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Abstract. Music visualizations are nowadays included with virtually any media player. They usually rely
on harmonic analysis of each sound channel, which automatically generate parameters for procedural image
generation. However, only few music visualizations make use of 3d shapes. This paper proposes to use spectral
mesh processing techniques, here manifold harmonics, to produce 3d stereo music visualization. The images are
generated from 3d models by deforming an initial shape, mapping the sound frequencies to the mesh harmonics.
A symmetry criterion is introduced to enhance the stereo effects on the deformed shape. A concise representation
of the frequency mapping is proposed to allow for an animated gallery interface with genetic reproduction. Such
galleries let the user quickly navigate between visual effects. Rendering such animated galleries in real-time is a
challenging task, since it requires computing and rendering the deformed shapes at a very high rate. This paper
introduces a direct GPU implementation of manifold harmonics filters, which allows the displaying of the animated
galleries.
Keywords: Manifold Harmonics. Symmetry. Sound Visualization. Stereophony. Geometry Processing. GPU.
Design Galleries.

Figure 1: Music visualization by deforming a 3d model according to the music amplitudes.

1 Introduction
The illustration of music became a necessary part of the

audio industry. On the one hand video clip creation represent
a whole part of a song production, while on the other hand
any computer program that renders sound content offers sev-
eral visualizations. Most audio visualization techniques rely
on Fourier transforms that extract the harmonic amplitudes
of the sound samples for the left and right channels. These
amplitudes serve as parameters to algorithms that generate
beautiful or exciting images in real time, using procedural
techniques from simple digital peak meters to psychedelic
dynamical systems. We propose to generate images obtained
by deforming an initial discrete 3d model (Figure 1).

Since sound analysis relies on sound harmonics, a nat-
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ural approach is to define correspondences with geometric
harmonics to deform the 3d model. A definition of such geo-
metric harmonics, called manifold harmonics has been re-
cently proposed by Vallet and Lévy [26]. Amplifying some
harmonics of a given mesh leads to coherent deformations,
in the sense that filtering low frequencies actually deforms
the global shape of the mesh, while altering high frequencies
changes its details. This paper is an extended version of a
conference publication [15], as it uses the left and right chan-
nels of stereo sound to define the harmonic filters. More pre-
cisely, a fast approximate characterization of the symmetric
nature of manifold harmonic is proposed as a fast approx-
imation of Ovsjanikov et al. proposal [20]. This separation
between symmetric and non-symmetric harmonics permits
to map the sound frequencies common to the left and right
left channels [4] to symmetric manifold harmonics, and the
channels difference to the other harmonics.

However, using manifold harmonics for sound visualiza-
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tion poses a two-fold challenge: First, manipulating the amp-
litudes of each harmonic is a delicate task, since closer fre-
quencies have very different and dramatic impacts on the
shape. Second, the 3d deformation must be rendered in real-
time and maintain synchronization with the music. In this
paper, we propose to model the mapping of sound harmonics
amplitudes to manifold harmonics amplitude using a design
gallery with genetic reproduction, similarly to volume visu-
alization [23].

The use of galleries makes the second challenge even
more difficult, since an animated gallery requires computing
and rendering several deformations of the initial mesh for
each frame. We propose here a direct GPU implementation
of the manifold harmonics filter that copes with such require-
ments. For models containing around 50,000 vertices, we can
render a gallery of 12 animated deformations in real-time.

2 Related work
There are several techniques for automatic music visual-

ization, as seen in many media players. However, only a few
of them use 3d models [12]. To the best of our knowledge,
the closest work automatically relating sound and 3d objects
comes from granular mechanics simulation [3]. It dates back
to the studies of vibration modes [10], when Modal Ana-
lysis [5] became a very important tool in the understanding
of structure responses to mechanical forces. Modal Analysis
was first introduced to Computer Graphics by Pentland and
Williams [22], where it was used to simulate deformations
in non-rigid objects from a sound signal. A reduced version
of such simulations has recently been brought to real-time
through a GPU implementation, but only using the first few
vibration modes [30]. In this paper, we propose a music visu-
alization scheme instead of a mechanical simulation, and
achieve real-time performance in an entirely spectral pro-
cessing system. Note that the inverse process, i.e. creating
audio content from a 3d animation, has ben proposed by
O’Brien et al. [19].

