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3 ICMC — USP — São Carlos — Brazil
4 Faculty of Mathematics — Universidade Federal de Uberlândia — Brazil

www.matmidia.mat.puc--rio.br/˜{fbipetro,apneto,mlage,tavares,lopes,tomlew}.

Abstract. Vector fields analysis traditionally distinguishes conservative (curl-free) from mass preserving
(divergence-free) components. The Helmholtz-Hodge decomposition allows separating any vector field into the
sum of three uniquely defined components: curl-free, divergence-free and harmonic. This decomposition is usually
achieved by using mesh-based methods such as finite differences or finite elements. This work presents a new
meshless approach to the Helmholtz-Hodge decomposition for the analysis of 2D discrete vector fields. It embeds
into the SPH particle-based framework. The proposed method is efficient and can be applied to extract features
from a 2D discrete vector field and to multiphase fluid flow simulation to ensure incompressibility.
Keywords: Helmholtz-Hodge decomposition. Smoothed Particles Hydrodynamics. Vector fields. Features
visualization. Multiphase fluids. Incompressible flow.

= + +

Figure 1: Helmholtz-Hodge vector field decomposition using SPH-HH method, using LIC visualization with selected streamlines. From left
to right: a vector field and its curl-free, divergence-free and harmonic components.

1 Introduction
Vector fields are omnipresent in physics. They are often

used to represent the velocity and direction of an object or the
magnitude and direction of some force. Field features such
as sources, sinks and vortices allow concise representation
of the underlying flow phenomena. They can be identified
by vector field decompositions such as Helmholtz-Hodge
decomposition, which split a 2D discrete vector field into its
curl-free and divergence-free component fields (Figure 1).
The solution of this decomposition is given in terms of
scalar potentials of a Poisson equation associated with each
component field.
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This simple process of the Helmholtz-Hodge decomposi-
tion provides many advantages in several Computer Graph-
ics applications, such as the detection of vortices in flow im-
ages of the aerodynamic design of cars and aircrafts [20], es-
timation of motion fields on satellite images of tornadoes [6]
and fluid flow simulation [19]. Traditionally, numerical solu-
tions of Helmholtz-Hodge decomposition are provided by
mesh-based methods, among them finite differences and fi-
nite elements. However, these methods are not suited to deal
with sampling of point-vectors without an explicit connectiv-
ity between them or particle-based physical simulations. In
this case, mesh-based methods would require the delicate
task of topological map generation.
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Related work

Polthier and Preuss [15] developed a discrete version
of the 2D Helmholtz-Hodge decomposition. They used a
global variational approach to compute independently two
scalar valued potentials that determine the curl-free and
divergence-free components of vector fields defined over sur-
faces. The main goal of their work is to detect singularities
of vector fields by studying the critical points of the obtained
potentials. They also presented a numerical algorithm based
on the finite element method in [16] to implement the 2D
field decomposition.

Tong et al. [20] extended the work of Polthier and Preuss
for the decomposition of 3D fields on tetrahedral meshes.
They also proposed a multiscale decomposition scheme that
tries to improve the vector fields analysis by using different
space-scales.

Although the algorithms proposed by these two works
yield good performances, these implementations have high
computational complexity as these techniques use irregular
triangular or tetrahedral meshes, although they can reuse the
Cholesky decomposition when decomposing several fields
on the same mesh. In order to reduce the computational cost,
Guo et al. [10] presented an efficient implementation for the
discrete Helmholtz-Hodge decomposition, based on regular
grids.

In the context of particle-based methods, Cummins and
Rudman [22] introduced an SPH formulation of the Pressure
Projection method to enforce incompressibility in fluid flow
simulation based on the Helmholtz-Hodge decomposition.
Later, Colin et al. [5] provided a new approximation of the
pressure Poisson equation. In both works, the curl-free and
harmonic components are neglected and only the irrotational
component of a vector field is computed.

