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Abstract. In this paper we introduce a unified framework for topological manipulation on triangulated 2-manifolds
with or without boundary. We show that there are two kinds of primitive operators on the underlying meshes:
operators which change the topological characteristic of the mesh and operators which just modify its combinatorial
structure. We present such operators and demonstrate that they provide a complete and coherent set of elementary
operations for mesh construction and edition.
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Figure 1: Graph encoding on a torus using Schnyder woods.

1 Introduction
Schnyder woods are a nice and deep combinatorial struc-

ture to finely capture the notion of planarity of a graph. They
are named after W. Schnyder, who introduced these struc-
tures under the name of realizers and derived as main ap-
plications a new planarity criterion in terms of poset dimen-
sions [29], as well as a very elegant and simple straight-
line drawing algorithm [30]. There are several equivalent
formulations of Schnyder woods, either in term of angle
labelling (Schnyder labellings) or edge colouring and ori-
entation or in terms of orientations with prescribed degrees.
The most classical formulation is for the family of maximal
plane graphs, i.e., plane triangulations, yielding the follow-
ing striking property: the internal edges of a triangulation can
be partitioned into three spanning trees rooted respectively at
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each of the three vertices incident to the outer face. Schnyder
woods, and more generally α-orientations, received a great
deal of attention [30, 14, 19, 17]. From the combinatorial
point of view the set of Schnyder woods of a fixed triangu-
lation has an interesting lattice structure [6, 2, 15, 12, 26],
and the nice characterization in term of spanning trees mo-
tivated a large number of applications in several domains
as graph drawing [30, 19], graph coding and sampling [11,
18, 3, 27, 16, 5, 9, 1]. Previous work focused mainly on the
application and extension of the combinatorial properties of
Schnyder woods to 3-connected plane graphs [14, 19]. In this
article, we deal with combinatorial surfaces possibly having
handles, i.e., oriented surfaces of arbitrary genus g ≥ 0. Our
main contribution is to show that it is possible to extend the
local properties of Schnyder labelling in a coherent manner
to triangulated surfaces. We investigate an important class
of graphs, namely genus g triangulated surfaces, which cor-
respond to the combinatorial structure underlying manifold
triangle meshes of genus g.

http://www.umiacs.umd.edu/conferences/socg2008/
http://dx.doi.org/10.1145/1377676.1377730


Luca Castelli Aleardi, Eric Fusy and Thomas Lewiner 2

(a) Related Work

Vertex spanning tree decompositions

In the area of tree decompositions of graphs there exist
some works dealing with the higher genus case. We men-
tion one recent attempt to generalize Schnyder woods to the
case of toroidal graphs [4] (genus 1 surfaces), based on a
special planarizing procedure. In the genus 1 case it is ac-
tually possible to choose two adjacent non-trivial cycles,
defining a so-called tambourine, whose removal makes the
graph planar; the graph obtained can thus be endowed with
a Schnyder wood. In the triangular case this approach yields
a process for computing a partition of the edges into three
edge-disjoint spanning trees plus at most 3 edges. Unfortu-
nately, as pointed out by the authors the local properties of
Schnyder woods are possibly not satisfied for a large number
of vertices, because the size of the tambourine might be ar-
bitrary large. Moreover, it is not clear how to generalize the
method to genus g ≥ 2.

Planarizing surface graphs

A natural solution to deal with Schnyder woods (designed
for planar graphs) in higher genus would consist in perform-
ing a planarization of the surface. Actually, given a surface
S of genus g and size n, one can compute a cut-graph or a
collection of 2g non-trivial cycles, whose removal makes S
a topological disk (possibly with boundaries). There is num-
ber of recent works [22, 33, 34, 13, 7, 21] dealing with inter-
esting algorithmic challenges concerning the efficient com-
puting of cut-graphs, optimal (canonical) polygonal schemas
and shortest non-trivial cycles. For example there exist some
works allowing to compute polygonal schemas in optimal
O(gn) time for a triangulated orientable manifold [33, 22].

