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Abstract. Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a
decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed
orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus g and
compute a so-called g-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation
of genus g and n vertices in 4n + O(g log(n)) bits. This matches the worst-case encoding rate of Edgebreaker
in positive genus. All the algorithms presented here have execution time O((n + g)g), hence are linear when the
genus is fixed.
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Figure 1: (a) A rooted planar triangulation, (b) endowed with a Schnyder wood. (c) The local condition of Schnyder woods.

1 Introduction
Schnyder woods are a nice and deep combinatorial struc-

ture to finely capture the notion of planarity of a graph. They
are named after W. Schnyder, who introduced these struc-
tures under the name of realizers and derived as main ap-
plications a new planarity criterion in terms of poset dimen-
sions [34], as well as a very elegant and simple straight-
line drawing algorithm [35]. There are several equivalent
formulations of Schnyder woods, either in terms of angle
labeling (Schnyder labeling) or edge coloring and orienta-
tion or in terms of orientations with prescribed out-degrees.
The most classical formulation is for the family of max-
imal plane graphs, i.e., plane triangulations, yielding the fol-
lowing striking property: the internal edges of a triangu-
lation can be partitioned into three trees that span all in-
ner vertices and are rooted respectively at each of the three
vertices incident to the outer face. Schnyder woods, and
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more generally α-orientations, received a great deal of at-
tention [35, 17, 23, 20]. From the combinatorial point of
view, the set of Schnyder woods of a fixed triangulation
has an interesting lattice structure [7, 3, 18, 15, 31], and
the nice characterization in terms of spanning trees mo-
tivated a large number of applications in several domains
such as graph drawing [35, 23], graph coding and random
sampling [14, 22, 4, 32, 19, 6, 10, 2]. Previous work fo-
cused mainly on the application and extension of the combin-
atorial properties of Schnyder woods to 3-connected plane
graphs [17, 23]. In this article, we focus on triangulations,
but, which is new, we consider triangulations in arbitrary
genus.

(a) Related Work
Vertex spanning tree decompositions

In the area of tree decompositions of graphs there exist
some works dealing with the higher genus case. We mention
one recent attempt to generalize Schnyder woods to the case
of toroidal graphs [5] (genus 1 surfaces), based on a spe-
cial planarization procedure. In the genus 1 case it is actu-
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ally possible to choose two adjacent non-contractible cycles,
defining a so-called tambourine, whose removal makes the
graph planar; the graph obtained can thus be endowed with
a Schnyder wood. In the triangular case this approach yields
a process for computing a partition of the edges into three
edge-disjoint spanning trees plus at most 3 edges. Unfortu-
nately, as pointed out by the authors, the local conditions of
Schnyder woods are possibly not satisfied for a large number
of vertices, because the size of the tambourine might be ar-
bitrary large. Moreover, it is not clear how to generalize the
method to genus g ≥ 2.

Planarizing graphs on surfaces

A possible solution to deal with Schnyder woods (de-
signed originally for plane triangulations) in higher genus
would consist in performing a planarization of the surface.
Actually, given a triangulation T with n vertices on a sur-
face S of genus g, one can compute a cut-graph or a col-
lection of 2g non-trivial cycles, whose removal makes S
a topological disk (possibly with boundaries). There is a
number of recent contributions [8, 42, 16, 25, 26, 41] for
the efficient computation of cut-graphs, optimal (canonical)
polygonal schemas and shortest non-trivial cycles. For ex-
ample some work makes it possible to compute polygonal
schemas in time O(gn) for a triangulated orientable mani-
fold [26, 41]. Nevertheless we point out that a planarization
approach would not be best suited for our purpose. From
the combinatorial point of view this would imply to deal
with boundaries of arbitrary size (arising from the planariza-
tion procedure), as non-trivial cycles can be of size Ω(

√
n),

and cut-graphs have size O(gn). Moreover, from the al-
gorithmic complexity point of view, the most efficient pro-
cedures for computing small non-trivial cycles [8, 25] re-
quire more than linear time, the best known bound being
currently of O(n log n) time.

