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Abstract. The curve-skeleton of a 3D object is an abstract geometrical and topological representation of its 3D
shape. It maps the spatial relation of geometrically meaningful parts to a graph structure. Each arc of this graph
represents a part of the object with roughly constant diameter or thickness, and approximates its centerline. This
makes the curve-skeleton suitable to describe and handle articulated objects such as characters for animation. We
present an algorithm to extract such a skeleton on-the-fly, both from point clouds and polygonal meshes. The
algorithm is based on a deformable model evolution that captures the object’s volumetric shape. The deformable
model involves multiple competing fronts which evolve inside the object in a coarse-to-fine manner. We first
track these fronts’ centers, and then merge and filter the resulting arcs to obtain a curve-skeleton of the object.
The process inherits the robustness of the reconstruction technique, being able to cope with noisy input, intricate
geometry and complex topology. It creates a natural segmentation of the object and computes a center curve for
each segment while maintaining a full correspondence between the skeleton and the boundary of the object.
Keywords: 3D curve-skeleton. deformable models. skinning.

Figure 1: On-the-fly curve-skeleton computation for a real scan of a woman model. Even in the presence large missing data (left), the
deformable model accurately interprets the shape to generate a thin curve skeleton with a meaningful segmentation.

1 Introduction
Computer graphics applications handle huge models rep-

resenting complex 3D objects. The most common represen-
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tations for such objects are boundary meshes or point-sets.
However, applications such as editing, animation, morphing
or shape matching often need a higher level understanding
of the shape and its structure. Such an understanding can be
conveyed through the use of an inner curve-skeleton for the
object. This geometrical and topological abstraction repre-
sents the 3D shape on an object, by mapping the relation
of geometrically meaningful parts to a graph structure with
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univariate arcs. Each arc represents one of these meaningful
parts by its centerline, assuming it has roughly constant di-
ameter around it. The curve-skeleton is both concise and ex-
pressive enough to represent an abstraction of the 3D object.
Moreover, it is easier to handle than the medial axis since it
avoids surface elements, while its topological structure still
represents the shape efficiently.

The main difficulty in computing curve-skeletons for
complex objects is to correctly interpret their shape. Objects
may include complex local topology, large missing parts
and noise, and this requires a robust and accurate interpre-
tation mechanism. In this work we present an algorithm to
extract the curve skeleton from 3D objects represented as
boundary meshes as well as point-sets. The algorithm relies
on a surface reconstruction technique that can handle both
meshes and point-sets surfaces, while robustly interpreting
their shape.

The key idea is to track the reconstruction of a given ob-
ject using a deformable model similar to [Sharf et al. 2006].
It uses competing fronts that evolve inside the object until
they achieve a sufficient approximation of the shape. Since
the deformable model reconstructs the original object, we
compute the center curve of this model to define the cen-
ter skeleton of the object itself. To do so, during the model
deformation we follow the fronts’ centers, generating a first
approximation for the curves of the skeleton. These are fil-
tered on-the-fly according to their geometry, their branching
structure and the front competition performance, obtaining
the final curve-skeleton (see Figure 1).

Furthermore, using the reconstructed model we can main-
tain a full correspondence between the curve-skeleton and
the object boundary. For curve-skeleton of point sets, this
mapping is explicit on the reconstructed mesh, while for 3D
meshes it is defined by a simple closest-point projection.
Such curve-skeleton computation inherits the robustness of
the deformable model technique, while performing on-the-
fly during the reconstruction process.

2 Related Works

Techniques to compute curve-skeletons of 3D mod-
els can be classified into three categories, according
to [Cornea et al. 2005]: voxel topology, computational
geometry and continuous implicit. Some of the most rel-
evant works of each category are summarized next. We
refer the reader to [Cornea et al. 2005] for a more complete
survey.

Voxel topology. The computation of the curve-skeleton
can be derived from computer vision techniques,
such as topological thinning [Borgefors et al. 1999,
Gagvani and Silver 1999]. These methods iteratively re-
move simple points from the boundary of a voxel set. They
differ mainly by the definition of these simple points and the
priority for their removal.