Nevertheless we point out that any strategy, based on such
planarizing approach, would be not relevant for our pur-
poses. From the combinatorial point of view this would im-
ply to deal with boundaries of arbitrary size (arising from the
planarizing procedure), as non-trivial cycles can be of size
Ω(

√
n), and cut-graphs have size O(gn). Moreover, from

the algorithmic complexity point of view, the most efficient
procedures for computing small non-trivial cycles [7, 21] re-
quire more than linear time, the best known bound is cur-
rently of O(n log n) time: this is a fundamental problem in
the design of efficient linear time algorithms for graph en-
coding.

Schnyder trees and graph encoding

One of our main motivations for generalizing Schnyder
woods to higher genus is the great number of existing works
in the domain of graph encoding and mesh compression that
take advantage of spanning tree decompositions [31, 20, 28],
and in particular of the ones underlying Schnyder woods
(and related extensions) for planar graphs [11, 10, 18, 1, 27,
16]. The combinatorial properties of Schnyder woods and
the related characterizations (canonical orderings [19]) for
planar graphs yield efficient procedures for encoding tree

structures based on multiple parenthesis words. In this con-
text a number of works have been proposed for the simple
compression [18] or the succinct encoding [11, 10] of sev-
eral classes of planar graphs. More recently, this approach
based on spanning tree decompositions has been further ex-
tended to design a new succinct encoding of labelled planar
graphs [1]. Once again, the main ingredient is the definition
of three traversal orders on the vertices of a triangulation, dir-
ectly based on the properties of Schnyder woods. Finally we
point out that existence of minimal orientations (orientations
without counter-clockwise directed cycles) recently made it
possible to design the first optimal (linear time) encodings
for some popular classes of planar graphs. For the case of
triangulations and 3-connected plane graphs [27, 16] there
exist some bijective correspondences between such graphs
and some special classes of plane trees, which give nice com-
binatorial interpretations of enumerative formulas originally
found by Tutte [32]. Very few works have been proposed
for dealing with higher genus surface graphs (corresponding
to manifold meshes): this is due to the strong combinatorial
properties involved in the planar case. Nevertheless, the to-
pological approach used by Edgebreaker (using at most 3.67
bits per vertex in the planar case) has been successfully ad-
apted to deal with triangulated surfaces having arbitrary to-
pology: orientable manifold with handles [24] and also mul-
tiple boundaries [23]. Using a different approach, based on
a partitioning scheme and a multi-level hierarchical repres-
entation [8], it is also possible to obtain an encoding of a
triangulation of fixed genus g, having f faces and n vertices,
requiring 2.175f +O(g log f)+o(f) bits (or 4.35n+o(gn)
bits) which is optimal for surfaces with a boundary: never-
theless, the amount of additional bits hidden in the sub-linear
o(n) term can be quite large, of order Θ( n

log n log log n).

(b) Contributions

Our first result consists in defining new traversal orders of
the vertices of a triangulation of genus g, as extension of the
canonical orderings defined for planar graphs. We are also
able to provide a generalization of the Schnyder labelling to
the case of higher genus surfaces. The major novelty is in
the way we show that the linear time algorithm designed for
the planar case can be extended in a nontrivial way in or-
der to design a traversal of a genus g surface. This induces a
special edge colouring and orientation that is a natural gen-
eralization of the corresponding planar structure. In particu-
lar, the spanning property characterizing Schnyder wood is
again verified almost everywhere in the genus g case. Our
approach involves implicitly the computing of cut-graphs, as
one would expect. Nevertheless, our strategy is really differ-
ent from the one based on planarizing procedures: even if
our cut-graphs and non-trivial cycles can have arbitrary size,
we show that it is always possible to propagate the spanning
condition of Schnyder woods even along this cuts in a coher-
ent and natural manner. This property, and in particular the
fact the there are only few exceptions to the spanning con-
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Figure 2: (a) A rooted planar triangulation, (b) endowed with a Schnyder wood (b). (c) The local condition of Schnyder woods.

dition, allow us to characterize our graph decomposition in
term of one-face maps of genus g (a natural generalization of
plane trees). We think that this work is a first step in the at-
tempt of generalizing the properties of Schnyder woods and
more generally α-orientations (orientations with prescribed
out-degrees) to other interesting classes of graphs with no
spherical topology.