Schnyder trees and graph encoding

One of our main motivations for generalizing Schnyder
woods to higher genus is the great number of possible ap-
plications in graph encoding and mesh compression that take
advantage of spanning tree decompositions [24, 33, 39], and
in particular of the ones underlying Schnyder woods (and re-
lated extensions) for planar graphs [2, 13, 14, 19, 22, 32].
The combinatorial properties of Schnyder woods and the re-
lated characterizations (canonical orderings [23]) for planar
graphs yield efficient procedures for encoding tree structures
based on multiple parenthesis words. In this context a num-
ber of methods have been proposed for the simple compres-
sion [22] or the succinct encoding [14, 13] of several classes
of planar graphs. More recently, this approach based on
spanning tree decompositions has been further extended to
design a new succinct encoding of labeled planar graphs [2].
Once again, the main ingredient is the definition of three
traversal orders on the vertices of a triangulation, directly
based on the properties of Schnyder woods. Finally we point
out that the existence of minimal orientations (orientations

without counterclockwise directed cycles) recently made it
possible to design the first optimal (linear time) encoding
for triangulations and 3-connected plane graphs [19, 32],
based on bijective correspondences with families of plane
trees. Such bijective constructions, originally introduced by
Schaeffer [36], have been applied to many families of plane
graphs (also called planar maps) and give combinatorial in-
terpretations of enumerative formulas originally found by
Tutte [40]. In recent work, some of these bijections are exten-
ded to higher genus [12, 11], but a bijective construction for
triangulations or 3-connected plane graphs in higher genus
is not yet known. The difficulty of extending combinatorial
constructions to higher genus is due the fact that some fun-
damental properties, such as the Jordan curve theorem, hold
only in the planar case (genus 0). Nevertheless, the topolo-
gical approach used by Edgebreaker (using at most 3.67 bits
per vertex in the planar case) has been successfully adap-
ted to deal with triangulated surfaces having arbitrary topo-
logy: orientable manifolds with handles [29] and also mul-
tiple boundaries [28]. Using a different approach, based on a
partitioning scheme and a multi-level hierarchical represent-
ation [9], it is also possible to encode a genus g triangulation
with f faces and n vertices using 2.175f +O(g log f)+o(f)
bits (or 4.35n + o(gn) bits) which is asymptotically optimal
for surfaces with a boundary: nevertheless, the amount of ad-
ditional bits hidden in the sub-linear o(n) term can be quite
large, of order Θ( n

log n log log n).

(b) Contributions

Our contributions start in Section 4, where we give a
definition of Schnyder woods for triangulations of arbit-
rary genus, which extends the definition of Schnyder for
plane triangulations. Then we describe a traversal algorithm
to actually compute such a so-called g-Schnyder wood for
any triangulation of genus g, in time O((n + g)g). Again
our procedure extends to any genus the known procedures
to traverse a plane triangulation and compute a Schnyder
wood on the way [34, 7]. Finally, in Section 5, we show
that a g-Schnyder wood yields an algorithm to efficiently
encode a triangulation of genus g and with n vertices, in
4n+O(g log(n)) bits. This is again an extension to arbitrary
genus of a procedure described in [22, 1] to encode plane
triangulations. Our result matches the same worst-case en-
coding rate as Edgebreaker [33], which uses at most 3.67n
bits in the planar case, but requires up to 4n+O(g log n) bits
for meshes with positive genus [29, 28]. As far as we know
this is the best known rate for linear time (in fixed genus)
encoding of triangulations with positive genus g, quite close
to the information theory bound of 3.24n + Ω(g log n) bits
(a more detailed discussion is given in Section 5).

2 Schnyder woods for Plane Triangulations
(a) Definition

A plane triangulation T is a graph with no loops nor
multiple edges and embedded in the plane such that all faces
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Figure 2: (a) A chordal edge and a free vertex, (b) the invariants valid in the planar case, (c) the result of a vertex conquest.

have degree 3. The edges and vertices of T incident to the
outer face are called the outer edges and outer vertices. The
other ones are called the inner edges and inner vertices.

