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Abstract. This paper describes the main aspects of Project Geosis. It is an ongoing three year project between the
Brazilian oil company Petrobras and the Pontifical Catholic University of Rio de Janeiro, Brazil. Its main objective
is to extract information from seismic data through the use of geometric and topological modeling, as well as
scientific visualization.
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Figure 1: 3D topological reconstruction, from seismic data, of a deep water oil reservoir (2000 meters).

1 Introduction
The characterization of oil reservoirs has as one of its

components the study of their geometry and topology. While
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the geometry deals with spatial distribution of points and
its associated properties, e.g. permeability and porosity, the
topology handles its connectivity. To determine the topology
of the reservoir is then an essential ingredient for its char-
acterization. One of the main characteristics of seismic pro-
cessing is the generation of large data sets. Computationally
intensive powerful techniques are needed to extract mean-
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ingful information from these data. The main objective of
the paper is to indicate how to reconstruct geological objects
(channels, lobes, . . . ) directly from seismic data. The data is
piled up in offset groups in such a way as to get information
from the seismic aiming at the geological modeling.

This paper focuses on: 1. Topological surface reconstruc-
tion from seismic data and its corresponding visualization;
2. Surface simplification in order to deal with large data sets.
Techniques for surfaces simplification for handling large
data sets will be discussed. Several techniques have been im-
plemented and will be presented.

This paper describes the main aspects of Project Geosis.
It is an ongoing three year project between the Brazilian oil
company Petrobras and the Pontifical Catholic University
of Rio de Janeiro, Brazil. Its main objective is to extract
information from seismic data through the use of geometric
and topological modeling, as well scientific visualization.

2 Isosurface extraction
(a) Overview

The seismic data obtained by physical measures can
be interpreted, after the signal processing step, as a
sampling of a continuous function f : (x, y, z) ∈
R3 7→ f (x, y, z) ∈ R at some points in the space
{(xi, yj , zk) ; i = 1..m, j = 1..n, k = 1..p}. The function f
describe a geophysical property, such as the permeability,
the porosity, . . . The reservoir corresponds to the portion of
space R where the value of the property is included in a
certain range [v, w] : R = f−1 ([v, w]).

Any method that computes this volume R needs to ex-
trapolate from the sampled data. For example, we could in-
duce the function f from the sampled data, and then com-
pute analytically the pre–image R. This extrapolation would
involve a specific and complete geological model of the ter-
rain. However, this method is computationally expensive,
renders interpreted data and does not guarantee the topol-
ogy of the reservoir in general. We will use a different but
classical strategy, and enhance its robustness.

We will compute the reservoir surface directly from the
sampled data. We aim at controlling and minimizing the
artifacts induced by the extrapolation. In particular, we are
concerned with the topology of the resulting surface, i.e.
preserving the connections between or inside the reservoirs.
Moreover, in order to improve the quality of the result, we
will include in our process the global geological information
we already know, such as the data representation described
in the next section.

(b) Incorporation of geological models

We will suppose from now on that the points where the
property f is estimated are arranged in a cuberille manner.
This means that we are able to connect those points in
order to form adjacent convex solid polytopes with 8 faces.
Actually, if we do not look for the boundary region, there
are several ways of connecting the measure points into a

cuberille grid. For example on an infinite cubic grid, we
could connect the cube with diagonal strips.

Ideally, the cubes should follow the geological structure
of the reservoir. This can be partially achieved by a prepro-
cessing step, identifying the main curves of the geological
points. In particular, submarine reservoir are often locates in
fracture zone, and the reservoir itself often follows the frac-
ture lines. During this preprocessing step, we connect the
measure points in order to form a cuberille grid which fol-
lows those main curves.