Contributions This work introduces a new meshless
method to compute full Helmholtz-Hodge decomposition
of 2D discrete vector fields on arbitrary unstructured sets
of point-vectors. Our method uses the particle-based frame-
work of Smoothed Particle Hydrodynamics (SPH) to obtain
a smooth approximation of the differential operators utilized
in Helmholtz-Hodge decomposition. We show the efficiency
and versatility of the proposed method in typical applica-
tions, such as visualization and analysis of a 2D velocity
field to incompressible multiphase fluid flow simulation. To
the author’s knowledge, this work is the first proposal for
vector field decomposition directly from particles.

Outline We provide a mathematical background of the
Helmholtz-Hodge decomposition in the next section. In sec-
tion 3, we give a brief introduction of the SPH method.
section 4 introduces an SPH approximation of the Poisson
equation. Later, we show the details of the implementation of
the proposed method in section 5. Results from different ap-
plications of the new method are given in section 6. Finally,
section 7 concludes this paper with a brief discussion about
the proposed method and a glimpse on future works.

2 Helmholtz-Hodge Decomposition
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Figure 2: The Helmholtz-Hodge decomposition of a 2D discrete
vector field v.

The Helmholtz-Hodge decomposition theorem [4] from
vectorial analysis states that any vector field v can be de-
composed uniquely into three component vector fields:

v = d + r + h , (1)

where the component d is curl-free, r is divergence-free and
h is harmonic , whose curl and divergence both vanish:

∇× d = 0
∇ · r = 0
∆h = 0

The decomposition is actually built from a scalar potential φ
and a vector potential Ψ: d = ∇φ and r = ∇ × Ψ, with
h = v−d−r. This decomposition is illustrated in Figure 2.

In the bidimensional case, the decomposition of vector
fields requires a particular definition introduced by Polthier
and Preuss [16]. Let J be an operator on vector fields which
rotates every vector by 90◦ in clockwise order

J(v) = J(v1, v2) = (v2,−v1) . (2)

The Helmholtz-Hodge decomposition for a 2D vector field
is given by

v = ∇φ+ J(∇ψ) + h . (3)
Actually in 2D, a divergence-free field is obtained by com-
puting the gradient of a scalar potential ψ and then applying
the J operator[16].

In the bidimensional space, the curl operator is defined by

∇× v = ∇× (v1, v2) =
∂v2
∂x

− ∂v1
∂y

and by using Eq.(2), we can rewrite it as

∇× v = (∇ · J)v . (4)

Moreover, we have the following properties in the bidi-
mensional case:

1. The component d = ∇φ is a curl-free vector field

(∇ · J)d = 0 .

2. The component r = J(∇ψ) is a divergence-free vec-
tor field

∇ · r = 0 .

3. The component h is a harmonic field

∇ · h = (∇ · J)h = 0 .

The corresponding work was published in IEEE Transaction on VIsualization and Computer Graphics.
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These properties lead to the following Poisson equation
system {

∇ · v = ∆φ

(∇ · J)v = −∆ψ
, (5)

where the potentials φ and ψ of Eq.(3) are solutions of the
system.

For closed domains, the unicity of the potentials φ and
ψ is guaranteed by adding to the Poisson equation system
above a boundary condition. The usual condition forces the
curl-free component to be tangent to the boundary, and the
divergence-free component perpendicular to it:

∂φ

∂n
= 0 ,

∂ψ

∂n
= 0 , (6)

where n is the normal at the boundary (observe that ∂φ∂n =
∇φ · n). We used this condition for all the results of this
paper, except in Figure 1. Another possible boundary condi-
tion, used in Figure 1, is to impose constant potentials on the
boundary, which means a curl-free component perpendicular
to the boundary and the divergence-free tangent to it.

3 Smoothed Particles Hydrodynamics

2h

Figure 3: Quartic smoothing kernel: the particles farther than the
smoothing length 2h are discarded.