2 Preliminaries
(a) Graphs on surfaces.

In this work we consider discrete surfaces such as tri-
angular meshes, and we consider only the topological in-
formation specific to such a surface, i.e., the incidences ver-
tices/edges/faces. All discrete surfaces we consider can be
precisely formalised with the concept of map. A map is a
graph embedded on a surface S such that the areas delim-
ited by the graph, called the faces of the map, are topological
disks. In the following the maps considered have neither loop
nor multiple edges, which means that the embedded graphs
are simple. Of particular for us are maps of genus g with all
faces of degree 3, we call such a map a triangulated surfaces
of genus g. These are the combinatorial part of triangular
meshes of a surface of genus g. Given a surface S, we refer
to its primal graph (or 1-skeleton) as the underlying graph
consisting of its edges and vertices. The dual graph of S is
defined as the graph having the faces as nodes and whose
edges correspond to pairs of adjacent faces in S. Given a
map M on a surface S, a cut graph of M is a subgraph of
M whose induced embedding on S defines a one-face map.
If S is cut along such a submap Gc, the surface obtained
is equivalent to a topological disk; the boundary of the disk
contains each edge of Gc twice, and the original surface can
be obtained by identifying and gluing together these pairs of
edges, which defines a so-called polygonal scheme of the sur-
face S. For a detailed presentation of the topological proper-
ties of graphs on surfaces we refer to [25].

(b) Schnyder woods for Plane Triangulations

Let us first recall the definition of Schnyder woods for
plane triangulations, which we will later generalize to higher
genus. While the definition is given in terms of local condi-
tions, the main structural property is more global, namely a
partition of the edges into 3 (essentially) spanning trees.

Definition 1 ([30]) Let T be a plane triangulation, and de-
note by v0, v1, vn−1 the vertices of the outer face in cw order;
we denote by E the set of edges of T except those three incid-
ent to the outer face. A Schnyder wood of T is an orientation
and labelling, with label in {0, 1, 2} of the edges in E so as
to satisfy the following conditions:

– root face condition: the edges incident to the vertices
v0, v1, vn−1 are all ingoing and are respectively of
colour 0, 1, and 2.

– local condition: For each vertex v not incident to the
root face, the edges incident to v in ccw order are:
one outgoing edge coloured 0, zero or more incoming
edges coloured 2, one outgoing edge coloured 1, zero
or more incoming edges coloured 0, one outgoing edge
coloured 2, and zero or more incoming edges coloured
1, which we write concisely as:
(Seq(In1), Out0, Seq(In2),Out1,Seq(In0), Out2).

A fundamental property of Schnyder woods [30] is the fol-
lowing

Fact 1 Each plane triangulation T admits a Schnyder wood.
Given a Schnyder wood on T , the three oriented graphs T0,
T1, T2 induced by the edges of colour 0, 1, 2 are trees that
span all inner vertices and are naturally rooted at v0, v1, and
vn−1, respectively.

3 Higher genus triangulations
(a) Generalized Schnyder Woods

As done in previous works considering the extension
of Schnyder woods to other classes of (not triangulated)
planar graphs [14, 27], one main contribution is to propose
a new generalized version of Schnyder woods to genus g
triangulations (see Figure 3 for an example).

Definition 2 Consider a triangulated surface S of genus
g, having n vertices and a root face (v0, v1, vn−1); let E
be the the set of edges of S except those three incident to
the root face. A genus-g Schnyder wood on the surface S
is a partition of E into a set of normal edges and a set
Es = {e1, e2, . . . , e2g} of 2g special edges considered as
fat, i.e., made of two parallel edges. In addition, each edge,
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Figure 3: (a) A face-rooted triangulated surface S of genus 1 endowed with a g-Schnyder wood. (b) The local condition for vertices incident
to special edges.

a normal edge or one of the two edges of a special edge, is
simply oriented and has a label in {0, 1, 2}, so as to satisfy
the following conditions:

– root face condition: All edges incident to v0, v1, and
vn−1 are ingoing with colour 0, 1, and 2, respectively.

