Schultz and Stevenson [7] or Irani and Peleg [13].
It has been used for geometry super-resolution in the work
of Kil et al. [4]. By scanning several times the same object
from slightly displaced viewpoints, the authors obtain an ac-
cumulation of geometry that can be used to remove noise.
However, this slows down the scanning process.

Super-resolution by example exploits the global coher-
ency of a scene. More precisely, a small set of example
features generally contains a summary of information about
the multi-scale structure of the scene. By properly analyzing
these example features, they can be used to predict and ex-
trapolate high-resolution details of a coarse resolution ver-
sion of the scene. This approach has been first introduced
from fractal-based image compression [17] and then exten-
ded to high-resolution synthesis [12]. Similar ideas have
been developed for 3D models [6, 18]. They reconstruct a
surface from a noisy point cloud and prior shapes. Pieces of
these shapes are compared with the point cloud geometry
descriptors, and a Bayesian process validates such match.
In their work, the prior shapes and the point cloud have the
same resolution, allowing the inclusion of non-local geomet-
rical contexts for matching. In [11], geometric moments are
used as descriptors to match patches from high quality prior
shapes to the point cloud. Then, the point cloud is augmented
by a variation of the MLS projection procedure.

Our approach mainly follows the super-resolution by
example paradigm. However, differently from these ap-
proaches, we match noisy detail at high resolution entirely
onto a large low-resolution model: no geometry context
is used for matching. We also borrow from the multiple
samples approach when the high-resolution exemplar is not
available for scan, in order to generate it by accumulating
its repeated occurrences, approaching structure extraction
applications[16]. In that sense, this work can be used as geo-
metry texture synthesis [21, 24], allowing to correctly posi-
tion texture elements from low resolution information.

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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3 Review of Single Resolution Scan Registra-
tion using Spin Images
One of the main difficulties of adapting super-resolution

methods originally conceived for images to 3D geometry is
that an image has a trivial topology and also possesses a
regular structure while surfaces generally do not. In order to
overcome this difficulty it is necessary to resort to invariant
feature analysis that are coordinate independent and also
employ registration methods for point sets. Spin images [2]
constitute one of the most successful feature types for the
analysis of geometric data. In our technique we use spin
images to identify correspondences between parts of the
complete coarse resolution model and exemplar structures
containing high-resolution details. This section details how
to use such local descriptors for registration [20, 23].

Scan registration pipeline The registration process tries to
identify the matching parts of models and estimate the spatial
transformations that align them. When restricting to rigid
transformations, the identification can be done by associating
to some significant points of the model a rigid-invariant
descriptor. The significant points are usually chosen as high
mean-curvature points in each range image. The matching
descriptors then correspond to matching parts of the models.
Since the matching may be imperfect, these correspondences
must be filtered, and the alignment refined, typically using
iterative closest points algorithms [1].

Spin images Given a reference point p, its spin image is
bi-dimensional density histogram of the neighbors q of p
(Figure 3). To be rigid invariant, this histogram is represented
in radial coordinates: the two coordinates of q are its distance
to the tangent plane at p and its distance to p when projected
in the tangent plane. This histogram is normalized to cope
with slight variations of the sampling rate in the two models.

The spin-image comparison is performed using linear
correlation coefficients and specific statistical measures [2].
In particular, it counts only the number of correct matchings
between the histograms, and does not penalize unmatched
parts. Two parameters define the spin image: the histogram
size and the extension of the neighborhood. For usual scan
registration, the histogram size varies from 10 to 20, and the
extension is set to twice the point density to ensure enough
points in each class of the histogram [2], turning the spin
image less sensitive to noise.