The main idea of SPH approximation is to represent
a physical system as a set of particles that occupy spatial
positions and carry individual physical attributes, such as
velocity, pressure, mass, density. The attributes at point x are
computed by using a kernel function with compact support
as follows:

⟨ f ⟩h (x) =
∑

j∈N(x)

mj

ρj
f (xj)W (x − xj , h) (7)

where set N(x) contains all the particles at a distance below
a multiple of h from x, j is the particle index, xj the particle
position, mj the particle mass and ρj the particle density.

For the illustrations and experiments of this work, we
choose a piecewise quartic smoothing kernel function (see
Figure 3) with a smoothing length of twice the initial particle
spacing h.

W (x−xj , h) = 15
7 π h2 · w

(
∥x−xj∥

h

)
with

w(q) =
{

2
3 − 9

8 q
2 + 19

24 q
3 − 5

32 q
4 ; 0 ≤ q ≤ 2

0 ; q > 2

The reader can find a complete discussion about kernel
functions in [25, 27] and a wide overview of SPH method in
Monaghan’s survey [26].

The SPH method approximates the differential operators
appearing in partial differential equations of the physical sys-
tem through discrete convolutions with the kernel derivat-
ives. In this work, we choose the following formulations of
the operators
Gradient

∇fi =
∑
j∈Ni

mj

ρj
(fj − fi)∇iW (xi − xj , h) (8)

Divergence

∇ · fi =
∑
j∈Ni

mj

ρj
(fj − fi) · ∇iW (xi − xj , h) (9)

Laplacian

∆fi =
∑
j∈Ni

2
mj

ρj

(fi − fj)
∥xij∥2 xij · ∇iW (xi − xj , h) (10)

where xij = xi − xj .
This choice is motivated by the mathematical relevance

and computational efficiency of those operators. In the first
author’s thesis [14], the most common operators of the SPH
literature [24] are compared with their analytical smooth
counterparts both in terms of differential qualities and nu-
merical accuracy. The SPH operators listed above shown the
best results in various experiments, varying the input field
and the density and distribution of the particles. In particular
in 2D, the most accurate Laplacian approximations are the
above one (Eq.(10)) and the composition of the SPH oper-
ators ∇· and ∇ [14]. We chose the first one since it is less
computationally intensive, requiring only one neighborhood
for each particle.

4 SPH Poisson Equation
In this section, we introduce the SPH approximation to

solve Poisson’s equation:

∆ϕ (r) = f (r) (11)

where f and ϕ are real functions over a domain Ω ⊂ R2.
The SPH Poisson equation is constructed by taking a

point-set S = {x1,x2, · · · ,xn} ⊂ Ω and by replacing the
Laplacian operator in Eq.(11) by SPH Laplacian operator
(Eq.(10)). Thus, given a point xi ∈ S, the SPH Poisson
equation is denoted by∑

j∈Ni

2
mj

ρj

(ϕi − ϕj)
∥xij∥2 xij∇iWij = f (xi) . (12)

Using the kernel properties, Eq.(12) can be written as∑
j∈Ni

2
mj

ρj
(ϕi − ϕj)F (xij) = f (xi) (13)

with F (xij) =
15

7 π h2

1
h ∥xij∥

∂w

∂r
(xij) r =

∥xij∥
h

.

Preprint MAT. 15/08, communicated on August 6th, 2008 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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L =

8th line 0 0 0 0650 8 0 11 00010

Figure 4: Building the sparse matrix L: the 8th line of L has
null coefficients in the columns where the points are in a greater
distance than 2h from the point x8.

Observe that F is measured as a distance to the power −5,
and multiplied by the volume in the expression of f it has
the dimension m−2, which is coherent for representing the
second-order space derivatives of the Laplacian.

Eq.(13) for all points of S determine the unknown po-
tentials values ϕϕϕ, leading to the linear system Lϕϕϕ = b. The
i-th line of the matrix L is obtained through Eq.(13) at point
xi ∈ S with coefficients

aij = −2mj

ρj
F (xij) , j ̸= i

aii = −
∑
k ̸=i

aik

and the coefficients of the vector b are given by f (xi).
Note that, at line i of L, the coefficient aij at j-th column

is not null if, and only if, the distance between the points xi
and xj is less than the smoothing length 2h, leading to a very
sparse matrix (see Figure 4).