– local condition for vertices not incident to special
edges: for every vertex v ∈ S \ ({v0, v1, vn−1} not
incident to any special edge, the edges incident to v in
ccw order are, as in the planar case, of the form:

(Seq(In1),Out0,Seq(In2), Out1, Seq(In0), Out2).

– local condition for vertices incident to special edges:
A vertex v incident to k ≥ 1 special edges has exactly
one outgoing edge in colour 2. Consider the k + 1
sectors around v delimited by the k special edges and
the outgoing edge in colour 2. Then in each sector, the
edges occur as follows in cw order:

Seq(In1), Out0, Seq(In2), Out1,Seq(In0).

The edge-based characterization of a triangulated surface
proposed above has some advantages that make it a natural
generalization of the planar definition. As one would expect,
the planar and the genus g definition do coincides when
considering planar triangulations. Second we observe that
the local condition is again true almost everywhere (except
the few vertices lying in Es): in particular almost all the
vertices have out-degree 3, which makes the g-Schnyder
woods a good characterization of the local planarity of a
bounded genus surface. Finally, we point out that the local
condition above leads to graph decompositions expressed in
term of one-face maps having genus g, which are the natural
generalization of plane spanning trees (see Theorem 8 and
the remark after).

(b) Handle operators: notations and definitions
Following the approach suggested in [24], based on

Handlebody theory for surfaces, we design new traversal
strategy for higher genus surfaces: as in the planar case, our
strategy consists in conquering the whole grap increment-
ally, face by face, using a vertex-based operator (conquer)
and two new operators (split and merge) designed to rep-
resent the handle attachments. We start by setting some nota-
tions and definitions. We consider a triangulated surfaces S
having genus g and n vertices. We denote by Sout (Sin)
the embedded subgraph of S induced by the face already
conquered (not yet conquered, respectively). Sout is a face-
connected map of genus g having b ≥ 1 boundaries, each
boundary being a simple cycle Ci, i ∈ [1..b]. We define
∂Sin := ∪b

i=1Ci as the overall border between Sin and
Sout.

Handle operator of first type.
Definition 3 A chordal edge is an edge of Sout\∂Sin whose
two extremities are on ∂Sin. A boundary vertex w ∈ Ci is
free if w is not incident to a chordal edge e.

We can now introduce the first operator, called conquer,
which adds a free vertex w with all its incident edges and
faces to Sin. More precisely, the conquest or removal of a
vertex w consists in attaching a set of triangles to Sin as
follows (see the first picture in Figure 4):

• conquer(w), with w a free vertex: Update the
conquered area, by transfering from Sout to Sin all faces
incident to w that were not yet in Sin. The vertices and
edges of Sout (Sin) are naturally updated as those vertices
and edges incident to the faces of Sout (Sin, respectively).

This operation corresponds to a handle operator of type 1
(see [24]), not modifying the topology of Sin.

Handle operators of second type.
Consider a triangulated surface S of genus g and a col-

lection of b cycles {Ci}i delimiting a face-connected map
Sout. A chordal edge e for Sout is said to be nonseparating
if Sout is not disconnected when cutting along e. A chordal

The corresponding work was published in the proceedings of the Symposium on Computational Geometry, pp. 311-319, ACM Press, 2008.
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Figure 4: Illustrated on a toroidal graph, from left to right, a conquer operation, a contractible chordal edge, a split edge, and a merge
edge.

edge whose two extremities are in the same cycle Ci is called
a splitting chordal edge. For such an edge, we define C ′ and
C ′′ as the two cycles formed by Ci + e. Then e is said to be
contractible if either C ′ or C ′′ is contractible

Definition 4 (split edge) A split edge for the area Sout is a
nonseparating splitting chordal edge.

It is easy to see that the removal of a split edge e produces
a face-connected map Sout\{e} with b+1 boundaries, hence
having Euler characteristic χ′ = 2 − 2g − (b + 1) = χ − 1.