Geometry. Curve-skeleton is a natural structure for 2D
shapes, where it is usually computed as a subset of the me-
dial axis [Shaked and Bruckstein 1998]. For discrete shapes,
this medial axis can be extracted from the Voronoı̈ diagram
of some points on or near the shape [Dey and Zhao 2004,
Attali et al. 2007]. However, for 3D shapes, the medial axis
may contain surface elements. The curve skeleton can be
extracted from these 2D elements using their own me-
dial axis [Attali and Montanvert 1997, Amenta et al. 2001],
a distance field [Wu et al. 2003] or a more refined geodesic
field [Dey and Sun 2006]. This set of techniques allows a
definition of a curve-skeleton, but requires some delicate
sampling condition to reach the correct interpretation. Our
technique correctly interprets the data in various situations
including both noise and large missing pieces.

Implicit. Another set of techniques compute the
curve-skeleton from the ridge points of a 3D
field [Schirmacher et al. 1998, Palagyi and Kuba 1999,
Bitter et al. 2001]. These techniques generally de-
tect and track the ridge points using implicit meth-
ods such as fast marching [Zhou and Toga 1999,
Hassouna and Farag 2005, Cornea et al. 2005*] or active
contours [Golland and Grimson 2000]. The uniform inte-
gration and complex geometry tracking used in these works
typically assume that the shape thickness and complexity
decreases during tracking, which may lead to shape misin-
terpretation in complex topology and noisy case. Moreover,
this implicit process does not maintain the correspondence
between the curve-skeleton and the shape. Our technique
shares some similarity with these approaches. However, we
do not extract the curve skeleton directly from a field, but
rather interpret it in a coarse-to-fine manner using explicit
evolving fronts.

Figure 2: The deformable model with competing fronts. The fronts
move in a coarse to fine manner, and may split to form sub-fronts,
inducing the branching structure of our skeleton.

3 Curve-skeleton by Reconstruction
Complex local topology and large missing parts of an

object require a robust and accurate interpretation of its
shape. Following this observation, our technique for curve-
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Figure 3: Tracking the center of fronts during reconstruction defines the inner curve-skeleton of a multi-torus object. The topological events
on the deformable model are mapped as loops in the curve-skeleton.

skeleton extraction uses strategies similar to the reconstruc-
tion method of [Sharf et al. 2006]. In particular, we utilize
a deformable model to interpret the shape. We first extract
from the deformation of the model a set of center curves. We
filter this set during the evolution to generate a clean skele-
ton, while maintaining a full mapping between the model
and the skeleton. This whole process is performed on-the-fly
using inexpensive operations (see Algorithm 1 for pseudo-
code of the whole process). In particular, the front center’s
tracking relies on an inexpensive marking technique, avoid-
ing delicate geometry calculus or discrete integration.

Algorithm 1 On-the-fly curve-skeleton.
1: while evolving fronts do
2: count + +
3: for all evolving front f do
4: create skeleton node sf

5: sf .arc id← (count, f)
6: for all vertex v in front f do
7: let (old count, old f) = v.arc id
8: Arcs+ = Arc[(old count, old f) , (count, f)]

9: v.arc id← (count, f)
10: filter(Arcs) ; remap vertices to skeleton nodes

The deformable model. Similarly to [Sharf et al. 2006],
our deformable model includes multiple evolving fronts that
reconstruct the fine features of the shape only after the coarse
ones are done. This coarse-to-fine interpretation of the shape
is achieved through a competition mechanism between the
fronts on an explicit, dynamic mesh representation. Each
front is a connected set of mesh vertices, which moves in
outward normal direction of the mesh (see Figure 2). This
movement is proportional to the distance to the surface,
and constrained by a Laplacian system that enforces the
smoothness of the mesh. This system is weighted in order
to control the tension of the mesh. A small weight provides
more elasticity, allowing it to evolve fast, while a large
tension slows its evolution. The competition mechanism sets

the tension of a front according to its geometry and previous
evolutions.

The vertices move while active, and are deactivated when
they are close enough to the target shape. Deactivating ver-
tices eventually disconnects a front. In such case, the front
is split into connected sub-fronts, and each sub-front contin-
ues to evolve separately. Collisions between fronts are pre-
vented during the evolution. At the end of the deformation,
fronts collisions are interpreted as topological events and are
explicitly applied as handle attachments by connecting the
fronts that still collide. Even for complex topology (see Fig-
ure 3), this reconstruction strategy leads to a robust high level
interpretation of the shape which we utilize for our skeleton
extraction

Skeleton nodes computation. We use the same deforma-
tion technique for both point-sets and meshes. The evolving
fronts algorithm is used to interpret the shape from coarse to
fine, while we follow the centers of the fronts to define the
centerline of the shape. Each front evolution is tracked inde-
pendently. At each iteration we insert a new skeleton node
for every front at the barycenter of its mesh vertices. For in-
stance in Figure 5, the whole palm is conquered with a single
front, whose skeleton node position is at the palm’s center.