The boundary condition, such as Eq.(6), are directly in-
corporated into the system for particles i closer than 1

π

√
mi

ρi

from the boundary. Instead of replacing Eq. (13) by the
boundary condition ∇ϕ · n = 0, which would consider the
particle to lay exactly on the boundary, we add up to the
right-hand side of Eq.(13) the term ∇ϕ · n, which leads to a
smoother transition. Furthermore, the normal n is computed
averaging the neighboring boundary normals.

5 Decomposition Algorithm
In section 2, we saw that a vector field v can be decom-

posed as v = d + r + h, where the components d and r are
obtained by computing the scalar potentials φ and ψ defined
by System (5). Each equation in this system can be solved
independently through a linear system (see section 4). Now
we are going to enumerate the main steps of the Helmholtz-
Hodge decomposition by using the SPH method (Figs. 6 and
7). We call this method SPH-HH.

(a) Setup vector field

Let V = {v1,v2, · · · ,vn} be a discrete vector field
defined in Ω ⊂ R2, where vi = v (xi) with xi ∈ Ω. Each
vector vi is associated with an SPH particle indexed by i and
positioned at xi. The mass attribute is defined constant in all
particles given by massm = VΩ/nwith VΩ = V olume (Ω).

Finally, the density in each particle i is computed directly
from Eq.(7):

ρi =
∑

j∈N(xi)

mjW (xi − xj , h) .

The left column of Figure 6 shows a synthetic vector field
represented by 493 vectors.

Figure 5: The fake particles (left) in the SPH-HH method avoid
inaccuracy in the SPH approximations (right).

(b) Boundary deficiency compensation

The SPH operators at particles close to the boundary may
suffer from the lack of particles in specific directions. To go
around this problem, we create fake particles (Figure 5 ) off
the boundary using a Poisson disk sampling [8]. The original
vector field v is extended to those fake particles by a Chen-
Beraun corrected SPH approximation [24]:

vfakei =

∑
j∈N(xi)

mj

ρj
vjW (xi − xj , h)∑

j∈N(xi)

mj

ρj
W (xi − xj , h)

, (14)

where the summation is taken over the original particles
samples neighbors of a fake particle.

Figure 5 shows an example of the fake particles genera-
tion and illustrate the extension of v in a fake particle.

To avoid including the fake particles as extra equations in
the linear system, which would require computing derivat-
ives at their locations, we substitute them by original poten-
tial unknowns using the same correction as follows. Given
a particle i, when a neighboring particle j is a fake particle,
then the potential ϕj , in the SPH Laplacian approximations
(Eq.(13)) is replaced by

ϕj =

∑
k∈Nj

mk

ρk
ϕkWjk∑

k∈Nj

mk

ρk
Wjk

where the summation is taken over the original particles.
Observe that this approximation may suffer if the bound-

ary is thinner than h. As usually in SPH, the smoothing
length h and the particle density must be adapted to avoid
that case.

The corresponding work was published in IEEE Transaction on VIsualization and Computer Graphics.
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Figure 6: Helmholtz-Hodge decomposition of a vector field v (left column) in a curl-free component d (middle column) and a divergence-
free component r (right column). We can see the vector fields at some of the 18221 samples (top) and the magnitude map color with some
streamlines (bottom).

(c) Curl-free component

The curl-free component d is obtained by SPH gradient
approximation of the potential φ given by the Poisson equa-
tion

∆φ = ∇ · v ,

including the boundary condition discussed above.
Solving the SPH Poisson equation, including the bound-

ary condition ∇φ·n = 0, as described in section 4, we obtain
the potential φ. Finally, the curl-free component is computed
from Eq.(8) by:

di = ∇φi =
∑
j∈Ni

mj

ρj
(φj − φi)∇iWij . (15)

The middle column of Figure 6 shows a curl-free com-
ponent of a synthetic field represented by 493 vectors.