Definition 5 (merge edge) A merge edge for the area Sout

is a nonseparating chordal edge e having its two extremities
on two distinct cycles Ci and Cj , i &= j.

This time the removal of the edge e produces a face-
connected map Sout \ e with b− 1 boundaries, hence having
Euler characteristic χ′ = 2 − 2g − (b − 1) = χ + 1.

We are now able to define two new operators to per-
form handle attachments. The split and merge operat-
ors defined below are (the inverse of) handle operators of
type 1: they are designed to identify boundary vertices ly-
ing on distinct cycles. Intuitively, the split operator splits
a boundary curve into two distinct components, thereby in-
creasing the number of boundaries of ∂Sin by 1; while a
merge operator merges two boundaries, thereby decreasing
the the number of boundaries of ∂Sin by 1.

Let S be a triangulated surface of genus g and let Ci, i ∈
[1..b] be a collection of b cycles delimiting a face-connected
map Sout. Given a split edge e = (u,w) having its extremit-
ies on a cycle C, the operator split(e) produces the split-
ting of C = {v0, v1, . . . , vk} (with u = vi1 and w = vi2 ,
for some indices i1 < i2 ≤ k) into two new cycles C ′, C ′′.
More precisely C ′ is the new simple cycle defined by the set
of vertices {v0, v1, . . . , v′i1 , v

′
i2 , vi2+1, . . . , vk−1, vk}, where

v′
i1 and v′

i2 are copies of the vertices v1 and v2. In similar
way, a new cycle C ′′ is created by considering two duplic-
ated vertices v′′i1 and vi2 (copies of vi1 and vi2 ) and the list
of vertices {v′′i1 , v

′′
i2 , vi2 + 1, . . . , vi1 − 1}.

A merge operation can be performed in a similar
way, on a given merge edge e = (v′

i1 , v
′′
i2) whose ex-

tremities belong to different boundaries C ′ and C ′′,

and produces a new simple cycle C containing two
copies of v′

i1 and v′′
i2 and all the vertices in C ′ and

C ′′. More precisely, denoting by {v′0, . . . , v′k′} the set
of vertices defining C ′ and {v′′0 , . . . , v′′k′′} the ver-
tices of C ′′, the new simple cycle C is defined by
{v′0, . . . , v′i2 , v

′′
i2 , v

′′
i2+1, . . . , v

′′
k′′ , v′

0, . . . , v
′′
i2 , v

′
i1 , v

′
i1+1, . . . , v

′
k′}

The edges involved in the merge/split operations are re-
spectively called merge edges and split edges. These will be
exactly the special edges of the genus g Schnyder wood to
be computed by our traversal algorithm The vertices incident
to merge or split edges are called multiple vertices, as each
merge/split operation results in considering such a vertex as
duplicated.

(c) Computing a Schnyder wood of a planar triangula-
tion

In this section we briefly review a well known linear
time algorithm designed for computing a Schnyder wood
of a planar triangulation, following the presentation by
Brehm [6]. Once defined the conquer operation, we can
associate to it a simple rule for colouring and orienting the
edges incident to a vertex conquered:

• colorient(w): orient outward of v the two edges
connecting v to its two neighbours on ∂Sin; assign color
0 (1) to the edge connected to the left (right, respectively)
neighbour, looking toward Sout. Orient toward v and color 2
all edges incident to v in Sout\∂Sin.

We can now formulate the algorithm for computing a
Schnyder wood as a sequence of n − 2 conquer and
colorient operations, following a simple and elegant
presentation adopted by Brehm [6]. Given a plane triangu-
lation T with outer face {v0, v1, vn−1} we start with Sin

—the set of visited vertices— initialized to {v0, v1, vn−1},
and with ∂Sin —the border of Sin— initialized to be the
contour of the outer face.
COMPUTESCHNYDERPLANAR(T ) (T a plane triangula-
tion)
while C &= {v0, v1}
Choose a free vertex v on C;
conquer(v); colorient(v);

end while
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Figure 5: Some steps of the algorithm that computes a Schnyder wood of a planar triangulation T (rooted at (v0, v1)). The traversal is
performed as a sequence of conquer operations on free vertices: edges in Sout (dark region) are oriented and directed according to the
Schnyder rule.