We recall here the definition of Schnyder woods for
plane triangulations, which we will later generalize to higher
genus. While the definition is given in terms of local condi-
tions, the main structural property, as stated in Fact 1, is more
global, namely a partition of the inner edges into 3 trees, see
Figure 1 1.

Definition 1 ([35]) Let T be a plane triangulation, and de-
note by v0, v1, v2 the outer vertices in counterclockwise
(ccw) order around the outer face. A Schnyder wood of T
is an orientation and labeling, with labels in {0, 1, 2} of the
inner edges of T so as to satisfy the following conditions:

– root-face condition: for i ∈ {0, 1, 2}, the inner edges
incident to the outer vertex vi are all ingoing of color
i.

– local condition for inner vertices: For each inner
vertex v, the edges incident to v in counterclockwise
(ccw) order are: one outgoing edge colored 2, zero
or more incoming edges colored 1, one outgoing edge
colored 0, zero or more incoming edges colored 2, one
outgoing edge colored 1, and zero or more incoming
edges colored 0, which we write concisely as

(Seq(In1),Out0,Seq(In2), Out1, Seq(In0), Out2).

Fact 1 ([35]) Each plane triangulation T admits a Schnyder
wood. Given a Schnyder wood on T , the three directed
graphs T0, T1, T2 induced by the edges of color 0, 1, 2 are
trees that span all inner vertices and are naturally rooted at
v0, v1, and v2, respectively.

1In the figures, the edges of color 0 are solid, the edges of color 1 are
dotted, and the edges of color 2 are dashed.

(b) Computation of Schnyder woods for plane triangula-
tions

In this section we briefly review a well-known linear time
algorithm designed for computing a Schnyder wood of a
plane triangulation, following the presentation by Brehm [7].
It is convenient here (in view of the generalization to higher
genus) to consider a plane triangulation as embedded on
the sphere S, with a marked face that plays the role of the
outer face. The procedure consists in growing a region C,
called the conquered region, delimited by a simple cycle
B (B is considered as part of C) 2. Initially C consists of
the root-face (as well as its incident edges and vertices). A
chordal edge is defined as an edge not in C but with its two
extremities on B. A free vertex is a vertex of B \ {v0, v1}
with no incident chordal edges. One defines the conquest of
such a vertex v as the operation of transferring to C all faces
incident to v, as well as the edges and vertices incident to
these faces; the boundary B of C is easily verified to remain
a simple cycle. Associated with a conquest is a simple rule to
color and orient the edges incident to v in the exterior region.
Let vr be the right neighbor and vl the left neighbor of v on
B, looking toward T \C (in the figures, toward the shaded
area). Orient outward of v the two edges (v, vr) and (v, vl);
assign color 0 to (v, vr) and color 1 to (v, vl). Orient toward
v and color 2 all edges exterior to C incident to v (these
edges are between (v, vr) and (v, vl) in ccw order around v).

The algorithm for computing a Schnyder wood of a plane
triangulation with n vertices is a sequence of n−2 conquests
of free vertices, together with the operations of coloring
and orienting the incident edges (the initial conquest, always
applied to the vertex v2, is a bit special: the edges going to the
right and left neighbors are not colored nor oriented, since
these are outer edges).

The correctness and termination of the traversal algorithm
described above is based on the following fundamental prop-
erty illustrated in Figure 3. A planar chord diagram (i.e., a
topological disk with chordal edges that do not cross each
other) with root-edge {v0, v1} always has on its boundary a
vertex v /∈ {v0, v1} not incident to any chord, see for in-
stance [7] for a detailed proof.