Correspondence grouping The robustness of this
descriptor is improved by geometric consistency filter-
ing. For each reference point in the first model, there should
be a corresponding point in the second model with similar
spin image. Groups of such correspondence should be co-
herent, in particular the distances between points should
be preserved across correspondences. This geometric con-
sistency test would require checking every combination of
correspondences. To optimize this, a greedy strategy prior-
itizing correspondences that are far apart is generally used,
since far apart correspondences improve the transforma-

Figure 3: Spin images at the central point (right) are rigid-
invariant geometry descriptors for a neighborhood of a reference
point (left).

tion accuracy. Each group of correspondences generates a
rigid transformation, and the greedy search stops when the
transformed models have a sufficient overlapping.

This procedure as is would be ineffective for super-
resolution purposes, since it does not cope with different res-
olutions and eventual multiple valid transformations.

4 Mixed-Resolution Registration
In this work, we automatically identify and replace all

instances of a given high resolution detail in a low resolu-
tion 3d model, which can be a triangle mesh or an oriented
point cloud. The proposed method can be decomposed into
five steps, each of them suffering significant modifications
for super-resolution. Initially, we decompose the model and
the detail in two resolutions: the original resolution, which
will be used in the final result, and a low resolution, used
for registration purposes. We choose the resolution carefully
to preserve as much information as possible while reducing
both the model and the detail to a common ground (sec-
tion 4(a)). For super-resolution from multiple samples, the
user selects the detail example from the model, so that this
phase is unnecessary. We further compute the spin-image
parameters for small details matching (section 4(b)). We
then filter and group correspondences from different occur-
rences of the detail (section 4(c)). After that, we identify the
unique occurrences of the detail in the model by detecting
and removing duplicate or symmetric transformations (sec-
tion 4(d)). Finally, we incorporate the new geometry inform-
ation in the model (section 4(e)).

Figure 4: Scaling the model (left) and the detail (middle) to a
common resolution (right) by reconstructing them at the same
octree depth.
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(a) Scaling

In order to identify information from the detail to the
model, we scale them to a common resolution (Figure 4). We
estimate the resolution r of a triangle mesh as the median of
the edges’ lengths for meshes, and using the k nearest neigh-
bors for point sets, as described by Pauly et al. [5]. For noisy
triangle meshes, we reduce the estimated resolution by mul-
tiplying r with the inverse of the mean curvature variance,
following the noise estimation of Vieira and Shimada [9].

The scaling must maintain a reasonable amount of feature
points to serve as references for the spin image. To ensure
that, the low resolution model is simply filtered by a two-step
normal smoothing / vertex fitting method [22]. To scale the
high-resolution detail, we use a Poisson reconstruction [3]
at low resolution, setting the maximal depth of its octree
to log(r). The Poisson scheme is mainly based on normals,
which help in preserving the locus of high-curvatures in the
detail. This way, the scaling process removes high frequen-
cies from both the model and the detail, keeping the common
high curvatures, and naturally eliminates random noise.

Figure 5: As opposed to scan registration (left), the extension
of spin-image for super-resolution must be adapted (right). It is
automatically computed from the resolution of the model and the
size of the detail.

(b) Local feature matching

The classical spin-image design and matching described
at section 3 would fail for our super-resolution application. In
particular usual spin-images use large neighborhoods, since
in that case we expect large overlapping around few very
sharp feature points. In our context, we will prefer smaller
neighborhoods and more feature points since the detail is
small and its high curvatures have been smoothed in the
scaling process (Figure 5).

More precisely, we automatically set the neighborhood
extension for the spin images to n = αd, where d is the
length of the detail’s bounding box diagonal. For the spin-
image reference points, we select the top β highest curvature
points in the detail, or at least 10 points to guarantee match-

Figure 6: Matching between the spin images of reference points
(red dots) in the detail (left) and the model (right).

ing robustness (Figure 6). In our experiments, we obtained
good results with α = 1

4 and β = 10%. To assure that match-
ing reference points in the model will be selected, we use
the interval defined by the smallest and highest curvature of
the selected points in the detail. Moreover, we avoid creat-
ing spin-images with neighborhoods overflowing the detail.
To do so, we only select reference points in the detail at dis-
tance less than n to its center.