This preprocessing offers different advantages. First, the
resulting reservoir surface is more accurate: the isosurface
extracted from the measures f is tiled within each cube. If
an edge of the grid has one vertex inside the reservoir and
one outside, then the isosurface will intersect this edge. If the
grid were simply parallel to the axes, those edges crossed by
the surface can be arranged in a very steep manner, leading
to less accurate surface. Second, we can rectify the grid, i.e.
moving the grid points to form a cubic grid parallel to the
axis, without modifying the value of the property f at that
point. Then, we can work in the original grid, which gives a
realistic view of the reservoir, or in the rectified grid, which
often gives a clearer view of the reservoir.

(c) Missing data

The main problem we encountered with the seismic data
is its incompleteness: some of the grid points (xi, yj , zk) do
not have an associated property value f (xi, yj , zk). Those
points can be isolated, or form entire volumes inside the grid.
We implemented three strategies to handle this deficiency,
which corresponds to different quality/reliability and qual-
ity/computational costs trade–off:

– No interpolation: the grid point is discarded, and none
of the triangles of the final surface will intersect a
cube containing a discarded point. This ensures a more
reliable output, but leads to many holes in the surface.

– Linear interpolation: the value of a missing grid point
is computed as the barycenter of its nearest valid
points.

– Radial–basis interpolation: all the valid point of the
grid contributes to the missing value proportionally
to their distance. This gives nice results, but induces
a model of the data which is not always accurate.
Radial–basis methods have been extensively studied,
and would offer many possibilities of including accu-
rate geo-physics models [1].

(d) Surface reconstruction

We will use an extension of the Marching–Cubes’ algo-
rithm [8] to extract the surface of the reservoir from the
preprocessed seismic data. The Marching Cubes method
produces a triangular mesh of the preimage g−1 (0), given
by samples over a cuberille grid. To convert the test
f (xi, yj , zk) ∈ [v, w] into f (xi, yj , zk) ≥ 0, we will test a
grid point with g = (f − v) · (w − f). The original method
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sweeps the grid, and tiles the surface cube per cube. Each
point of the grid is classified into positive and negative ver-
tices. Thus, there are 28 = 256 possible configurations of a
cube. The usual implementation stores those 256 in a lookup
table that encodes the tiling of the cube in each case (see
Figure 7).

However, the original implementation can lead to cracks
(see Figure 2) and could not respect the topology of the
tri–linear interpolation of f . We thus need to add further
test on ambiguous cubes. This distinction has been done by
Chernyaev in its Marching Cubes’ 33 algorithm [2], and lead
to the completed lookup table 8 of 730 cases.

Figure 2: A crack occurring on an ambiguous face in-between
cases 12 and 3 of table 7.

This enhanced algorithm has been implemented in [7].
However, their implementation needs a re–computation
when tiling an ambiguous cube, which is computationally
expensive. Their computation allows a more accurate geom-
etry inside each cube by the addition of extra vertices inside
some of the cubes. For our purpose, we needed a faster al-
gorithm which would not produce too many vertices. There-
fore, we implemented the 730 cases of Chernyaev’s lookup
table 8 [5]. The tiling of a cube is then done by only a con-
sultation of the lookup table.

The Marching Cubes’ algorithm offer many extensions,
in particular in previsualization, view–dependant rendering,
hardware acceleration . . . Some of those enhancements need
an expensive pre-computation (n · log(n) for topology pre–
visualization for example), other pre–suppose parts of the
results (the ability of having one seed per connected com-
ponent in order to avoid parsing all cubes). All those exten-
sions are possible to implement with our enhancements. We
will not introduce them here as they are not always adapted
to our problem.

(e) Visualization of seismic surfaces

Given a seismic cube, parallel slices are extracted and
piled up in such a way as to allow the 3D reconstruction
of the reservoir using the amplitude of the seismic wave in
a given interval. In the figures below domains on parallel
slices were chosen. In Figure 3 and Figure 1 isosurfaces were

extracted and geological structures like channels and lobes,
were identified in a deep water reservoir.