Stereo music effects have been used in music recording
and reproduction since many decades [6]. It adapts to the hu-
man binaural audition system, which helps the brain to derive
3d perception of the sound. Although advanced techniques
can be used to analyze and synthesize 3d sound effects, such
as holophonics or sound 3d positioning [4, 7], this work uses
very basic sound analysis as far as symmetry between the left
and right channels are concerned.

Since the seminal work of Taubin [25], several ap-
proaches have been proposed to adapt signal processing
techniques to discrete surfaces. Among those, spectral pro-
cessing has gained a lot of attention [14]. Those methods rely
on defining an equivalent for Fourier harmonics (basically
sine and cosine) as eigenvectors of Laplace-like operators.
Among those works, Vallet and Lévy proposed a manifold
harmonics adapted to mesh edition [26]. This work motiv-
ated several applications in connected fields: spectral mesh
deformation [24], mesh watermarking [17, 28] and shape
analysis [29], and in particular symmetry detection [20],
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Figure 2: Geometric elements for the coefficients of the discrete
Laplace operator.

which we extend here for our symmetry criterion. In this pa-
per, we use manifold harmonics filters, and propose a GPU
implementation of spectral filtering to obtain real-time de-
formations.

3 Manifold Harmonics

In this section, we recall the basics of manifold harmonics
following the original work of Vallet and Lévy [26].

The idea behind manifold harmonics is to transpose usual
Fourier tools to 3d meshes. In Fourier analysis, a functional
basis hω(t) = e−2π·i·ω·t of so-called harmonics is used to
decompose an input signal f(t) into a combination of those
harmonics:

f(t) =

∫
R
f̃(−ω)·hω(t)dω, with f̃(ω) =

∫
R
f(t)·hω(t)dt.

(a) Laplace harmonics

The main observation is that harmonics hω are the eigen-
vectors of the differential Laplace operator ∆∂ :

∆∂ (hω) ≡ ∂2hω
∂t2

= λω · hω with λω = −4π2 ω2 .

To transpose such decomposition on a mesh, a natural op-
tion is to look for the eigenvectors of a discrete Laplace op-
erator. Vallet and Lévy derive a Laplace-De Rham operator
from Discrete Exterior Calculus [26]. On the vertices of a
mesh, this operator turns out to be linear, and can thus be
expressed as an n × n matrix ∆, where n is the number of
vertices of the mesh. The coefficients ∆ij are zero if vertices
i and j are not adjacent, and otherwise:

∆ij = −
cot (βij) + cot

(
β′ij
)

√
areai · areaj

, ∆ii = −
∑
j

∆ij ,

where areai and areaj are the areas of the restricted Voronoi
region of vertex i and j, respectively, and the angles βij and
β′ij are opposite to the edge between i and j (Figure 2).

The corresponding work was published in The Visual Computer.
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(b) Manifold harmonics transform

With a rescaling of the areas areai [26], the matrix of
this discrete Laplace operator ∆ is symmetric, and can thus
be diagonalized, producing an orthogonal basis eigenvectors
of Hk ∈ Rn associated to eigenvalues Λk ∈ R. Since this
is a basis in Rn, any function F : i ∈ {0, . . . , n − 1} 7→ R
defined on the vertices of the mesh can be decomposed onto
this basis:

F (i) =

n−1∑
k=0

F̃ (k) ·Hk
i , with F̃ (k) =

n−1∑
i=0

areai · Fi ·Hk
i .

Using the analogy with Fourier analysis, the frequency
associated with Λk is

√
Λk, and we consider that frequencies

are ordered: Λ0 ≤ Λ1 ≤ . . . ≤ Λn−1.

(c) Filtering

The signal F (i) is thus expressed as a combination of
harmonics Hk, with respective amplitudes F̃ (k). A linear
filter can then be derived by amplifying each harmonic Hk

by a factor ϕ(k). The filtered signal Fϕ(i) is given by:

Fϕ(i) =
∑
k

ϕ(k) · F̃ (k) ·Hk
i .