One proves that the structure computed by the traversal

2In the figures, the faces of T \C are shaded.
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v0 v1
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Figure 3: In a planar chord-diagram with a root-edge e =
{v0, v1}, there must be a vertex v not incident to e nor to any chord.

algorithm is a Schnyder wood by considering some invari-
ants (see Figure 2):

– the edges that are already colored and directed are the
inner edges of C\B.

– for each inner vertex v of C\B, all edges incident
to v are colored and directed in such a way that the
Schnyder rule (Figure 1(c)) is satisfied;

– every inner vertex v ∈ B has exactly one outgoing
edge e in C\B; and this edge has color 2. Let vr be
the right neighbor and vl the left neighbor of v on B,
looking toward T \C. Then all edges strictly between
(v, vr) and e in cw order around v are ingoing of color
1 and all edges strictly between e and (v, vl) in cw
order around v are ingoing of color 0.

These invariants are easily checked to be satisfied all
along the procedure (see [7] for a detailed presentation),
which yields the following result:

Lemma 2 (Brehm [7]) Given a planar triangulation T with
outer face (v0, v1, v2) the traversal algorithm described
above computes a Schnyder wood of T and can be imple-
mented to run in time O(n).

Note that a triangulation T can have many different
Schnyder woods (as shown by Brehm [7], the set of Schnyder
woods of T forms a distributive lattice). Furthermore, the
same Schnyder wood can be obtained from many different
total orders on vertices for the above-described traversal pro-
cedure. Such total orders on the vertices of T are called ca-
nonical orderings [23].

3 Concepts of topological graph theory
Before generalizing the definition of Schnyder woods and

computation methods to any genus, we need to define the
necessary concepts of topological graph theory. The graphs
considered here are allowed to have loops and multiple
edges.

(a) Graphs on surfaces, maps, subcomplexes.

A graph on a surface M is a graph G = (V,E) em-
bedded without edge-crossings on a closed orientable sur-
face S (such a surface is specified by its genus g, i.e., the
number of handles). If the components of S\G are homeo-
morphic to topological disks, then M is called a (topological)
map, which implies that G is a connected graph. A subgraph
G′ = (V ′, E′) of G is called cellular if the components of
S\G′ are homeomorphic to topological disks, i.e., the graph
G′ equipped with the embedding inherited from G is a map.
A subgraph G′ = (V ′, E′) is spanning if V ′ = V . A cut-
graph of M is a spanning cellular subgraph G′ = (V ′, E′)
with a unique face, i.e., S\G′ is homeomorphic to a topolo-
gical disk.

Note that a map has more structure than a graph, since
the edges around each vertex are in a certain cyclic order.
In addition, a map has faces (the components of M\S). By
the Euler relation, the genus g of the surface on which M is
embedded satisfies

2 − 2g = χ(M) = |V |−| E| + |F |,

where χ(M) is the Euler characteristic of M , and V , E,
and F are the sets of vertices, edges, and faces in M . It is
convenient to view each edge e = {u, v} ∈ E as made
of two brins (or half-edges), originating respectively at u
and at v, the two brins meeting in the middle of e; the two
brins of e are said to be opposite to each other. (Brins are
also called darts in the literature). The follower of a brin
h is the next brin after h in clockwise order (shortly cw)
around the origin v of h. A facial walk is a cyclic sequence
(b1, . . . , bk), where for i ∈ [1..k], bi+1 (with the convention
that bk+1 = b1) is the opposite brin of the follower of bi. A
facial walk corresponds to a walk along the boundary of a
face f of M in ccw order (i.e., with the interior of f on the
left).

The face incident to a brin h is defined as the face on the
left of h when one looks toward the origin of h. Note that to
a brin h of M corresponds a corner of M , which is the pair
c = (h, h′) where h′ is the follower of h. The vertex incident
to c is defined as the common origin of h and h′, and the
face f incident to c is defined as the face of M in the sector
delimited by h and h′ (so f coincides with the face incident
to h).