3 Surface Simplification
The surface reconstruction discussed in the previous sec-

tion will generate a triangular mesh that represents the
boundary of the oil reservoir. According to the sampled data
resolution, the data set for handling such mesh may be ex-
tremely large. Than, in order to represent the same surface
with lower data cost, we have developed a simplification pro-
cess to obtain a simplified mesh with lower number of trian-
gles that preserves the topology type of the original surface
and uses an Error Metric in order to control its geometrical
proprieties, as volume, by minimizing the geometrical dis-
tortion from the original surface.

Our simplification algorithm is based on local topology
preserving operators so that the simplified mesh has the same
topology type to the original mesh. The main objective of
these operators is removing elements as vertices, edges and
faces from the mesh without changing its topologic type.
Each element to be removed from the mesh is chosen as the
one with lower geometrical cost to the original surface. This
cost is computed using the Quadric Error Metric by Garland
and Heckbert [4]. We will point out how does this operators
and metric works before discussing the simplification algo-
rithm.

(a) Mesh simplification operators

The operators we will present were implemented using a
data structure called Corner-Table [6] that is a compact ver-
sion of the Half-Edge representation of triangular meshes.
Using this data structure we implemented several local oper-
ators and techniques for mesh simplifications [9] as follow.

Edge–Flip: This operation does not remove any element
from the mesh and consists in transforming a two-face clus-
ter into another two-face cluster by swapping its common
edge.
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Figure 4: Edge–Flip.

Let the edge e = (u, v) and s and t the two vertices
opposed to e (see Figure 4). The Edge-Flip operation will
replace e by (s, t), and replace the 2 triangles incident to e
by (u, s, t) and (v, t, s).

Edge–Collapse: This operator consists on removing an
edge e = (u, v) from the mesh, identifying its vertices to
a unique vertex w. From a combinatorial viewpoint, this op-
erator will remove 1 vertex, 3 edges and 2 faces from original
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Figure 3: Slices of seismic data of a deep water oil reservoir (2000 meters).

mesh, without changing its Euler characteristic. From a ge-
ometric viewpoint, the new position of the vertex w can be
computed with the geometry around u and v.
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Figure 5: Edge–Collapse.

Let s and t be the vertices opposite to e = (u, v), which
is the edge to be collapsed (see Figure 5). By collapsing the
edge e we will remove the faces (u, v, s) and (u, t, v) from
the mesh. The topological consistency of this operations is
guaranteed by the following link condition [3].

(Link Condition) Let S be a combinatorial 2–manifold.
The contraction of an edge e = (u, v) ∈ S preserves the
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Figure 6: Link Condition.

topology of S if and only if link(u) ∩ link(v) = link(e).

Figure 6 shows, in (a), an edge (u, v) whose contraction
is topology preserving while in (b) it is not.

Other operators as edge-weld, face-collapse and star-
collapse were implemented as a combination of these two
first operators.
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(b) Geometric cost evaluation

For evaluation of the geometrical cost of performing sim-
plification operators we used the Quadric Error Metric from
Garland and Heckbert [4] as fallow.

Consider the problem of finding the distance of a point
w to the plane pf support of a face f = (v1, v2, v3) whose
unitary normal vector is ~n.

Given a point p = (px, py, pz) ∈ pf , the distance d from
the origin to the plane pf is

d = pt.n = pxnx + pyny + pznz

Then, the distance from a point w ∈ R3 to pf , is the dis-
tance dw from the origin to the plane parallel to pf touching
w minus d.

dw = wt.n− d = wxnx + wyny + wznz − d

Making w = (wx, wy, wz, 1) and ~n = (nx, ny, nz,−d),
dw can be computed as a dot product in dimension 4.

dw = wt.n = wxnx + wyny + wznz + 1(−d)

The quadratic distance d (w) from a point w ∈ R3 to the
plane pf is, than, given by

d (w) =
(
wt.n

)2 =
(
wt.n

) (
nt.w

)
= wt

(
n.nt

)
w

The product n.nt above origins a 4x4 symmetric matrix,
which Garland and Heckbert called the fundamental quadric
Qf associated to the face f .