Since we are interested in deforming the mesh, we will
consider the signal F (i) to be the coordinates x(i), y(i),
z(i) of vertex i. We therefore get three harmonic amplitudes
x̃(k), ỹ(k), z̃(k) for each frequency k. Since the mesh is not
aligned a priori, we will filter all the three coordinates with
the same gain ϕ. Finally, since high frequencies (k ≥ #k)
correspond to very small perturbations, appearing as noise,
we filter them by a single gain ϕd:

Fϕ(i) =

#k−1∑
k=0

ϕ(k)F̃ (k)Hk
i +ϕd di, with di=

n−1∑
k=#k

F̃ (k)Hk
i .

The coefficients di can be computed at preprocessing.

4 Tuning Manifold Harmonics
We want to apply manifold harmonics filters to illustrate

signals f(t) such as audio content. Since manifold harmon-
ics filters are very sensitive to the gain function, eventually
leading to large deformation for small variations of the filter,
the mapping of signal harmonic amplitudes f̃(k) to the man-
ifold harmonic amplitudes ϕ(k) would require a very care-
ful edition if done manually. In this section, we introduce a
simple design model for such mapping. This design allows
a gallery interface [18]. Design galleries presents the user a
broad, selection of different mappings as real-time anima-
tions generated for each mapping. Once the user chooses the
results he prefers, a new gallery is proposed by genetic repro-
duction of the user choices [23], letting him quickly navigate
and eventually converge to a desired effects (Figure 4).

(a) Mapping to manifold harmonics filters

We want to design a filter ϕ(k) from the harmonic
amplitudes f̃(ω) of an input signal, where the dependency
ϕ(k) = Φ(f̃)(k) of ϕ from f̃ is not necessarily linear.
Moreover, the number of frequencies #ω computed from
the signal may differ from the number of harmonics #k of
the mesh. We decompose this mapping into two steps: a fre-
quency transfer function t : ω 7→ k ∈ {0, . . . ,#k − 1}
combined with an amplification function a : k 7→ a(k) ∈ R
applied on the manifold harmonic amplitudes.

We want each harmonic of the mesh to receive contribu-
tions from different harmonics of the signal, so that a mu-
sical instrument, which covers different frequencies, could
be mapped to a single manifold harmonic. Therefore, the
transfer function maps sound frequencies ω to mesh frequen-
cies k, and a mesh frequency k will receive contributions
from all the sound frequencies in t−1 ({k}). We propose a
harmonic mapping Φt,a : f̃ 7→ ϕ as (Figure 3):

Φt,a(f̃)(k) = a (k) ·
( ∑
ω∈t−1({k})

f̃ (ω)
)

+ 1 .

By adding one, we maintain the usual intuition of amplifica-
tion: amplifying all the mesh frequencies to 0 (i.e. a ≡ 0)
does not deform the mesh. Note that, since the harmonic
amplitudes of the sound may be negative, the amplification
a(k) may also be negative.
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Figure 3: Filter design as the composition of a frequency transfer
function t and an amplification function a (drawn vertically). The
grey curve for the transfer corresponds to the direct mapping from
ω ∼=

√
Λt(ω).

(b) Tuning through design galleries

The filter design above gives a concise representation of
the harmonic mapping Φt,a from sound harmonic amplitudes
to manifold harmonic amplitudes. Indeed Φt,a is represented
as two vectors: t ∈ N#ω is an integer vector of size #ω, and
a ∈ R#k is a real vector of size #k. This allows to easily mix
two harmonic mappings by combinations of those vectors.
Using terminology from genetic algorithms, the harmonic
mapping Φt,a is represented by two chromosomes a and t,
which can reproduce by combination.

Preprint MAT. 15/10, communicated on December 17th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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Figure 4: Initial gallery applied to an octopus model, with the corresponding transfer and amplification functions (rainbow curves
respectively at the right and left of each element, see Figure 3). The frequency input f̃ is drawn at the bottom.

This leads to a direct design gallery interface, where
different harmonic mappings are proposed to the user, who
can select the ones he likes the most. From this selection,
a new gallery is generated using genetic reproduction, until
the user chooses only one harmonic mapping, as explained in
the next section. The following section will detail the initial
gallery creation. The harmonic mapping can then be directly
edited from the two curves of t and a.

(c) Reproduction

The reproduction generates a new gallery of S harmonic
mappings from a selection of old mappings. To do so, S pairs
of distinct selected old mappings are randomly chosen. Each
pair is then combined into a new mapping as follows.