Maps can also be defined in a combinatorial way. A com-
binatorial map M is a connected graph G = (V, E) where
one specifies a cyclic order for the set of brins (half-edges)
around each vertex. One defines facial walks of a combin-
atorial map as above (note that the above definition of a
facial walk as a certain cyclic sequence of brins does not
need an embedding, it just requires the cyclic cw order of the
brins around each vertex). One obtains from the combinat-
orial map a topological map by attaching a topological disk
at each facial walk; and the genus g of the corresponding
surface satisfies again 2 − 2g = |V | − |E| + |F |, with F

The corresponding work was published in Discrete and Computational Geometry, volume xx, number xx, pp. . Springer, 2009.
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vertex conquest
P

P
′

Figure 4: The effect of a conquest on D is to delete a set of vertices v1, . . . , vr together with their incident edges, denoted by P = v1 →
v2 . . . vr−1 → vr . Call Dold the complex D before conquest and call Dnew the complex D after conquest. As shown in the right picture,
there is a neighboring path P ′ disjoint from P . Thanks to P ′, any path in Dold starting and ending out of P and passing possibly by vertices
and edges of P can be modified into a path with same starting and ending vertices but not passing by P . Therefore Dnew is connected.

the number of topological disks (facial walks), which are the
faces of the obtained topological map [30].

In this article we will focus on triangulations; precisely
a triangulation is a map with no loops nor multiple edges
and with all faces of degree 3 (each face has 3 edges on its
contour).

Duality. The dual of a (topological) map M is the map M∗

on the same surface defined as follows: M∗ has a vertex
in each face of M , and each edge e of M gives rise to a
dual edge e∗ in M∗, which connects the vertices of M∗

corresponding to the faces of M sharing e. Note that the
adjacencies between the vertices of M∗ correspond to the
adjacencies between the faces of M . Duality for edges can
be refined into duality for brins: the dual of a brin h of an
edge e is the brin of e∗ originating from the face incident to
h (the face on the left of h when looking toward the origin of
h). Note that the dual of the dual of a brin h is the opposite
brin of h.

Subcomplexes. Given a map M on a surface S, with V ,
E, and F the sets of vertices, edges, and faces of M , a
subcomplex C = (V ′, E′, F ′) of M is given by subsets
V ′ ⊂ V , E′ ⊂ E, F ′ ⊂ F such that the edges around
any face of F ′ are in E′ and the extremities of any edge in
E′ are in V ′. The subcomplex S is called connected if the
graph G′ = (V ′, E′) is connected. The Euler characteristic
of a connected subcomplex S is defined as

χ(S) := |V ′|−| E′| + |F ′|. (1)
Boundary walks and boundary corners for subcomplexes.

Note that a connected subcomplex C of M naturally inherits
from M the structure of a combinatorial map (the brins for
edges in E′ inherit a cw cyclic order around each vertex of
V ′). Hence one can also define facial walks for C. Such a
facial walk is called a boundary walk for C if it does not
correspond to a facial walk of a face in F ′. A boundary brin is
a brin h in a boundary walk, and the corresponding boundary
corner of C b = (h, h′) is the pair formed by h and the next
brin h′ in C in cw order around the origin v of h. Note that a
boundary corner of C is not a corner of M if there are brins
h1, . . . , hk of M\C in cw order strictly between h and h′.
These brins are called the exterior brins incident to b. By
extension, the edges to which these brins belong are called
the exterior edges incident to b. The faces of M incident to
v in cw order between h and h′ are called the exterior faces
incident to b. Recall that a facial walk is classically encoded
by the list of brins (b1, . . . , bk), where bi+1 is the opposite

brin of the follower b′i of bi (for a subcomplex C, it means
that b′i is the next brin in C after bi in cw order around the
origin of bi). For a boundary walk, one also adds to the list
of brins the exterior brins in each corner, that is, one inserts
between bi and bi+1 the ordered list of brins of M that are
strictly between bi and b′i in cw order. The obtained (cyclic)
list is called the complete list of brins for the boundary walk.
In this list the brins b1, . . . , bk are called the boundary brins,
the other ones are called the exterior brins.