Finally, when comparing two spin-images, we take into
account every entry of the histogram, as opposed to the
classical matching, where only the overlapping entries are
considered. Given two spin-images P and Q, the standard
linear correlation coefficient RPQ is defined as

RPQ =
1

σPσQ

(
N
∑
i

piqi −
∑
i

pi
∑
i

qi

)
,

where σP is the standard deviation of histogram P and N
is the number of bins. In the classical spin-images matching,
the similarity measure is defined asCPQ = atanh2(RPQ)−
λ

N−3 . C is then a loss function that returns higher values
for highly correlated images that have a large number of
overlapping bins (N). The λ parameter is given by the
expected number of overlapping pixels entries. In particular,
this strategy is well suited when considering geometry that
do not fully overlap, like classical 3d scan registration. For
mixed resolution, we look for full overlap, so we consider
only the linear correlation coefficient RPQ.

(c) Correspondences filtering

Every matching pair of spin-images corresponds to a pos-
itioning of the detail in the model. The valid occurrences are
obtained by selecting coherent groups of such correspond-
ences. Such group is coherent if they induce a rigid trans-
formation that maps the detail onto a single occurrence in
the model. The rigid transformation criterion is similar to
the classical case (section 3). The additional single occur-
rence criterion is specific to our super-resolution. It requires
the correspondences inside a coherent group to be distrib-
uted in the model on an area smaller than the detail surface.

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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5 Geometry super-resolution by example

In particular, this criterion greatly accelerates the process,
since only a small number of correspondences combinations
must be tested.

(d) Identification of the detail occurrences

Each coherent group of at least three correspondences in-
duces a transformation T . However, T may not map the de-
tail onto one of its occurrences. Moreover, different groups
can lead to similar transformations, in particular since the
model may contain only approximate copies of the detail
(Figure 7). Therefore, we first filter each transformation T
according to the overlap between the detail mapped by T
and the model. We are looking a priori for fully overlap-
ping detail occurrences, i.e. 100% of the transformed detail
points. Observe that this is significantly higher than usual
scan registration thresholds. However, as the model is prone
to noise and detail occurrences are not exactly identical, we
validate transformations whose resultant overlapping points
are higher than k% of the number of detail points. In our
experiments, we set k to 90%.

Figure 7: Duplicate transformations must be identified in a
symmetry-proof manner.

Secondly, we eliminate duplicate transformations by
measuring their difference in a symmetry-proof manner. To
do so, we define a pseudometric M between transformations
T1 and T2, which considers the axis-aligned bounding boxes
of T1(detail) and T2(detail). The distance between the res-
ultant bounding boxes lower-left-front points p1 and p2, and
upper-right-back points q1 and q2 is measured by

M(T1, T2) = 1
2‖p1 − p2‖ + 1

2‖q1 − q2‖ .

When M(T1, T2) ≤ 1
2‖p1 − q1‖, the transformed details

considerably overlap each other, eventually with symmetry.
In this case of overlapping, we keep only the transformation
that results in the highest overlap with the model.

(e) Detail insertion

Given the set of unique transformations, we refine
these transformations by a simple iterative closest point al-
gorithm [1]. Aside from improving the registration accuracy
between the transformed detail and the model, this algorithm
detects the regions of the model that the detail overlaps. To
insert the high resolution into the model, it is necessary to

Figure 8: The geometry is merged by replacing the overlap region
(top) with the detail (bottom).

remove this overlapping part. In particular, this is crucial
when using this technique for example-based noise removal
or geometry texture insertion (Figure 8). We finally merge
the geometry by replacing the overlap region in the model
by the high-resolution detail geometry.

5 On the Exemplar Details
The exemplar details can be obtained through three dif-

ferent means. The best one is to acquire it at high resolution
during the scanning process. However, this is limited to ap-
plications where the user has access to the scanning device,
and when this device allows for zooming until the desired
resolution, which is the case of laser or structured light on
specific materials. The second way is to synthesize the detail
or to retrieve it from an external data base. This case is useful
for geometry texture insertion.