Model to skeleton correspondence. During the evolution,
both skeleton nodes (positioned at the front barycenter) and
fronts’ mesh vertices are assigned an arc identifier, which
is a pair composed of an iteration counter and the front
identifier (see Algorithm 1: lines 5 and 9). This identifier
links mesh vertices directly to curve-skeleton nodes having
the same arc identifier. When a vertex is deactivated during
the model deformation, it keeps its last valid arc identifier.
Since the model guarantees a close reconstruction of the
original shape, we simply project the model onto the shape
to obtain the shape-to-skeleton correspondence (Figure 5).

Curve-skeleton structure. The skeleton nodes are con-
nected according to the fronts’ evolution that generates an
initial curve set (see Figure 4). We compute these connec-
tions based on an inexpensive marking technique using arc
identifiers in a union-find structure. At each iteration, the arc
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Figure 4: Filtering of the curve-skeleton of a dragon mesh (left) from an initial curve set (center left). Filtering with loose (center right) or
tight (right) threshold removes the skeleton’s noise (in the dragon’s front leg) and fine details (spine’s bumps), while preserving the main
shape elements.

identifier of some front vertices is updated. Skeleton nodes
corresponding to the old and new arc identifiers are con-
nected (see Algorithm 1: lines 7-9). Straight connections
without branches belong to the same curve. Note that the
front identifier does not need to be coherent from one iter-
ation to the next one, since the vertices of the mesh both
define the movement and the skeleton connections. Further-
more, since evolution iterations are constrained by a tension
parameter, arc links are guaranteed to lie inside the shape.

Branching and topological events. During the evolution,
fronts eventually split and merge. Whenever a front splits,
we generate a branching node for the corresponding arc
and continue to track the different sub-fronts separately.
Front splits do not alter the topology of the model, and
neither does the branching in our skeleton. For example on
the hand of Figure 5, the splitting of the initial front at
entering the fingers generates a branch for each finger and
separates a sub-front for the wrist. Fronts can merge either
due to topological events or to the dynamic remeshing of the
deformable model. When fronts merge due to a topological
event, this is explicitly detected by the deformable model.
We connect the corresponding arcs to close a loop in the
curve graph which ensures that the skeleton has the same
homotopy as the deformable model (see Figure 3). However,
for local merging of close fronts due to remeshing we do not
link the corresponding branches together in order to preserve
the correct topology of the skeleton. Instead, we merge the
two branches into the one branch of smallest curvature.

Filtering. The final curve-skeleton is a subset of the ini-
tial curve set. Nevertheless, very similar to the medial axis,
it can become very noisy and contain spurious branching
especially near the object’s boundary. Hence, we allow to
simplify the initial curve graph connectivity by pruning and
merging; Depending on a user specified parameter, we re-
move from the curve skeleton arcs whose length or corre-
sponding front tension are smaller than the given thresh-
old. Removing end arcs with no sons is a simple pruning
operation, while removing intermediate arcs merge between
branchings. In both cases, we re-map corresponding vertices
to the new nodes using the union-find structure. Note that
these operations do not alter the skeleton topology. Next, the

Figure 5: Color mapping of the evolution tension parameter (left).
The initial skeleton structure (left) is filtered using the evolution
tension parameter (center left), simplifying the skeleton (center
right) while preserving the skeleton/model correspondence and
segmentation (right).

tree (or graph due to topological events loops) geometry can
be further smoothed to produce our curve-skeleton (see Fig-
ure 5) using a spline filter but keeping the branching nodes
fixed. This filtering process is performed on-the-fly from the
root node, which prevents the very first root branch of the
skeleton to be filtered (see Figure 7). Note that both the fil-
tered curve-skeleton and the model-skeleton mapping can be
computed on-the-fly during the evolution without complex
geometrical calculus.