The topological map associated with a connected subcom-
plex. The topological map Ĉ associated with C is obtained
by attaching to each of the k boundary walks a topological
disk; therefore χ(Ĉ) = χ(C) + k. The genus g′ of Ĉ, given
by 2 − 2g′ = χ(Ĉ), is at most the genus g of the surface on
which C is embedded. The k faces of Ĉ corresponding to the
added disks are called the boundary faces of Ĉ; by a slight
abuse of terminology, we call these the boundary faces of C.
Note that each boundary walk of C corresponds to a facial
walk for a boundary face of Ĉ.

Duality for subcomplexes. Given C = (V ′, E′, F ′) a sub-
complex of a map M , the complementary dual D of C is
the subcomplex of M∗ formed by the vertices of M∗ dual to
faces in F \F ′, the edges of M∗ dual to edges in E \E′, and
the faces of M∗ dual to vertices in V \ V ′.

Lemma 3 (correspondence between boundary walks)
Let C be a connected subcomplex of a map M such that
the complementary dual complex D is also connected.
For a brin h ∈ M define φ(h) = h∗ if h ∈ C and
φ(h) = opposite(h∗) if h /∈ C.

If L = (h1, . . . , hk) is the complete list of brins of a
boundary walk of C, then Φ(L) := (φ(hk), . . . ,φ(h1)) is
the complete list of brins of a boundary walk of D. The
exterior brins of L correspond to the boundary brins of
Φ(L), and the boundary brins of L correspond to the exterior
brins of Φ(L). Since Φ is involutive, Φ induces a bijection
between the boundary faces of C and the boundary faces of
D.

(b) Handle operators
Following the approach suggested in [29, 27], based on

Handlebody theory for surfaces, we design a new traversal
strategy for higher genus surfaces: as in the planar case, our
strategy consists in conquering the whole graph increment-
ally. We use an operator conquer similar to the conquest
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Figure 5: Illustrated on a toroidal graph, (a) the result of a conquer operation, and a contractible chordal edge (u, w) (in gray); (b) the
result of a split (respectively, merge) operation on a split edge (u, w) (respectively, merge edge (u, w)).

of a free vertex used in the planar case, as well as two new
operators—split and merge—designed to represent the
handle attachments that are necessary in higher genus. We
start by setting some notations and definitions. We consider
a genus g triangulation T with n vertices. In addition, we
mark an arbitrary face of T , called the root-face.

The traversal procedure consists in growing a connected
subcomplex of T , denoted C, which is initially equal to the
root-face (together with the edges and vertices of the root-
face); and such that the complementary dual subcomplex,
denoted D, remains connected all along the traversal pro-
cedure.

Handle operator of first type
Definition 4 A chordal edge is an edge of T \ C whose two
brins h1 and h2 are exterior brins of some boundary corners
b1 and b2. A boundary corner b of C is free if no exterior
edge of b is a chordal edge.

We can now introduce the first operator, called conquer
(see Figure 5). Given b a free boundary corner of C,
conquer(b) consists in adding to C all exterior faces of T
incident to b, as well as the edges and vertices incident to
these faces.

The effect of the conquest on D is shown in Figure 4; note
that D remains connected after the conquest. In addition,
the number of boundary faces of C is unchanged, as well
as the Euler characteristic (indeed, if the number of faces
transferred to C is k, then the number of vertices transferred
to C is k − 1 and the number of edges transferred to C is
2k − 1). Therefore a conquer operation does not modify the
topology of C.

Handle operators of second type

A chordal edge e for C is said to be separating if its dual
edge e∗ is a bridge of D (a bridge is an edge whose removal
disconnects the graph). Otherwise it is called non-separating.

Definition 5 (split edge) A split edge for C is a non-
separating chordal edge e such that the two brins of e are
incident to boundary corners in the same boundary face of
C.

According to the equivalence stated in Lemma 3, a split edge
e is such that e∗ is not a bridge but has the same boundary
face (of D) on both sides.

