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Abstract. The core of most registration algorithms aligns scan data by pairs, minimizing their relative distance.
This local optimization must generally pass through a validation procedure to ensure the global coherence of
the resulting alignments. This work introduces an iterative framework to guarantee the global coherence of the
registration process. The iteration alternates registration and reconstruction steps, including alignments with the
proper reconstructed surface, until the alignment of all the scans converges. The framework adapts to different
contexts by choosing which scans are aligned and which are used for the reconstruction. This choice is based
on the alignment and reconstruction errors. Derivations of this framework are presented with a rough automatic
registration, increasing its robustness.
Keywords: Registration. Reconstruction. Iterative Closest Point. 3D photography.

Figure 1: Derivation of our framework for overlapping maximization on a complex model, whose upper and lower parts are acquired in two
separate sessions. Registering the models reconstructed separately from the upper and lower parts increases the overlapping parts, improving
the stability of the alignment.

1 Introduction
Three-dimensional scanning builds virtual models from

several views of the same real object. Each view or scan gen-
erates a range image, i.e. a set of points in 3D with its own
coordinate system. The registration process defines an opti-
mal common coordinate system for all the scans, which is a
necessary pre-processing of shape reconstruction algorithms.
This optimal alignment is usually determined by minimiz-
ing over all the rigid transformations a distance between the
overlapping parts of the scans. The basic optimization algo-
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rithm is the Iterative Closest Point (ICP) [1, 2], which aligns
each pair of scans separately. Since the scans are views of
a unique rigid object, a global optimal alignment must exist.
However, the scanning process is prone to noise [25], and the
local minima must then be checked for global consistency.

In this work, we propose to use and schedule intermediate
reconstructed models to improve the registration process, ex-
tending the early work of Jin et al. [12]. This reconstruction
step provides a feedback on the current alignment quality and
on how to correct it for the final reconstruction: We align a
selected subset of the scans with the reconstruction, generat-
ing a new alignment that is used for a subsequent reconstruc-
tion. The reconstruction generates an updated model to align
with, repeating the process until this virtuous loop converges

http://www.mpi-inf.mpg.de/conferences/vmv07/
http://www.mpi-inf.mpg.de/conferences/vmv07/


Thales Vieira, Adelailson Peixoto, Luiz Velho and Thomas Lewiner 2

(a) A pair of scans. (b) Spin-Images of corresponding
points on the two scans.

(c) Fine alignment with ICP. (d) Reconstructed model.

Figure 2: The basic elements of a reconstruction pipeline: from the several scan data in their own coordinate systems (a), a local geometry
descriptor is used to derive a rough position (b). This alignment is refined by distance minimization (c). The registered scans are finally
merged into a single surface (d). The color in (c) codes the maximal distance between two scans in the view direction.

(Figure 4). The alternation of alignment and reconstruction
on different selection of scans adapts the general registra-
tion process to different contexts, such as dynamic or multi-
resolution registration. In particular, it can improve the reg-
istration precision (basic framework), achieve delicate regis-
tration (overlapping maximization), improve the registration
robustness (divergence correction), decrease the total exe-
cution time (multi-resolution) or further integrate the whole
scanning/reconstruction process (dynamic registration).

Related works. Usual automatic registration involves two
steps: initial positioning and refinements of this alignment
with global coherence validation.

The registration process searches for rigid transforma-
tions, which are low-dimensional solutions (6 dimensions
per scan), from high dimensional data (3 dimensions per scan
point). Using global optimization [19, 15] or statistical anal-
ysis [5, 6], one can directly align all the scans simultane-
ously. The problem can also be considered partially by align-
ing the scans pair-wise. To avoid working with all the points
of a scan at once, several techniques use local descriptors
that are invariant under rigid motions. In this work, we use
spin images [13] as a shape descriptor, similarly to previous
works [11, 4]. Robust descriptors can also be combined with
the point selection [8]. Further references on this initial po-
sitioning can be found in [21].