(d) Divergence-free component

The divergence-free component is obtained in the same
way as of the curl-free component. We first solve the Poisson
equation associated with potential ψ

∆ψ = −(∇ · J)v ,

including the boundary condition ∂ψ
∂n = 0. Then, we use the

SPH gradient operator (Eq.(8))

∇ψi =
1
ρi

∑
j∈Ni

mj (ψj − ψi)∇iWij ,

to compute the divergence-free component ri = J(∇ψi), by
applying the J operator (Eq.(4)) to ∇ψi .

The right column of Figure 6 shows a divergence-free
component of a syntheti field represented by 493 vectors.

(e) Harmonic component

After computing the divergence-free and curl-free com-
ponents, the harmonic component is determined by

h = v − d − r .

For example, the synthetic field illustrated in Figure 7(a)
is built analytically as the sum of three components:
divergence-free, curl-free and a large, almost constant har-
monic fields. Figure 7(b) shows the sum of the divergence-
free and the curl-free components obtained by our SPH-HH
method, and Figure 7(c) shows the harmonic part, which has
been consistently identified.

6 Results and Applications
Most of the vector fields shown along this paper are given

by non-uniform samples, except in Figs. 7 and 16. To better
visualize them, we either display a sparser sampling of the
field (Figs. 6, 7, 13, 15, 16 and 17), or use an artistic illus-
tration of the fields (LIC), where colors represent the vector
magnitudes (Figs. 1, 6, 8 and 14). On some of the illustra-
tions, we further show some manually selected streamlines,
computed through a local vector field reconstruction [13].

(a) Decomposition results

We implemented the SPH-
HH technique following the pre-
vious description. We use iterat-
ive solvers for the linear system
since they present a double ad-
vantage. Firstly, due to the high
degree of sparseness of matrix
L, such solvers are well adap-

ted. For example, the side figure shows the matrix structure

Preprint MAT. 15/08, communicated on August 6th, 2008 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) Vector Field (b) Free Components: d + r (c) Harmonic Component

Figure 7: The SPH-HH method reveals the divergence-free r = J (∇ψ) and the curl-free d = ∇φ components before the decomposition
of the 2D vector field (left) even with a large harmonic part, constant equal to 10max(∥r∥, ∥d∥) (hedgehog visualization using 1

3
of the

samples).

Figure 8: The divergence-free component obtained by SPH-HH
method with (right κ = 0.001) and without ridge regression (RR)
technique (left, κ = 0). Some small scale vortices of a single
frame of bidimensional incompressible flow are not seen in the
corners of a vector field decomposition without RR technique. The
RR improves the stability of the decomposition.

on the field illustrated in Figure 8. Secondly, several iterative
methods converge very fast if initialized close to the solution.
In simulation contexts, a good initialization can be easily ob-
tained from the previous time step.

More precisely, we use the SparseLib++ package [17]
to storage the matrix and the vectors. The linear system is
solved by using an iterative method from the IML++ pack-
age [7]. Moreover, the boundary conditions induce asymmet-
ries in the matrix, and we thus use a quasi-minimal residual
method [18] in our implementation.

Finally, matrix L (built in section 4) may be ill-
conditioned, since it partly corresponds to a Laplacian op-
erator (each line sums up to zero). We use a ridge regression
(RR) technique to stabilize the system [12]. This technique
adds to matrix L the scaled identity matrix κI. We thus solve
the linear system (L + κI) ϕ̃ϕϕ = b, which, for small values
of κ, induces very small perturbation of the result. In the
exampled of this work, the order of magnitude of the coeffi-

Execution Time

# Particles κ time (sec)
iterations

curl-free div-free

1640
10−8 4.31 1234 629
10−2 2.23 476 477

5000
10−8 37.78 2609 636
10−2 9.53 407 411

18221
10−8 130.39 683 582
10−2 78.95 393 391

Tab. 9: The execution time to Helmholtz-Hodge decomposition
given by SPH-HH method in the synthetic field of Tab. 6 with
different density of particles. The target residual of the iterative
method is set to 10−6.

cients of matrix L is a few hundreds, while κ is set to much
smaller values, typically 10−3. This leads to a fast, in-place
Helmholtz-Hodge decomposition for particle systems.