In the case where the user has access only to the low-
resolution scan, it is possible to gradually generate an exem-
plar, borrowing ideas from super-resolution from multiple
samples: Instead of using a super-resolution detail scanned
in high quality, which is not always available, we can use
the detail occurrences in the model as multiple samples to
reconstruct a super-resolution detail.

The user can select part of the low-resolution scan as in-
put, creating the initial detail. We register this detail with the
model, forcing a different location, and copy the geometry of
the overlapped region. We generate a new detail by merging
the point sets of the initial detail and the copied geometry,

Figure 9: Filtering of the accumulated geometry for the keyboard
example: from the aligned detail occurrences (left) are projected in
a smooth manifold surface (right).
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Figure 10: Generation of a high-resolution exemplar by accumulation: from an initial user selection of a window (left), the registration
process identifies other occurrences of windows and copy their geometry back onto the initial detail (on the illustration with 2, 4 and 6
windows copied). The accumulated geometry is then filtered using a variation of MLS (right).

aligned back onto the detail. We smooth the merged point
set using an MLS variation similar to the work of Weyrich
et al. [10] (Figure 9). We repeat the operation, accumulat-
ing geometry to increase the resolution of the initial detail
(Figure 10).

Figure 11: Superresolution on two groups of windows from the
rathaus model: identified windows at low resolution (left) and the
obtained superresolution model (right), displayed as a raw point
set.

6 Results
We implemented the above procedure into a fully auto-

matic algorithm that takes two or three group of meshes
or point sets as input: the low resolution models, the high-
resolution details and eventually geometric textures to merge
instead of the details. We used a kd-tree for neighborhood
searching for the spin-image neighborhoods, the correspond-
ence groups creations and to compute overlapping regions.
The mean curvature used for the noise estimation and the ref-
erence points selection was computed according to the work
of Meyer et al. [14] for the mesh case, and using the work of
Pauly et al. [5] for point sets. Finally, we use again Poisson
reconstruction [3] on the merged points to display our results
as surfaces.

(a) Experiments

We apply our method on synthetic and real objects. The
synthetic models are cylinders with small meshes manually
placed on it, and reconstructed at low resolution (Figures 2,
8 and 5). The details are small perturbations of the small
meshes. The real case comes from a laser scan of a keyboard,
with one of its key scanned at high resolution (Figures 1
and 13). For this experiment, we used a Minolta VIVID 910
scanner with a telephoto lens. The complete keyboard was
scanned at a distance of 2.5m, while the single key detail at
a distance of 0.5m.

We further test our technique in other context: geometry
texture insertion on the real scan of the keyboard, changing
the key detail by an edited one (Figure 14).
We also tested it on real data with no scanned high-resolution
exemplar, but generating this super-resolution by geometric
accumulation. On the keyboard of Figure 1(bottom), we
manually selected one key as initial detail. We can observe
that the mixed registration process worked as well as with
the high-resolution scan, e.g. failing on the same keys of the
numeric keypad.

We applied the same technique on the rathaus1. In that
case we selected two different windows as initial details,
and detected all their occurrences in the models (Figure 11).
Observe that this is a point set model. The timings of the
super-resolution steps are reported in Table 1.

(b) Discussion

We evaluated the method in terms of robustness and final
detail level. For all models, the method was robust in regis-
tering all detail occurrences. On synthetic data, it correctly
identified all the occurrences of the detail, and aligned them
with a very high precision even at low resolution (Figure 8
and Table 2). The textured cylinder of Figure 5 shows that
the method works well in the border of the details, even when
there is no deformation between the detail occurrences.