This positioning is generally refined by local minimiza-
tion algorithms, such as the classical Iterated Closest Point
(ICP) algorithm [1, 2]. This algorithm has been improved in
speed [24], accuracy and robustness [3, 16, 18]. Further ref-
erences on the ICP variations can be found in [23].

In order to avoid local minima of the ICP, the current
alignment is checked for consistency. This consistency usu-
ally comes either from a global optimization [15] or from a
dependency graph of the pair-wise alignments [19, 22, 11].
In this work, we propose to use and schedule reconstructions
steps in the registration pipeline to guarantee this global con-
sistency.

The introduction of reconstruction in the registration pro-
cess was first described in [12], which used the pioneering
reconstruction method of [9]. They reconstruct the surface

from all the aligned scans during the registration, and align
all the scans with the reconstructed surface. Further con-
straints can be added by aligning the scans with a pre-defined
model [17]. We propose here a generalization of these ideas
by scheduling which scan is aligned or reconstructed at each
step. Among the many surface reconstruction methods, we
test our framework with two of them: the Multiple Partition
of Unity implicits of [20], and the Poisson inversion of [14].

Figure 3: Improvement of the global alignment using the recon-
structed surface: misaligned scan data (left) is realigned with the
reconstruction to improve the final alignment (right).

Contributions. This work introduces a general framework
for the use of reconstruction inside the registration pipeline.
This reconstruction provides a global feedback on the quality
of the alignment. Since the reconstructed surface is generally
a mesh which approximates the scan, the original scans can
be aligned with it using robust algorithms such as ICP deriva-
tives. This leads to a globally coherent registration without
global optimization or consistency graph. Moreover, the fi-
nal registration is automatically optimized for the reconstruc-
tion, avoiding false feature at misaligned regions [25].

We incorporate this reconstruction step to a framework
built on three basic steps: 1) initial positioning, 2) local re-
finement of an alignment and 3) reconstruction (section 2).
By scheduling these steps and choosing on which scans they
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Figure 4: Correcting alignment with the reconstruction: The rough, pair-wise positioning accumulates errors (far left), which leads to false
features at scan boundaries in the reconstruction (mid left). Re-aligning with this reconstruction ensures the global coherence (mid right),
significantly improving the final reconstruction (far right).

are applied, we open this registration framework to differ-
ent contexts such as dynamic or multi-resolution registration
(section 3). We implement this framework with simple algo-
rithms for each step (section 4), significantly improving the
global robustness of the registration (section 5).

2 Framework Elementary Steps
In this section, we recall basic examples of scan descrip-

tors for the initial positioning, alignment refinement and sur-
face reconstruction (Figure 2). These elements are represen-
tative of the three elementary steps of our registration frame-
work.

Spin Image Descriptor. Spin-Images [13] describe the sur-
face shape in a short range around a reference point (Fig-
ure 2(b)). Given a reference point on the surface, the near-by
surface points are projected on its tangent plane, and encoded
in a bi-dimensional radial coordinate system that is invariant
to rigid transformations. The spin image at the given point is
the gray-scale image representing the density of points in this
coordinate system. From the invariance of the system, corre-
sponding points in different meshes generate similar spin-
images even with clutter and occlusions.

Iterative Closest Point. The Iterative Closest Point (ICP)
algorithm [1, 2] iteratively refines an initial alignment of
two meshes (Figure 2(c)). It converges to a local minimum
that can be the expected rigid transformation, depending on
the initial condition. According to [23], the original algo-
rithm and its many variations are composed of six stages:
scan points’ selection, matching, correspondences genera-
tion and filtering, error metric definition and minimization
over the rigid transformation. The rigid transformation that
minimizes the error is then applied to the scan points and
the process is repeated until the rigid transformation is close
enough to the identity.