Since the frequency transfer and amplification functions
t and a have complementary effects, we reproduce them in-
dependently. This also reduces the initial gallery size, as ex-
plained in the next subsection. In practice, this means that we
first decide if we combine the frequency transfer functions of
the pair using a 1

2 -Bernoulli trial (“heads or tails”). We also
decide in a similar manner if the amplification functions will
be combined.

The combination of the frequency transfer functions t′

and t′′ of the pair is done as follow. First, we randomly
choose an integer value, n0

k, as a geometric random variable
in {1, . . . ,#k}, and a random real value w0 uniformly in
[0, 1]. We then set the first n0

k coefficients of vector t as the
first n0

k coefficients of w0 · t′ + (1 − w0) · t′′. We choose
again random values n1

k ∈ {1, . . . ,#k} and w1 ∈ [0, 1], and
clamp n1

k to ensure n0
k + n1

k ≤ #k (the geometric random

process intends to reduce the effect of this clamping). We
then set the following n1

k values of t as above, and repeat
until completing all the frequencies. We perform the same
operations for the amplifications (Figs. 4 and 5).

This combination method avoids producing combination
that varies too quickly, as compared to randomly choosing
real values w at each frequency.

(d) Gallery initialization

We propose a systematic gallery initialization (Figure 4)
that could theoretically, with at least two elements, generate
any harmonic mapping by the above reproduction. Since the
reproduction of the frequency transfer and amplification are
independent, although combined to generate each animation
of the gallery, we can use a given number S of elements of
the initial gallery to span the frequency transfer functions and
the same S elements to span the amplification functions. This
reduces the size of the initial gallery, although it requires one
more reproduction to get non-trivial mappings.
The first transfer function is the direct mapping:

tini(ω) = min

{
k such that

ω

ω#ω
≤

√
Λk

Λ#k

}
.

This expression ensures that, if there exist a unique k such
that ω

ω#ω
=
√

Λk

Λ#k
, then tini(ω) = k. This function maps

the sound low (respectively high) frequencies to the mesh
low (respectively high) frequencies. The function trev =
#k − tini maps high sound frequencies to low ones.

The corresponding work was published in The Visual Computer.
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Figure 5: Gallery after one reproduction from the 1st, 4th and 5th items of Figure 4 in reading order, with the genetically reproduced transfer
and amplification functions.

Usually, altering the low frequencies of the mesh pro-
duces more visible effects. We thus define the frequency
transfer functions of the initial galleries as functions whose
image lie in the low frequency domain: t(ω) = tir(α · ω),
where α ∈ {0, 2

S−1 , 2
2

S−1 , . . . , 1} and tir is either tini or
trev . The first value α = 0 is a constant mapping, and is in-
cluded so that any transfer function can be obtained by com-
bination.

The amplification functions of the initial gallery are
simple band-pass filters, with positive or negative factors.
The manifold harmonic frequencies {0, . . . ,#k − 1} is di-
vided in intervals Iα, for α ∈ { 2

S , 2
2
S , . . . ,

4
S2 }. After we

define the amplification function for the first half of the gal-
lery aα(k) = M if k ∈ Iα, and aα(k) = 0 otherwise,
where M is the maximal amplification factor. The other
half is defined similarly using −M . If the sound amplitudes
are normalized to [−1, 1] and the if the mesh is reasonably
smooth, the order of magnitude of M is 5,000. Since we
try to emphasize the low frequencies, we define the intervals
Iα = [α2, (α+ 2

S−1 )2].

5 Stereo and symmetric effects
Stereo sound offers richer information on the sound sig-

nal f . In particular, the left fL and the right fR chan-
nels are naturally combined into a center (symmetric) sig-
nal fs = 1

2 (fL + fR) and a side (antisymmetric) signal
fu = 1

2 (fL − fR), such as for stereo widening. We pro-
pose here to classify the manifold harmonics basis Hk in
symmetric and antisymmetric harmonics. Then we map the
center signal frequencies f̃s into symmetric harmonics and
the side signal into the other harmonics.

(a) Symmetry classification of manifold harmonics

There exist several works on intrinsic symmetry detection
using spectral representation of the geometry, in particular
using manifold harmonics [20]. These works look for dis-
crete transformations T : {0, . . . , n− 1} → {0, . . . , n− 1},
mapping vertices to vertices that preserve the intrinsic geo-
metry of the shape, typically geodesic or diffusion distances
between the vertices. Here, we do not look for transforma-
tions, but for mesh frequencies k that would be preserved by
such transformations. A simple option would be to compute
first a set of transformations T and check if they generally
preserve the kth harmonic: Hk

T (i) ≈ Hk
i . We propose here

a fast approximation, which avoids generating explicitly the
set of transformations.