Figure 8 shows the results obtained with and without
RR technique for the vector field decomposition of a
single frame of a bidimensional vortex spin-down simulation
(11500 samples). Note that some small scale vortices are not
seen in the corners without RR, while the use of the RR tech-
nique significantly improved the result. The execution times
are reported on Table 9 for the single data of Figure 6.

(b) Analysis of the numerical results

In this section, we analyze numerically how the decom-
positions obtained by our SPH-HH method satisfy the prop-
erties stated in section 2.

In Figs. 10 and 11, we analyze the vector field of Figure 1,
sampled with 10000 points. The right histogram shows of
the divergence of component r (∇ · r = 0) obtained by an
SPH-HH decomposition. Similarly, the left histogram shows
the curl of component d (∇ × d = 0). Those differential

The corresponding work was published in IEEE Transaction on VIsualization and Computer Graphics.
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Figure 10: The differential properties of the curl-free ∇ × d (left) and divergence-free ∇ · r (right) components given by our SPH-HH
method in the vector field decomposition illustrated in Figure 1, represented as a histogram number of particles vs. the SPH differential
approximation that should vanish on the component. Both distributions are concentrated at low values of this error.

Figure 11: The magnitude of the harmonic component obtained
in the SPH-HH decomposition of the vector field with constant
harmonic field (∥h∥ = 0.1).

properties are given by the operators SPH (Eqs. (8) and (9))
and Eq.(2)). Both distributions are concentrated around zero,
which is the expected value.

The original vector field v has a harmonic component
of constant magnitude (∥h∥ = 0.1), and Figure 11 shows
the magnitude of the harmonic component obtained by the
SPH-HH decomposition. The harmonic magnitude is actu-
ally concentrated around 0.1.

We also compute the global L2-orthogonality between the
curl-free and divergence-free components of the SPH-HH
decomposition, as given by the SPH approximation∫

Ω

< r,d > dΩ =
∑
j

mj

ρj
< rj ,dj > . (16)

For the vector field of Figure 1, the scalar product is
3.74.10−4 (for an average magnitude of 0.02) and 1.56.10−6

for the vector field of Figure 6 (average magnitude of 0.01) ,
the components are numerically orthogonal.

We performed further numerical analysis of the error,
as compared to the analytical solution (Figure 12). We can
observe that the relative error as compared to the analytical
decomposition is of the order of a few percents, while the
residual of the linear solver was set to 10−6. This shows
that most of the approximation error does not come from
the linear solver, but rather from the SPH approximations
directly.

Error measures

max mean var median
∥d− d0∥ 2.88 10−2 6.27 10−3 1.99 10−5 5.18 10−3

∥d−d0∥
∥v0∥ 6.31 10−1 8.92 10−2 4.90 10−3 7.21 10−2

∥r − r0∥ 2.89 10−2 5.92 10−3 2.12 10−5 4.59 10−3

∥r−r0∥
∥v0∥ 4.38 10−1 8.06 10−2 4.22 10−3 6.34 10−2

∥h∥ 3.85 10−2 8.88 10−3 3.84 10−5 7.35 10−3

r·d
∥r∥ ∥d∥ 5.05 10−1 3.50 10−2 1.38 10−3 2.73 10−2

∇ · d 1.00 10−1 3.83 10−5 3.28 10−4 3.29 10−4

∇× r 1.00 10−1 3.66 10−5 3.29 10−4 2.17 10−4

∥v0∥ 1.52 10−1 7.55 10−2 5.60 10−4 7.20 10−2

Figure 12: Numerical analysis of the error on an analytic vector
field generated with 13287 particles, containing two sources and
two vortices (top figure). The subindices 0 refer to the analytical
solution. In this case, the error of Eq.(16) was 2.13 10−6.