Surface Reconstruction. Surface reconstruction consists
in defining a continuous surface representation from a set
of isolated points in space [9] (Figure 2(d)). Registration
techniques are often used as a pre-processing step for recon-
struction [7]. In this work, surface reconstruction serves as
a global check for the registration. We illustrate this concept
with one global-from-local and one global reconstruction al-
gorithms: the Multiple Partition of Unity (MPU) [20] and
the Poisson surface reconstruction [14]. The first one fits a
tri-variate polynomial on the scan points contained in each
leaf of an adapted octree, and blends these implicit represen-
tations by means of radial functions centered at the near-by
leaves. The second one builds the characteristic function of
the volume inside the surface. To do so, it solves a global lin-
ear system whose equations match the pseudo-derivatives of
this characteristic function to the normal at each scan point,
generating one linear equation for each derivative kernel at
the center of an adapted octree.

Error Measures. In order to schedule in our framework
which scans are aligned and which are reconstructed, some
error measures are derived from each step of the pipeline.
The initial positioning error is measured by the geometric
consistency of spin image correspondences, i.e. the differ-
ence of the distances between the correspondences on each
scan. The ICP error, i.e. average of distances between cor-
respondences measures, is used to estimate the alignments
accuracy. The reconstruction error is estimated directly from
the reconstruction algorithm: the fitting error in each leaf for
the MPU case, or the linear solver error in the Poisson case.

3 Registration with Reconstruction Frame-
work
The usual registration pipeline starts with a rough posi-

tioning of the scans, which are then aligned by minimizing a
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distance between them. The aligned scan is then piped into
a reconstruction algorithm to produce the final surface. We
propose here a general framework to improve the alignment
using the reconstructed surface, introducing a feedback in
the registration process (Figure 3). This reconstructed sur-
face serves a triple purpose. First, it allows measuring the
quality of the registration of each single scan by computing
its distance to the reconstructed surface. Second, aligning a
scan with the reconstruction improves the registration and
optimizes it for reconstruction. Third, this re-alignment guar-
antees a global coherence of the registration without global
optimization, avoiding fake features due to misalignment.

Basic framework. Our framework is built on top of three
basic steps:

1. Rough positioning of two distant meshes.

2. Fine alignment of two almost aligned meshes.

3. Reconstruction from several aligned meshes.

The reconstruction step serves to check and improve the
alignments in different manners, depending when and how
it is scheduled within the framework. For example, the iter-
ative refinement of [12] consists in alternating the two last
steps with all the scans at once, aligning them with the last
reconstructed mesh.

Note that in steps 1 and 2, one of the meshes to be aligned
can be the (partially) reconstructed surface itself. This is the
key to transform the local problem into a global one. Fur-
thermore, depending on the scheduling, i.e., which meshes
are aligned and reconstructed at each stage, this framework
adapts registration to different usages. We comment here-
after derivations of our framework in four different registra-
tion contexts: overlapping maximization, dynamic registra-
tion, divergence correction and multi-resolution.

Overlapping maximization. Complex objects are gener-
ally scanned in several sessions, typically obtained by rotat-
ing the objects in front of the scanner (Figure 1). While the
overlapping between two consecutive scans of the same ses-
sion is likely to be high, the overlapping between the scans
of two different sessions may be too small to find a stable
optimal alignment. Moreover, the rotation angle used inside

Figure 5: Derivation of our framework for dynamic registration.
Partial reconstructions help the alignment, producing a complete
reconstruction from only 5 of the 7 scans. (Left) Reconstruction
from 2 scans with the Poisson method already generates the two
rear legs. (Right) The 6th scan aligned with the reconstruction from
5 scans.

a session provides a good relative initial positioning of the
scans, while the alignment between sessions is not given a
priori. For example on Figure 1, the upper and lower parts of
the object overlap on a very small horizontal band. However,
the overlapping of all the scans of one session with all the
scans of another session is necessarily more extended. By
reconstructing the aligned scan of each session and aligning
only the reconstructed meshes, we benefit from this bigger
overlapping.