We can now define the second operation, split, related
to a split edge e: double e into two parallel edges delimit-
ing a face f of degree 2, and add the face f and the two
edges representing e to C. Note that D remains connected
since e∗ is not a bridge. When doing the split operation, the
boundary walk at the two extremities of e is split into two
boundary walks. Therefore the number of boundary faces of
C increases by 1. Note that the Euler characteristic χ(C)
decreases by 1; indeed in C the number of vertices is un-
changed, the number of edges increases by 2 (addition of
the split edge, which is doubled) and the number of faces
increases by 1 (addition of the special face). And the Euler
characteristic of the map M associated with C is unchanged
(when including the boundary faces, the number of faces
both increases by 2, as the number of edges), hence the genus
of M is also unchanged.

Definition 6 (merge edge) A merge edge for C is a chordal
edge having its two brins incident to boundary corners in
distinct boundary faces of C.

The corresponding work was published in Discrete and Computational Geometry, volume xx, number xx, pp. . Springer, 2009.
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u

v w

Es = {(u, w), (v, w)} (b)(a)

e

Figure 6: (a) A toroidal triangulation endowed with a g-Schnyder wood (the root-face is dashed). (b) The local condition for an inner vertex
with two special edges (each of which is doubled and delimits a 2-sided face), below are shown the 3 sectors delimited by the special edges
and the outgoing edge of color 2.

According to Lemma 3, if e is a merge edge, the faces of
D on both sides of e∗ are distinct boundary faces, hence e∗

cannot be a bridge of D, i.e., e is non-separating.
We can now define the third operation, merge, related to

a merge edge e: double e into two parallel edges delimiting
a face f of degree 2, and add the face f and the two edges
representing e to C. Note again that D remains connected
since e∗ is not a bridge. When doing a merge operation,
the boundary faces at the two extremities of e are merged
into a single boundary face, so that the number of boundary
faces of C decreases by 1. Similarly as for a split operation,
the Euler characteristic χ(C) decreases by 1 (addition of a
doubled special edge and of one special face); and the Euler
characteristic of the map M associated with C decreases by
2 (when including the boundary faces, the number of faces is
unchanged, and the number of edges increases by 2), hence
the genus of M increases by 1; informally a merge operation
“adds a handle”.

4 Schnyder woods for triangulations of arbit-
rary genus

(a) Definition of Schnyder Woods extended to arbitrary
genus

We give here a definition of Schnyder woods for triangu-
lations that extends to arbitrary genus the definition known
in the planar case, see Figure 6 for an example. We consider
here triangulations of genus g with a marked face, called the
root-face. As in the planar case, the edges and vertices are
called outer or inner whether they are incident to the root-
face or not.

Definition 7 Consider a genus g triangulation T with n ver-
tices, and having a root-face f = (v0, v1, v2) (the vertices
are ordered according to a walk along f with the interior
of f on the right). Let E be the set of inner edges of T . A
g-Schnyder wood of T (also called genus g Schnyder wood)

is a partition of E into a set of normal edges and a set Es

of special edges considered as fat, i.e., each special edge is
doubled into two edges delimiting a face of degree 2, called
a special face. In addition, each edge, a normal edge or one
of the two edges of a special edge, is directed and has a label
(also called color) in {0, 1, 2}, so as to satisfy the following
conditions:

– root-face condition: The outer vertex v2 is incident to
no special edges. All inner edges incident to v2 are
ingoing of color 2.

Let k ≥ 0 be the number of special edges incident
to v0 (each of these special edges is doubled), and
let L = (e1, f1, e2, f2, . . . , er, fr) be the cyclic list
of edges and faces incident to v0 in ccw order (fi is
the face incident to v0 between ei and e(i+1) mod r).
A sector of v is a maximal interval of L that does
not contain a special face nor the root-face. Note that
there are k + 1 sectors, which are disjoint; the one
containing the edge {v0, v1} is called the root-sector.