Following the definitions of Ovsjanikov et al. [20], T is
an intrinsic symmetry if for any two vertices i, j:

∑
k

1

Λk

(
Hk
i −Hk

j

)2
=
∑
k

1

Λk

(
Hk
T (i) −Hk

T (j)

)2

.

Moreover, if we consider only frequencies k associated to
non-repeating eigenvalues Λk, T either preserves or changes
the sign of the harmonics Hk: ∃εkT ∈ {−1,+1} such that
∀i,Hk

T (i) = εkTH
k
i . A harmonic Hk is said to be positive

for T if they are preserved by T (εkT = +1) and negative
otherwise [20]. We say a harmonic is symmetric if it is posit-
ive for a majority of intrinsic symmetries and antisymmetric
otherwise.

Preprint MAT. 15/10, communicated on December 17th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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k=5 sym k=7 no sym k=11 sym k=26 no sym k=123 sym

Figure 6: Some eigenvectors Hk of low frequency: vertices are colored in blue if Hk
v is small, and red if big. With the pairs of Figure 8,

symmetric eigenvalues ends up having similar variations on at least 7 of the 8 tentacles.

Figure 7: Effects of using only antisymmetric harmonics, mainly deforming the tentacles (left) to only symmetric ones, focusing more on the
head (right). The black dots represents the original model.

Figure 8: Number of times a vertex is an extremum for the first
15 frequencies (left), coded from blue (0) to dark red (12), and the
selected vertices (black dots) and pairs (lines) of extrema likely to
be exchanged by a symmetry (right).

(b) Fast symmetry class approximation

Computing all the intrinsic symmetries T is an expensive
task, but we can estimate if a harmonic would be positive for
a majority of them. Since an intrinsic symmetry T preserves
(resp. inverses) each harmonic, it maps the local maxima of
Hk to local maxima (resp. minima), and vice-versa. There-
fore, a pair (i, j) of extrema of Hk can be exchanged by T
only if Hk

i = εkTH
k
j . Observe that this is not a sufficient con-

dition, since a symmetry T exchanging vertices i and j may
not exist.

We restrict ourselves to pairs (i, j) of extrema that are
likely to be exchanged by an intrinsic symmetry. More pre-
cisely, we select the pairs of vertices having the closest ab-
solute GPS signature s(i) =

(
|Hk

i |
Λk

, k < nk

)
, with nk typic-

ally around 15 [20]. To avoid looking for all pairs of vertices,

we further restrict ourselves to pairs of vertices being critical
for at least c of the first nk harmonics, with c around 10.

Putting all together, we first compute for the first nk fre-
quencies the critical points of Hk, and select the vertices
being extrema for at least c frequencies (Figure 8). Then
we compute the set of pairs of selected vertices having the
closest absolute GPS signature. Finally, we classify a fre-
quency k as symmetric if the set of pairs (i, j) for which
Hk
i = Hk

j has more elements than the pairs for which
Hk
i = −Hk

j . Although this is an approximation, it gives
a coherent classification for animation purposes (Figure 6)
and it is several orders faster than enumerating discrete trans-
formations [20].

(c) Stereo sound mapping

The center sound signal fs is the symmetric part of the
sound and is used mainly for the symmetric harmonics, while
the side sound fu is used for the antisymmetric ones. This
distribution is controlled by a parameter µ such that this
occurs for µ = 0, and for µ = 1, the left channel is used for
symmetric harmonics and the right one for antisymmetric:

Φt,a(f̃s, f̃u)(k) =

{
Φt,a(f̃s − µ f̃u)(k) if k is symmetric
Φt,a(f̃u + µ f̃s)(k) otherwise

.

The main difficulty of this approach is that the sound re-
corded on the right microphone is usually audible by the left
one. Therefore, the sound is never completely antisymmetric,
which means that the side signal fu is usually much weaker
than the center signal. We compensate for this by amplifying
fu independently, by a factor that we experimentally estim-
ate to 10 (Figure 7). This extra parameter µ is included in the
gallery with a random initialization, forcibly including 0, 1.