4 Results
We have tested our algorithms on various inputs ranging

from manifold meshes (Figures 7 and 6) to noisy points-sets
with holes (Figure 1) including objects with complex topol-
ogy (Figures 3 and 9) and geometry (Figure 4). Table 1 gives
some timing results for the computation. We also demon-
strate how using our method, the skeleton can assist in inter-
preting the shape and structure of an object. Figures 5 and 8
show a mapping of the skeleton curves to the boundary mesh
using the skeleton mapping to the boundary. They also show
how the skeleton segments the shape into meaningful parts.
This method can also support a hierarchical decomposition
following major and minor skeleton arcs (Figure 4). In the
illustrations of this work, the curve-skeleton is drawn using
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Figure 6: Comparing our technique on a horse model. From left to right: The horse mesh. The curve-skeleton computed using the distance
field of [Gagvani and Silver 1999] (16 seconds). Using the topological thinning method of [Palagyi and Kuba 1999] (92 seconds). Using the
potential field method of [Cornea et al. 2005*] (16 minutes). Our result, computed in 3.1 seconds.

cylinders for visualization purposes.
We compare our method with implicit techniques

using the code provided in [Cornea et al. 2005]. In
Figure 6, we use the same volumetric field for guid-
ing our model and for the other technique. The dis-
tance field of [Gagvani and Silver 1999] performs
in 16 seconds, the topological thinning method
of [Palagyi and Kuba 1999] in 92 seconds and the po-
tential field method of [Cornea et al. 2005*] in 16 minutes,
while our method last 3.1 seconds.

Our method guarantees the following properties (stated
in [Cornea et al. 2005] as curve-skeleton qualitative crite-
ria); Homotopic: Since we close a loop in the skeleton for
each topological event of the deformable model, the curve-
skeleton has the same homotopy as the deformable model
(Figures 3 and 9). Thin: As opposed to many topological
thinning and distance transform methods, our skeleton is
computed directly as a set of 1D curves, leading to a thin
skeleton (Figure 7). Robust component-wise differentiat-
ing: The deformable model performs a robust shape inter-
pretation of the data (Figures 3 and 9), which generates a
meaningful decomposition of both the surface and the curve-
skeleton (Figures 5 and 8). Efficient: Our technique per-
forms on-the-fly in only a few seconds and is among the
fastest curve-skeleton extraction algorithms (see Table 1).
Hierarchic: As many of the distance field techniques, we
use a filter to remove spurious branches. This filter can be
tuned to generate a hierarchical skeleton (Figure 4).

Nevertheless our method does not fully guarantee the
following two criteria: direct visibility of the shape from
the skeleton and centeredness. The centeredness property is
observed but not guaranteed in our method since we merely
use a tracking heuristic for the centers. Another limitation of
our on-the-fly approach is that the skeleton root node, which
corresponds to the deformable model initial positioning , can
be filtered only as a post-processing.

Conclusions
We propose an efficient and robust method to extract a

curve-skeleton from either meshes or point-set objects. This

Figure 7: The result of our algorithm is a thin, 1D curve-skeleton
even in degenerated cases such as a 3D box. When the initial
model is not exactly centered (left), the skeleton quickly recovers the
symmetry of the input (center). The filtering preserves the symmetry
(right).

work illustrates the similarity of shape interpretation for sur-
face reconstruction and curve-skeleton computation. In both
problems, correct interpretation and segmentation must be
performed to achieve high quality results. Our method uses a
deformable model borrowed from reconstruction techniques
to robustly interpret the shape and topology of the target ob-
ject. The curve skeleton is then computed on-the-fly during
the model deformation. Its robustness and speed make it at-
tractive for many applications such as animation and match-
ing, and we plan to utilize it to such problems in the future.

Deformation Skeleton Filtering
foot 0.7 secs. 0.4 secs. 0.1 secs.
woman 4.9 secs. 3.5 secs. 0.4 secs.
horse 1.7 secs. 1.2 secs. 0.2 secs.
multi-torus 1.0 secs. 0.6 secs. 0.3 secs.
hand 0.5 secs. 0.1 secs. 0.2 secs.
CAD 1.9 secs. 1.2 secs. 0.1 secs.
dragon 8.6 secs. 6.1 secs. 2.3 secs.

Table 1: Computation time on a Pentium IV 1GHz / 1Gb.
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Figure 8: The front tension parameter from the skeleton to the boundary can distinguish between coarse and fine parts of the object (color-
mapped on left figures). The curve skeleton can also be used to interpret the shape: the different branches of the skeleton impose a meaningful
segmentation (color-mapped on right figures).
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