Qf = n.nt =




n2
x nxny nxnz nxd

nxny n2
y nynz nyd

nxnz nynz n2
z nzd

nxd nyd nzd d2




Let v a vertex on a mesh M , and fi ∈ star(v) the faces
incidents to v. The distance d (w, v) from a point w to the
vertex v is given, by the Quadric Error Metric, as the sum
of the quadratic distances di (w) from w to the plane support
of each face fi. Using the quadrics Qi associated with each
face fi we have

d (w, v) =
∑

wt (Qi)w = wt
(∑

Qi

)
w

The sum
∑

Qi origins a new 4x4 matrix called the funda-
mental quadric associated with the vertex v, which is noted
as Qv .

On performing the edge-collapse operation for an edge
e = (u, v) to a resultant vertex w we have the cost C
(geometric distortion) given by the sum of the distances
d (w, v) and d (w, u)

c=0;
assign quadrics;
while (c < C) do

for (i = 1 to 8) do
ei =random edge
if Cost(ei) < Cost(e) then e = ei

c+=Cost(e)
perform EdgeCollapse(e)

Table 1: Algorithm 1: Simplify(M, C)

C = d (w, v) + d (w, u)
= wtQvw + wtQuw

= wt (Qv + Qu)w

The computation of C, as defined above, for each edge
candidate to the edge-collapse allow us to choose the edge
that minimizes the geometrical cost.

(c) Simplification Algorithm

The first step of our simplification algorithm is to assign
Qv , as previously defined, for all v ∈ M , where M is the
mesh to be simplified. For each edge e = (u, v) ∈ M
we choose a vertex w in order to minimize the cost Ce =
d (w, v)+d (w, u). The cost Ce is than inserted into a priority
queue so that we can perform the edge-collapse operator in
a increasing order of cost.

In the Garland and Heckbert algorithm, the cost for edges
incidents to the resultant vertex w is recomputed and its pri-
ority in the queue updated after each simplification opera-
tion. This cost re-computation and queue updating leads to
an increasing amount of time processing that we avoid in our
implementation by using a probabilistic optimization strat-
egy [10] that does not use a priority queue.

The sum of cost introduced for each edge-collapse opera-
tion is than used to control the simplification process till the
desired level. The algorithm below obtain a simplification for
the mesh M with geometric cost less than C.

The algorithm above naturally constructs an hierarchy
of meshes

(
M0, M1, .., Mn

)
with decreasing number of

elements (vertices, edges and faces). The surface M0 is
the original surface M , and each surface M j , j = 1..n,
corresponds to the level j of detail of M . Such levels of detail
M j are than obtained by the parallel application of such
algorithm. Each level of detail accumulates a geometrical
cost that estimates its fairness to the original mesh.

Our data structure uses only two arrays of integers for
storing the mesh connectivity and an array of floats for
storing the geometry (coordinates) of vertices. At each level
of detail we have a new connectivity among a subset of
the same initial set of vertices so that the same array of
vertices is used in all levels of detail. Hence, for saving n
levels of detail form a mesh we just need store 2n arrays of
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integers for representing the connectivity at each level. This
connectivity can also be encoded in a compressed manner
(with less than 2 bits per triangle) using the Edgebreaker
compression scheme [6].

Figure 7: Original Marching Cubes lookup table.
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Case 0 Case 1 Case 2 Case 3.1

Case 3.2 Case 4.1 Case 4.2 Case 5

Case 6.1.1 Case 6.1.2 Case 6.2 Case 7.1

Case 7.2 Case 7.3 Case 7.4.1 Case 7.4.2

Case 8 Case 9 Case 10.1.1 Case 10.1.2

Case 10.2 Case 11 Case 12.1.1 Case 12.1.2

Case 12.2 Case 13.1 Case 13.2 Case 13.3

Case 13.4 Case 13.5.1 Case 13.5.2 Case 14

Figure 8: Chernyaev’s lookup table.
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