The correctness and termination of the traversal algorithm
above is based on the fundamental property that a triangu-
lated topological disk always has on its boundary a vertex
not incident to any internal chord.

One major advantage of computing a Schnyder wood in
an incremental way is that we are able to put in evidence
some invariants, which remain satisfied at each step of the
algorithm:

– for each vertex v ∈ Sin, all edges incident to v are
coloured and directed in such a way that the Schnyder
rule is always satisfied;

– no edge in Sout (the not visited region) is coloured or
oriented;

– every boundary node v ∈ C \ {v0, v1} has exactly one
outgoing edge lying in Sin and having colour 2. All
other possibly existing edges lying in Sin which are
incident to v verify the Schnyder local condition (see
local condition in Definition 1).

Using these invariants that are illustrated in the two first
pictures of Figure 7, it is straightforward to prove the follow-
ing lemma (see [6] for a detailed presentation):

Lemma 6 Given a planar triangulation T with outer face
(v0, v1, vn−1) the algorithm COMPUTESCHNYDERPLANAR
computes in linear time a Schnyder wood of T .

(d) A new traversal algorithm for genus g surfaces
This section presents our main contribution, an algorithm

for traversing a triangulated surface S of arbitrary genus
g ≥ 0, which extends the algorithm of Brehm in a nat-
ural way. As in the planar case, the traversal is a greedy se-
quence of conquer operations on free vertices, with here
the important difference that these operations are interleaved
with 2g merge/split operations so as to make the genus
of the conquered area increase from 0 to g. We start with
C := {C0} := {(v0, v1, vn−1)}. At the beginning Sin is
a topological disk delimited by the simple cycle C0. As in
the planar case, we make use of the operation conquer(v)
that consists in transferring the (remaining) faces incident
to v from Sout to Sin. Associated with such a conquest is
the colorient rule for coloring and orienting the edges
conquered, as defined in Section 3(c). We also make use of
the handle operations split and merge, as defined in Sec-
tion 3(b).

COMPUTESCHNYDERANYGENUS(S) (S a triangulated
surface of genus g)
while {C} &= {v0, v1}
If there exists a free vertex v on

some Ci ∈ C
conquer(v); colorient(v);

otherwise, if there exists a split
edge e = (u,w) ∈ Sout;

split(u,w); thereby adding a new
cycle C ′ to C;
otherwise, find a merge edge e = (u,w) ∈

Sout;
merge(u,w); thereby removing a cycle

from C;
end while

Figure 6 shows the traversal algorithm executed on a
toroidal triangulation.

Notice the subtlety that, for nonzero genus, the mul-
tiple vertices, i.e., the vertices incident to merge/split edges,
are conquered several times, as illustrated in Figure 7. Pre-
cisely, for a vertex v incident to k ≥ 0 merge/split edges,
conquer(v) occurs k + 1 times.

Lemma 7 For any triangulated surface S of genus g,
COMPUTESCHNYDERANYGENUS(S) terminates, and can
be implemented to run in linear time.

Proof : (Elements of the proof) To prove that the traversal
terminates, it suffices to show that a merge or split operation
is always possible whenever there remain no free vertices on
∂Sin. To prove this, we use the property that a contractible
chord for ∂Sin yields a free vertex on ∂Sin (precisely, a
free vertex in the subpath P of ∂Sin such that P + e is a
contractible cycle). Hence, if there remain no free vertices,
then each vertex on ∂Sin is incident to a chordal edge, and
all chordal edges are noncontractible. In that case, let v be a
vertex on ∂Sin and let e be a chordal edge incident to v. If
e is nonseparating, then we are fine. Otherwise, cutting Sout

along e splits Sout into two smaller surfaces S1 and S2. By
an inductive argument, there exists a nonseparating chordal
edge for ∂S1, so we are done.