Preprint MAT. 15/08, communicated on August 6th, 2008 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(c) Feature-based visualization

The increasing amounts of vector fields generated by
simulations lead to a delicate visualization problem, which
is nicely described by Helman and Hesselink [11]. The data
represented by standard techniques like hedgehogs (a small
arrow for every vector in a given vector field) or streamlines
(also known as integral curves) may not be very informative:
a raw hedgehog with millions of arrows or 3D streamlines
in 3D may be confused. There are two main possibilities
to avoid this problem. The first one, proposed by Helman
and Hesselink [11], is to emphasize the vector field topology
[3, 21].

zoom

Figure 13: Feature-based visualization. The SPH-HH method de-
tects the vortex in a vector field (visualized on 8000 particles, 1

4
of

all the particles), focusing only on the areas or points, which are
characteristics of the flow.

Computing the locations of specific features of the flow
and merely showing these features by using lines, points
or other appropriate primitive graphical objects, is a second
possibility. It is called feature-based visualization. Instead of
millions of small arrows or thousands of knotted streamlines,
one only visualizes the areas or points which are character-
istics of the flow (Figure 13).

Furthermore, field features visualization provides easier
insight into the data for engineers and scientists. For ex-
ample, as the behavior of the flow around a moving body is
responsible for the aerodynamic resistance, fluid dynamical
experiments are important for car and plane design. For ex-
ample, in the case of aircrafts, the vortices are fundamental
for the lifting capacity (Figure 14). The Helmholtz-Hodge
decomposition is particularly interesting to obtain the fea-
tures in a vector field. In the bidimensional case solved in
this work, both components are given by scalar potentials
(Eq.(3)). The singularities of each potential, i.e., the points
where a component is null, are obtained automatically in the
SPH-HH method by tracking particle locations reaching a
local minimum or maximum of the potentials φ or ψ.

The singularities in the curl-free component d = ∇φ are
centers of sinks (resp. sources) for maxima (resp. minima)
of φ (Figure 15). For the divergence-free component r =
J (∇ψ), the singularities are centers of clockwise (resp.
counter-clockwise) vortices for minima (resp. maxima) of ψ.

Figure 14: The SPH-HH method detects the vortex cores in a velo-
city vector field sampled by 6400 particles from an incompressible
fluid flow simulation.

We further study the SPH-HH decomposition on non
simply-connected regions. Figure 16 shows a frame of a
simulation of fluid-rigid body interaction using fictitious
domain (blank shape) with finite element method based on
a distributed Lagrange multiplier [9]. The decomposition
detects the vortices’ centers even with the complex boundary
of the rigid body.

Figure 17 shows the decomposition of a turbulent velocity
field around a rigid object [2], where a rotating component
around the hole is artificially included. (a) shows the normal-
ized vector field with our automatic feature detection. The
divergence-free component and the harmonic field are illus-
trated in (b) and (c). The non-trivial harmonic field extrac-
ted shows a very coherent, circular set of vectors that rotates
around the hole, which is characteristic of such topologies.

The corresponding work was published in IEEE Transaction on VIsualization and Computer Graphics.
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Figure 15: The singularities of each component are obtained automatically from the SPH-HH method through the critical points of the
potentials φ and ψ, visualized using all the 5001 particles. The features in the curl-free component d = ∇φ (middle row) are centers of
sinks at maxima of φ (purple marks) and centers of sources at minima of φ (green marks). For the divergence-free component r = J (∇ψ)
(bottom row) are vortices centered at the critical points of ψ: clockwise for a minimum (blue marks) and counter-clockwise for a maximum
(red marks).