More generally, we can choose at each step to recon-
struct with all or only part of the scans, and align pairs of
scans, mixed pairs of scan/reconstructed mesh, or only re-
constructed meshes. This choice may depend on the avail-
able processing time and on the error of each pair-wise ICP,
such as the one described at section 2.

Dynamic registration. When registering on-the-fly during
the scanning process, or when computing the initial align-
ment incrementally, the scan added last must be aligned with
all the previous ones (Figure 5). This process can be costly
and unstable, in particular if this last scan overlaps with only
a few of the previous ones. Since the reconstructed mesh
should contain the details of each scan, aligning the new scan
with it maximizes the overlapping area, reducing the number
of incorrect correspondences. We can thus derive our frame-
work to align the scan added last with the reconstruction of
the previous one. The reconstruction can be performed af-
ter each scan addition, or when the error between the scans
added last and the current reconstruction is bigger than a
threshold, which means the aligned scans and the reconstruc-
tion are geometrically inconsistent. To improve the stability,
the initial scans can be periodically re-aligned with the re-
construction.

Moreover, the registration of the previous scans can be
improved by regularly scheduled steps of pair-wise align-
ments. This strategy is best used in real-time data acquisition
for 3D reconstruction.

Divergence correction. Our general framework is an iter-
ative process that converges depending on the initial align-
ment. When starting from a bad positioning, the process
may oscillate between wrong alignments. This can be easily
checked by tracking the transformations applied to a specific
scan at each stage and the final error after a fixed number of
ICP iterations (Figure 8). If these transformations remain far
from the identity or if the error does not diminish, the scan
can be re-aligned from scratch, using the rough positioning
with the mesh reconstructed from all but this scan.

The convergence of our general framework can be im-
proved by alternating global and local alignments: aligning
all the scans with the reconstructed mesh (global) and align-
ing pairs of scans in sequence (local). Each alignment pro-
cedure returns an error (cf section 2), which can be used to
correct eventual divergent behaviors.

Multi-resolution. The resolution of the reconstructed mesh
can be adjusted, either directly in the reconstruction algo-
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Model # # Frame- Posit- Recons- ICP # Error
views points -work -ioning -truction iter.

×103 secs. secs. secs ×10−4

bunny 12 13 corrective 14 MPU 1.6 8.1 9 2.0
head 5 16 basic 41 MPU 1.8 7.2 9 1.8
hand 6 21 mutlires 7.0 MPU 3.5 3.1 2 9.2
horse 7 22 dynamic 4.6 Poi 3.3 4.8 2 3.2
lady bot 8 54 overlap 322 Poi 125 0 0 2.0
lady top 12 174 overlap 660 Poi 1340 75 2 1.5
lady 2 228 overlap 72.5 Poi 2486 0 0 2.0

Figure 7: Some experiments on real objects (head, lady) and virtual models (horse, bunny, hand). The graph maps the maximal error from
the number of iterations. The timings are averages per iteration, where one iteration corresponds to an alignment and a reconstruction step
in the different frameworks. The error corresponds to the maximal ICP error of the last step.

rithm tuning or explicitly by mesh simplification and re-
finement operations. Aligning a low-resolution reconstructed
mesh with decimated scans produces a quick and coarse reg-
istration. Increasing the resolutions then incrementally im-
proves the alignments. (Figure 6). This coarse-to-fine reg-
istration fills the gap between the rough positioning of dis-
tant meshes and the ICP alignment, reducing considerably
the execution time. Moreover, this strategy improves the ro-
bustness of the registration on very noisy objects, avoiding
local noise to be considered as features. This way, we obtain
good results with only 2 or 3 different resolutions. For exam-
ple, using two resolutions of 900 and 7000 points for each of
the 6 scans, the total execution time for registration of the
low resolution, reconstruction of the high one and aligning
with the reconstructed surface is 47 seconds, while the con-
ventional registration procedure lasts 256 seconds.