Implementing the algorithm to run in linear time requires
some bookkeeping. For this purpose, we maintain the list
of chordal edges for ∂Sin, and, which is more difficult, we

The corresponding work was published in the proceedings of the Symposium on Computational Geometry, pp. 311-319, ACM Press, 2008.
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Figure 7: These pictures show the result of a colorient operation, both in the planar case (left picture) and higher genus case. Any
chordal split or merge edge can be oriented in one or two directions (having possible two colours), depending on the traversal order on its
extremities.

maintain a classification of these chordal edges as contract-
ible, noncontractible separating, split edges, and merge edge.
Such a classification is done by maintaining a spanning cut-
graph Gc for the dual of Sout, such that Gc contains the dual
of all chordal edges; and by maintaining a depth-first-search
spanning tree of Gc so as to test which edges of Gc discon-
nect Gc. All this bookkeeping can be done in amortized lin-
ear cost. !

Theorem 8 Let S be a triangulated surface of
genus g. Then the coloration and orientation of
edges obtained at the end of the traversal proced-
ure COMPUTESCHNYDERANYGENUS(S) is a genus g
Schnyder wood on S. The Schnyder wood thus obtained
has the additional property that the graph T2 formed by
the edges with color 2 is a tree, and the embedded graph
formed by T2 and the 2g special edges is a one-face map;

moreover the embedded graphs T0, T1 formed respectively
by the edges of color 0 and of color 1 are genus g maps with
at most 1 + 2g faces.

Proof : (Elements of the proof) To prove that the combinat-
orial structure obtained by the traversal algorithm is a genus
g Schnyder wood, it suffices to define some invariants that
remain satisfied all along the traversal. We make use of of
the invariants already defined for the planar case, as well as
new invariants relative to multiple vertices, which state that
the local condition for multiple vertices is satisfied for those
in Sin\∂Sin, and is already partially satisfied for those on
∂Sin.

Let us now sketch the proof of the second part of the
theorem, i.e., the additional properties of T0, T1, and T2.
Observe that, by design of the traversal algorithm, T2 is
a connected (embedded) graph spanning all vertices of
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S\{v0, v1}. Moreover, all these vertices have outdegree 1 in
T2, except the root vertex vn−1 that has outdegree 0. Hence,
T2 is a tree spanning the vertices of S\{v0, v1} and rooted at
vn−1. Moreover, the addition of each of the 2g special edges
creates a new fundamental cycle of the surface, so the em-
bedded graph formed by T2 and the 2g special edges is a
one-face map. Concerning the edges of color i ∈ {0, 1}, an
argument based on some topological invariants ensures that
all the faces of the sets Ti are topological disks (hence defin-
ing a map). More precisely, by construction, a conquer op-
eration does not change the topology of Ti, while a split or
merge operation correspond to identify nodes in the three,
which creates (by definition) new non-trivial cycles. Finally,
the bound 1+2g on the number of faces is due to the fact that
each special edge contributes at most by one to the number
of new faces of Ti. !
Remark 1 The properties of T0, T1, T2 stated in Theorem 8
can be considered as extensions of the fundamental property
of planar Schnyder woods, which states that T0, T1, and T2

are plane trees. Figure 8 shows an example in genus 1.

4 Application to encoding triangulated sur-
faces of genus g, via one-face maps
In the planar case, Schnyder woods yield a simple en-

coding procedure for triangulations. From the observation
that the trees T1 and T2 of a Schnyder wood are enough
to recover the whole Schnyder wood (hence, the underly-
ing triangulation as well), the coding word is just made of
the pair (W1,W2) of parenthesis words encoding respect-
ively the trees T1 and T2. Hence, for a triangulation with
n + 3 vertices, the coding word has length 4n. This code is
both simple and quite compact, as the length 4n is not far
from the information-theory lower bound of log2(44/33)n
(log2(44/33) ≈ 3.245), which is attained in the planar case
by a bijective construction due to Poulalhon and Schaef-
fer [27].