The corresponding work was published in The Visual Computer.
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Figure 9: Frames of forró music visualization using the dinosaur model.

6 Running It Real-Time
The main challenge for the above interface to work with

sound signals is to compute and render the deformation of
each gallery element synchronously with the music (Fig-
ure 9). If we have S elements in the gallery, each of which is
a mesh of n vertices with #k manifold frequencies and #ω
sound frequencies, a single frame represents O(S ·#ω ·#k ·
3n) operations! (The #ω factor comes from the evaluation
of Φt,a). We thus propose a GPU implementation of the har-
monics filter, while the decomposition is pre-computed on
the CPU.

(a) GPU implementation

For the sake of portability, we use GLSL [11] as GPU
language. The manifold harmonics filters actually require
a single fragment shader, which computes the filtering Fϕ
for each coordinate x, y, z, together with a render-to-vertex-
buffer mechanism [1]. We also tested the same process in the
vertex shader to avoid the two-pass rendering, however the
texture fetch in the vertex shader is much slower and gives
less than half frame per seconds.

Data textures. The manifold harmonics is sent to the GPU
as textures: a texture x̃ỹz̃ containing the harmonic amplitudes
x̃(k), ỹ(k), z̃(k) of the original mesh, a texture dxyz contain-
ing the sum of high frequencies contributions for each co-
ordinate (section 3(c)) and a texture Hk containing the mani-
fold harmonics eigenvectors. The filter ϕ must be sent to the
GPU at each gallery element of each frame. Since the com-
puted ϕ has a smaller size than the sound frequencies f̃ and
the t and a vectors, we compute ϕ on the CPU and send it as
texture φ.

Texture storage. All the textures are stored using 32 bits
floating point numbers to keep the precision of the vertices
coordinates. Since the number of vertices of the mesh is
usually larger than the maximal texture size for 1D textures,
we use two texture coordinates in {0 . . . d

√
n−1e} as vertex

indexes. The high frequency contributions dxyz are stored as
a 2D RGB texture of size d

√
n e × d

√
n e containing the

coordinates.

uniform sampler1D x̃ỹz̃;
uniform sampler2D dxyz;
uniform sampler3D Hk;
uniform sampler1D φ;
uniform float δk;

void main() {
vec3 texcoord = gl TexCoord[0].stp ;
vec3 pos = texture2D(dxyz,texcoord.st).xyz ;
for( float k=0.0; k ≤ 1.0; ) {

texcoord.p = k ;
vec4 H = texture3D(Hk, texcoord);
vec4 f = texture1D(φ, k);
vec3 x̃ỹz̃0 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃1 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃2 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃3 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
pos += f[0] * H[0] * x̃ỹz̃0 + f[1] * H[1] * x̃ỹz̃1 +

f[2] * H[2] * x̃ỹz̃2 + f[3] * H[3] * x̃ỹz̃3 ;
}
gl FragColor.rgb = pos.xyz ;

}

Figure 10: GLSL fagment shader for the harmonics filter.

Since the number of manifold frequencies #k stored fits
in a texture row, the original harmonic texture amplitudes
x̃ỹz̃ are stored as a 1D RGB texture of size #k, containing
the x̃, ỹ, z̃ components.

Finally, the scalar data Hk and φ of the manifold harmon-
ics eigenvector n coordinates and the filter can be stored in
the RGBA components to optimize space: φ is then a d#k

4 e
1D and Hk an d

√
n e × d

√
n e × d#k

4 e 3D RGBA textures.

Fragment shader for the filter. When all the above tex-
tures are bound, the rendering of a single square of size
d
√
n e × d

√
n e will call the fragment shader for each of the

vertex index and compute the new vertex positions as frame
color (Figure 10). The fragment shader renders to a frame
buffer containing the filtered vertex coordinates, which is
then copied to the vertex buffer inside the GPU [1]. The
shader receives a uniform variable which is the normalized
increment δk = 1

4(#k−1) for iteration inside normalized tex-
ture coordinates.

Preprint MAT. 15/10, communicated on December 17th, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) Original model with original nor-
mals.

(b) Deformed model with original
normals.

(c) Deformed model with deformed,
flat normals.

(d) Average normals with 40% de-
formed normals.

Figure 11: Normal enhancement for the deformed model.