4 Implementation

The overall implementation of our framework is simple
provided the basic elements described in section 2, since
meshes are the natural representation of both the original
scans and the reconstructed surfaces. We implement the ba-
sic steps of the framework by using an automatic pair-wise
alignment method for the first step, point-to-point ICP for
the second step. For the third step, we use the available im-
plementations of the MPU and Poisson reconstructions as is.

The initial alignment of the first step can be either manual,
deduced from the calibrated scanner position, or automatic.
For this last case, we use an automatic alignment strategy
similar to [11, 16]. Using the terminology of [21], it con-
sists in selecting feature points based on their curvature in
each scan, representing them by spin images and ranking
matching images by the difference of their pixels. Groups of
matching are valid if the distance between them inside each
scan is similar. Valid groups can be discarded if they induce

a too small overlap. In our experiments, the bin size of the
spin-images took values between 2 and 4, and the spin-image
width between 10 and 15.

The ICP variant used can be described in the terminology
of [23] by: all points selection, matching based on Euclidean
closest point using kd-trees, filtering sets of correspondences
according to a distance threshold, squared error metric and
minimization using quaternions following [10]. Finally, to
emphasize the generality of our framework, we use two
different reconstruction techniques, respectively [20, 14].

5 Experiments
We consider two sets of examples: artificially generated

scans such as the horse model (Figure 5), where the cor-
rect alignment is the identity, and scanned objects such as
the head and the lady (Figures 4, 2 and 1) to test the ro-
bustness to real scanner noise. We forced extreme cases with
wrong initial alignments on an artificial scan of the bunny
(Figure 8), or with flat overlapping area on the low resolu-
tion hand model (Figure 6).

Precision. In the different frameworks proposed, we ob-
tain a significant improvement compared to a single align-
ment/reconstruction step involving all the scans. Detailed re-
sults on the illustrations of this work are reported on Fig-
ure 7. Observe that, for small or decimated models, the sev-
eral reconstruction steps count only for a fraction of the to-
tal time, while it gets a higher proportion on bigger mod-
els. Even with initial alignment far from the correct position
(Figure 8) the registration converges in a few iterations. Ex-
cept for the extreme case in Figure 5, results obtained using
MPU and Poisson reconstructions are similar.

Limitations. The proposed framework is very efficient in
term of precision and adaptation to diverse contexts. How-
ever, since we did not optimize the reconstruction and align-
ment steps for consecutive calls, the overhead in execution
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Figure 6: Derivation of our framework for multiresolution regis-
tration: aligning decimated scans generates a quick and rough ini-
tial positioning (top left), which is reconstructed (top right) and
refined by increasing the resolutions of both the scans and the re-
constructed surface (bottom). In this example, this process was five
times faster than a direct registration.

time is still significant on big models without the multireso-
lution strategy. The resolution settings of the reconstruction
have an impact on this execution time, and also on the qual-
ity of the alignment, in particular since we use point-to-point
ICP. Except for the multiresolution of Figure 6, we let the
resolution of all the reconstructions to their default parame-
ters.

6 Conclusions
In this work, we propose a novel framework for reg-

istration, inserting and scheduling a reconstruction step to
improve the final alignment of the scans. Variations of
this scheduling adapt this framework to different contexts.
These reconstruction steps provide a feedback to intermedi-
ate alignments and guarantees the global coherence of the
alignment. They further optimize the alignment for the fi-
nal reconstruction, avoiding fake features at the frontier of
misaligned scans. This framework extends the work of Jin
et al. [12], adapting global registration to different contexts.

Moreover, it gives a simple way for registration to benefit
from the recent advances in surface reconstruction.
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Figure 8: Derivation of our framework for divergence correction. This method improves the robustness of the global registration, and
minimizes the impact of bad initial alignments: The error induced by artificially rotating one scan by 60 degrees is progressively corrected in
3 reconstruction/alignment iterations (left). Without the divergence correction, the ICP fits the scan to another position due to its symmetry
(right).
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