In the 86 buttons keyboard case (Figure 1), only one
extra invalid registration occurred in a bigger button from the
numerical pad. This limitation is due to the similar features

1Altes Rathaus Hannover from the Institute of Cartography and Geoin-
formatics of the Leibniz University of Hannover

The corresponding work was published in the proceedings of the Sibgrapi 2009. IEEE Press, 2009.
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7 Geometry super-resolution by example

Model detail low model detail ref. total spin image filtering validation insertion total
ocurr. points points points corresp.

×103 ×103 ×103 secs. secs. secs. secs. secs.
max planck 3 53.4 19.3 110.4 2.7 1.9 1.7 1.4 6.2
textured cylinder 48 25.3 9.2 442.3 1.5 0.9 0.9 14.0 15.5
s cylinder 48 25.3 9.2 442.3 1.9 1.4 1.4 13.8 18.7
keyboard 86 88.1 11.6 1,237.8 28.9 15.4 84.3 39.2 128.7
+ flower keyboard 86 88.1 23.6 2,087.3 0.0 0.0 0.0 177.2 177.2
rathaus window #1 7 1,063 17 1,460 256.7 25.3 10.4 30.1 322.5
rathaus window #2 6 1,460 14 1,821 190.5 22.1 9.7 32.6 254.9

Table 1: Some experiments on synthetic models and on real objects (keyboard, rathaus). The timings of each step of our method reported with
the size of the original model, the number of detail occurrences and the number of inserted points after registration. Except for the flower
keyboard, which corresponds only to the texture insertion, most of the time is spent onto the spin image correspondence, since the mixed
resolution is more delicate at this step.
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25% 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Figure 12: Curvature distributions of the original keyboard model
(left green bars) and of the super-resolution keyboard after Poisson
Reconstruction (right purple bars): The method removes the noisy
keys, represented mostly by middle-valued curvature points in the
histogram, and inserts keys with flat regions, which are represented
mostly by very low curvature points in the histogram.

of the lower corners of the key. Looking more carefully, the
scan noise leads to small misalignments of each key, which
the simple iterative closest point (ICP) algorithm we used
is not able to adjust. These limitations can be reduced by
using advanced ICP algorithms, in particular incorporating
non-rigid transformations [15].

We finally checked that the proposed super-resolution
method actually increases the resolution of the final model,
even after the reconstruction method used to generate the
final result. To do so, we computed the mean curvature
distribution before and after the super-resolution process on
the keyboard model. We can check on Figure 12 that the
super-resolution did remove the noisy keys with middle-
valued curvature.

7 Conclusions
We proposed a geometry super-resolution by example for

generating high quality meshes out of a rough model and
exemplars of its details. Our method works by matching me-
dium frequencies between the model and the detail, and then
incorporating high frequencies geometric information. This

Resolution M(T1) M(T2) M(T3) average
L 6 0.41 % 0.28 % 0.25 % 0.31 %
L 7 0.07 % 0.19 % 0.33 % 0.19 %
L 8 0.16 % 0.12 % 0.21 % 0.16 %
L 9 0.15 % 0.11 % 0.20 % 0.15 %

Table 2: Accuracy of the 3 detail alignments in the synthetic model
of Figure 4. The resolution corresponds to the octree level used for
the model creation, and the errors are relative to the transformation
applied for the synthesis, in percentage of the detail bounding box
diagonal.

method is effective to speed up the process of high-resolution
scanning, and may also serve in other contexts as example-
based noise removal and geometry texture insertion. The
proposed method is limited to models which have repeated
occurrences of a shape, and restrict the resolution increase to
the regions of those occurrences. Increasing the resolution of
other parts would require inpainting-like tools to extrapolate
the geometry [8], together with a super-resolution scheme as
an extension of the one proposed here.
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Figure 13: All the 86 keys are correctly matched, and an extra key
(“enter” of the numerical pad) has been inserted, although smaller
than the real key.
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Figure 14: The transformations obtained by our mixed-resolution registration can be used for inserting geometric textures by simply changing
the exemplar before the insertion process, here on the keyboard of Figure 1.
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