(b) Complementary effects

Normal enhancement. The previous method updates the
vertex positions, but not the normal. Since a second render-
to-vertex-buffer would be too costly, we use a geometry
shader that computes, for each triangle, a constant normal.
This normal is used in a per-pixel lighting via fragment
shader. However, per triangle normal leads to flat shading. To
obtain smoother result, we average, in the geometry shader,
the triangle normal with the original vertex normal (Fig-
ure 11).

Beat detection. Until now, the whole deformation of the
mesh is seen from a single point of view with a constant
lighting. We propose to use those degrees of freedom to
transpose global sound feature, such as beat. We implemen-
ted a simple beat detection [21], and at each detected beat we
randomly choose to rotate the model or the light positions.

Harmonic mapping re-use. The gallery interface allows
to quickly navigate between all the possible harmonic map-
pings within our proposed design. If a harmonic mapping

gives a very exciting effect, it would be nice to be able to
re-use it on other models. The main obstacle is that the num-
ber of manifold frequencies #k may differ from model to
model. We can work around this problem by normalizing the
image values of t to a constant interval [0, 1]: t̄(ω) = t(ω)

#k ,

and adapt the definition of Φt,a to Φt̄,a(f̃)(k) = a (k) ·(∑
ω∈t̄−1({ k

#k })
f̃ (ω)

)
+ 1.

(c) Implementation details

We used the Scalable Library for Eigenvalue Problem
Computations (SLEPc) [8] software package to compute
the first #k manifold harmonics eigenvalues and eigen-
vectors. We use the Compact Half Edge [13] data struc-
ture to represent the model mesh. The proposed shaders
require an OpenGL 2.x compatible graphic card [11]. Fi-
nally, we use FFmpeg [2] for sound decompression and
OpenAL [9] for stereo sound rendering in a separate thread.
A nice tutorial for such sound configuration can be found at
kcat.strangesoft.net/openal.html.

7 Results
We experimented the proposed filter design with gallery

interface to check the feasibility of such approach. The actual
validation of the interface is beyond the scope of this paper.
However, our proposal is able to provide an animated gallery
interface synchronized with sound in real time.

Performance. We first compare the CPU implementation
of manifold filters [26] with our GPU implementation. Since
the problem fits well for streaming process, we expect the
GPU implementation to outperform the CPU counterpart
(Table 1, comparing a single mesh deformation running on
CPU with 6 and 12 deformations running on GPU). Further-
more, we validated that the GPU implementation supports
real-time rendering to keep synchronization with the sound.
Those experiments allow estimating the appropriate gallery
size for a given graphics hardware (Table 1). We conclude
that for models with around 50,000 vertices, a gallery size
allowing interaction would be between 6 and 12 on an iMac
with GeForce 130 with 48 cores running at 500MHz.

Music visualization. We use our music visualization for
deforming different models in real-time (Figure 13 and the
accompanying video). Since the music is decoded and ana-
lyzed on the CPU, the combination of sound does not al-
ter the performance of the gallery. We introduce a callback
that update the filter every 50 milliseconds, and the ren-
dering is done following the rendering cycles, so that even
with large galleries that would impact the real-time render-
ing, the sound playing does not stop. Finally, we add a para-
meterm ∈ [0, 1] to control how smoothly the frequencies are
passed to the mesh (frequency decay): the sound frequency
amplitudes f̃(ω) passed to the filter are continuously aver-
aged by f̃new(ω) = w · f̃old(ω) + f̃(ω). For very rhythmic
music, this avoids flickering effects on the mesh (Figs. 1, 9
and 12, and the accompanying video).

The corresponding work was published in The Visual Computer.

kcat.strangesoft.net/openal.html
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Figure 12: Frames of rock music visualization using the armadillo model.

Parameters list. All together, the user sets the filter para-
meter t and a by clicking on the gallery inerface, and control
independently the frequency decay m, the normal blending,
and the symmetry control µ. The frequency cut and number
of gallery element is set to optimize the GPU performance
according to Table 1, and the symmetry detection paramet-
ers are fixed to the values indicated in the text: nk = 15,
c = 10.