Such a bijective construction is still to be found for higher
genus, but we can here at least extend to higher genus the
simple encoding procedure based on Schnyder woods. First,
it is easily checked that a genus g Schnyder wood is re-
covered from the knowledge of the map T1, the plane tree
T2, and the location of the special edges and vertices in T1

and T2. As T1 has at most 1 + 2g faces, it is encoded as the
parenthesis word of a plane spanning tree + O(g) pointers to
encode the edges of T1 not in the spanning tree. All in all,
we obtain the following result:
Proposition 9 A triangulated surface of genus g with n + 3
vertices can be encoded in linear time —via a genus g
Schnyder wood— by two parenthesis words each of length
2n, plus O(g) pointers each of length O(log(n)); so the total
code length is 4n + O(g log(n)). Coding and decoding can
be done in linear time.

We can also design a more sophisticated code that sup-
ports queries: this time we need to encode the three maps Ti

using multiple parenthesis systems (as done in [11, 1]).

Proposition 10 Given S a triangulated surface of genus g
with e edges, there exists a compact representation of S
using asymptotically (2 log2 6) ·e+O(g) bits which answers
queries for vertex adjacency and vertex degree in O(1) time.
Coding and decoding take linear time.

5 Conclusion and perspectives
We have presented a general approach for extending

to higher genus a fundamental combinatorial structure,
Schnyder woods, which is by now a standard tool to handle
planar graphs both structurally and algorithmically. We have
been successful in showing that the definition and several
fundamental combinatorial properties can be extended from
the planar to the genus g case in a natural way. We point out
that our graph traversal procedure induces an ordering for
treating the vertices so as to shell the surface progressively.
Such an ordering is already well known in the planar case
under the name of canonical ordering and has numerous ap-
plications for graph encoding and graph drawing [11, 19]. It
is thus of interest to extend this concept to higher genus. The
only difference is that in the genus g case there is a small
number —at most 2 · 2g— of vertices that might appear sev-
eral times in the ordering; these correspond to the vertices
incident to the 2g special edges (split/merge edges) obtained
during the traversal.

Further extensions. Our approach relies on quite general
topological and combinatorial arguments, so the natural next
step should be to apply our methodology to other interest-
ing classes of graphs (not strictly triangulated), which have
similar characterization in the planar case. Our topological
traversal could be extended to the 3-connected case, corres-
ponding to polygonal meshes of genus g. We point out that
our encoding proposed in Section 4 could take advantage of
the existing compact encodings of planar graphs [11, 10, 18],
using similar parenthesis-based approaches.

Lattice structure. There are a number of deep and interest-
ing questions which our work leaves open. From the com-
binatorial point of view it should be of interest to investigate
whether edge orientations and colourations in genus g have
nice lattice properties, as in the planar case. In particular, the
existence of minimal orientations in the planar case led to a
large number of deep results in areas such as graph drawing,
optimal sampling and coding.

Graph encoding applications In addition to the new tree
decomposition proposed for the higher genus case, one con-
tribution has been to show, from the algorithmic point of
view, that vertex-decomposition based traversal can be per-
formed in linear time for any genus g ≥ 0. In particular, the
linear time complexity of our traversal procedure is due to
the very low complexity, O(1) time, to check that a chordal
edge is noncontractible Thus a “left-most” traversal of the
triangulated surface should be doable in linear time (let us re-
call that a left-most driven traversal returns in the planar case
the minimal orientations mentioned above). This remark, to-
gether with the local properties of genus g Schnyder woods

The corresponding work was published in the proceedings of the Symposium on Computational Geometry, pp. 311-319, ACM Press, 2008.
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Figure 8: A triangulated torus endowed with a Schnyder wood. The black edges form a tree T2, and the addition of the two special edges
yields a one-face map; The embedded graph T0 (blue edges) is a map with 3 faces; and the embedded graph T1 (red edges) is a map with 2
faces.

(Definition 2), suggest the possibility of further nice applic-
ations in graph encoding and sampling (see [16, 27] for the
planar case). More precisely, we conjecture the existence of
correspondences between some special classes of one-face
maps (generalizations of plane trees) having a constant fixed
number of leaves per node (almost everywhere), and the pop-
ular classes of triangulations and 3-connected maps of genus
g: this would lead to the first (linear time) optimal compres-
sion schemes and succinct encodings for these class of ob-
jects.
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