(d) Fluid flow simulation

Computing divergence-free velocity field is of great im-
portance in this application due to its physical meaning of
mass conservation. A fluid flow with this restriction is called
incompressible.

Stam in his seminal work on stable fluids [19] introduced
in Computer Graphics a projection method based on the
Helmholtz-Hodge decomposition to simulate incompress-
ible fluids by using a semi-Lagrangian scheme to discretize
the convective term of Navier-Stokes equation. This method
consists in projecting a velocity field without null diver-
gence v∗ into divergence-free space in each time step dt.
This projection is given explicitly by the solution of a pres-
sure Poisson equation with pure Neumann boundary condi-
tion:

∆p =
1
dt

∇ · v∗ with
∂p

∂n
|∂Ω = 0 ,

Figure 16: The SPH-HH method with complex boundaries,
sampled with 3216 particles. Incompressible velocity field of a sim-
ulation of fluid-rigid body interaction

Preprint MAT. 15/08, communicated on August 6th, 2008 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) Normalized Vector Field. (b) Solenoidal Component. (c) Harmonic Component.

Figure 17: The SPH-HH decomposition of a turbulent field around rigid object, sampled with 23267 particles, where an artificial rotation
around the hole is added. The harmonic component correctly extracts this rotation, which is characteristic of such topologies.

where p is the pressure of the fluid and n is the normal at
boundary ∂Ω of the problem domain Ω.

Unlike previous methods, the SPH fluid animation frame-
works [1, 23, 27, 28, 29] only solve compressible fluid
flows, where the pressure is computed using a state equa-
tion in terms of density and speed of sound in the fluid.
We can use the SPH-HH method to obtain a velocity field
with divergence-free in a way similar to projection methods
[5, 22, 19] in order to enforce incompressibility in traditional
SPH fluid flow frameworks.

We can see in Figs. 18 and 19 the results of the two-
phase immiscible fluid flow simulations using the SPH-HH
method to update the pressure. The first simulation reveals
the shape evolution of a rising droplet in a heavier fluid (see
Figure 18). When a light fluid droplet is merged in the heavy
fluid, due to the density difference, the pressure computed by
SPH-HH method leads to the buoyancy force acting on the
droplet that generates an upward motion and deforms it.

Finally, we simulate Rayleigh-Taylor instability (see Fig-
ure 19). This instability occurs when heavy fluid is being ac-
celerated into a light fluid due to a gravitational field. Again,
we update the pressure field by using the SPH-HH method
and compute the velocity field with null divergence in each
time step of the simulation.

7 Conclusion and Future Works
This work introduces a new meshless approach of

the Helmholtz-Hodge decomposition of 2D discrete vec-
tor fields. This method decomposes a vector field into
three components: curl-free, divergence-free and harmonic.
The curl-free and divergence-free components are obtained
through scalar potentials given by discrete Poisson equa-
tions.

Our method uses the Smoothed Particle Hydrodynamics
(SPH) framework to obtain a smooth approximation of the
differential operators utilized in Poisson equation. The SPH
Poisson equation applied to each particle of the domain

discretization results in a highly sparse linear system. Its
solution is a scalar potential that defines a component of the
decomposition.

The Helmholtz-Hodge decomposition is traditionally
an important tool of visualization and analysis of vector
fields, which is here extended to meshless representations.
Moreover, this method provides a new numerical tool to en-
force incompressibility in SPH fluid flow simulations.

The authors intend to extend this work to decompose tri-
dimensional vector fields where the divergence-free com-
ponent is given by a vector potential. The linear system ob-
tained in 3D case is larger and sparser than the 2D case, re-
quiring further efforts to ensure the numerical stability of the
system.
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(a) t = 0 sec. (b) t = 2 sec. (c) t = 4 sec. (d) t = 6 sec.

Figure 18: Rising of a light fluid droplet (dark red) in a heavy fluid (orange) using SPH-HH method with 10500 particles. The heavy fluid is
twice denser than the light fluid.
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