Limitations. The GPU implementation allows real-time
animated galleries, but it prevents complex processing or
further control on the deformed mesh. In particular, it does
not permit to directly use quality measure or more advanced
interface such as intelligent galleries [27]. The proposed
method generates exciting animation on top of a given mu-
sic. However, we used a very raw sound frequency, beat and
symmetry analysis, which can be enhanced to get more cor-
related effects. Several complementary effects, in particular
on the normal [16] and on the mesh textures, can improve
our visualization.

Figure 13: Gallery of the eight model on world music.

8 Conclusion
In this paper we proposed a GPU implementation of

manifold harmonics filters, which allows computing and
rendering spectral mesh deformations at a very high rate.
We applied this technique for music visualization, using
animated design galleries for navigation between different

verts freqs pre- CPU GPU GPU
n #k process S=1 S=6 S=12

model secs fps fps fps
heart 622 256 4 99.7 322.1 203.7
eight 766 256 3 97.7 342.1 213.7
duck 2 108 256 7 52.7 208.3 123.9
spring 4 695 256 116 12.7 71.4 41.4
dinosaur 14 054 533 76 4.7 28.3 13.9
octa 15 136 529 27 4.1 26.8 13.2
octopus 20 351 546 132 3.0 21.4 7.1
alien 24 988 540 235 3.4 22.4 12.1
david 24 988 804 119 2.6 14.8 7.3
cat 30 059 271 381 9.6 45.7 23.0
gargoyle 30 059 1052 99 2.1 13.7 6.9
bunny 34 834 1070 479 1.7 12.1 5.8
buste 37 874 1075 255 1.5 13.4 3.4
blooby 42 432 1065 558 1.5 12.5 7.5
egea 63 739 275 724 0.9 7.2 3.2
head 65 002 1607 751 0.5 8.7 4.3
armadilo 86 488 2376 1 052 0.2 10.3 3.4
cow 97 803 256 1 082 0.1 9.1 3.1

Table 1: Performance tests: all models are normalized into a
[−1, 1]3 bounding box, and the gallery of S items is rendered in a
1024×768 window. All experiments are performed on a 3.06GHz
processor with a GeForce GT 130 with 512MB of RAM. The de-
formation speed is measured in frame per second (fps), while the
harmonic basis and symmetry classification pre-computation time
is expressed in seconds.

visual effects. Each effect is represented as a mapping from
music frequencies to manifold harmonics. We represent such
mapping in a concise way to be able to couple genetic
reproduction in the gallery.
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drade, R. Nascimento, S. de Botton, S. Pesco, H. Lopes,
V. Mello, A. Peixoto and D. Martinez. Tuning mani-
fold harmonics filters. In Sibgrapi, pages 110–117. IEEE,
2010.

[16] T. Lewiner, T. Vieira, D. Martı́nez, A. Peixoto, V. Mello
and L. Velho. Interactive 3D caricature from harmonic
exaggeration. Computers & Graphics, 35(3):586–595,
2011.

[17] Y. Liu, B. Prabhakaran and X. Guo. A robust spectral
approach for blind watermarking of manifold surfaces. In
Multimedia and Security, pages 43–52. ACM, 2008.

[18] J. Marks, B. Andalman, P. Beardsley, W. Freeman,
S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister,
W. Ruml et al. Design galleries: A general approach to
setting parameters for computer graphics and animation.
In Siggraph, page 400. ACM, 1997.

[19] J. F. O’Brien, C. Shen and C. M. Gatchalian. Synthes-
izing sounds from rigid-body simulations. In Symposium
on Computer animation, pages 175–181. ACM, 2002.

[20] M. Ovsjanikov, J. Sun and L. Guibas. Global intrinsic
symmetries of shapes. In SGP, pages 1341–1348. Euro-
graphics, 2008.

[21] F. Patin. Beat detection algorithms, 2003.
www.gamedev.net/reference/programming/features/beatdetection.

[22] A. Pentland and J. Williams. Good vibrations:
modal dynamics for graphics and animation. Siggraph,
23(3):207–214, 1989.

[23] F. de Moura Pinto and C. M. D. S. Freitas. Two-level
interaction transfer function design combining boundary
emphasis, manual specification and evolutive generation.
In Sibgrapi, pages 281–288. IEEE, 2006.

[24] G. Rong, Y. Cao and X. Guo. Spectral mesh deforma-
tion. The Visual Computer, 24(7):787–796, 2008.

[25] G. Taubin. A signal processing approach to fair surface
design. In Siggraph, pages 351–358, 1995.
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