Then, all inner edges in the root-sector are ingoing of
color 0. In all the other k sectors, the edges in ccw
order are of the form

Seq(In1),Out0, Seq(In2), Out1, Seq(In0).

The definitions of sectors and conditions are the same
for v1, except that all edges in the root-sector are
ingoing of color 1.

– local condition for inner vertices: Every inner vertex
v has exactly one outgoing edge e of color 2. Let k
be the number of special edges incident to v (each of
these edges is doubled and delimits a special face),
and let L = (e1, f1, e2, f2, . . . , er, fr) be the cyclic
list of edges and faces incident to v in ccw order. A
sector of v is a maximal interval of L that does not

Preprint MAT. 4/09, communicated on March 30th, 2009 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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contain a special face nor the edge e. Note that there
are k + 1 sectors around v, which are disjoint.

Then, in each sector the edges in ccw order are of the
form

Seq(In1), Out0, Seq(In2), Out1,Seq(In0).

– Cut-graph condition: The graph T2 formed by the
edges of color 2 is a tree spanning all vertices except
v0 and v1, and rooted at v2, i.e., all edges of T2

are directed toward v2. The embedded subgraph G2

formed by T2 plus the two edges (v0, v2) and (v1, v2)
plus the special edges (not considered as doubled
here) is a cut-graph of T , which is called the cut-graph
of the Schnyder wood.

(Note that the cut-graph condition forces the number of
special edges to be 2g.)

As an example, Figure 6(a) shows a toroidal triangulation
endowed with a g-Schnyder wood.

Remark 1. Note that if an inner vertex v is incident to no
special edge, then there is a unique sector around v, which
is formed by all edges incident to v except the outgoing one
of color 2. The local condition above implies that the edges
around v are of the form

(Seq(In1), Out0,Seq(In2),Out1, Seq(In0),Out2),

as in the planar case. Since at most 4g vertices are incident
to special edges, our definition implies that in fixed genus,
almost all inner vertices satisfy the same local condition as
in the planar case. In addition the vertices incident to special
edges satisfy a local condition very similar to the one in the
planar case.

Remark 2. The last condition, stating that T2 is a tree,
is redundant in the planar case (it is implied by the local
conditions) but not in higher genus: one easily finds an
example of structure where all local conditions are satisfied
but the edges of color 2 form many disjoint circuits.

Remark 3. Finally, we point out (see Proposition 14 and
the remark after) that g-Schnyder woods (precisely, those
computed by a traversal algorithm described later on) give
rise to decompositions into 3 spanning cellular subgraphs,
one with one face and the two other ones with 1 + 2g faces.
This generalizes the decomposition of a plane triangulation
into 3 spanning trees.

(b) Computing Schnyder woods for any genus
This section presents an algorithm for traversing a tri-

angulation of arbitrary genus g ≥ 0 and computing a g-
Schnyder wood on the way. Our algorithm naturally extends
to any genus the procedure of Brehm. As in the planar case,
the traversal is a greedy sequence of conquest operations,
with here the important difference that these operations are
interleaved with 2g merge/split operations. Another point is

that, in higher genus, the region that is grown is more in-
volved than in the planar case (recall that in the planar case,
the grown region is delimited by a simple cycle). This is why
we need the more technical terminology of subcomplex. It
also turns out that a vertex might appear several times on the
boundary of the grown complex, therefore we have to use the
refined notion of free boundary corner, instead of free vertex
in the planar case (in the planar case, a vertex appears just
once on the boundary of the grown region).

Let us now give the precise description of the traversal
procedure on a triangulation of genus g with a root-face.
As in the planar case, we grow a “region” C. Precisely, C
is a connected subcomplex all along the traversal. Initially,
C is the root-face {v0, v1, v2}, together with the edges and
vertices of that face; at the end, C is equal to T . We make
use of the operation conquer(b)—with b a free boundary
corner of C—as defined in Section 3.b(i). Associated with
such a conquest is the colorient rule, similar to the
operation for free vertices described in Section 2(b) (planar
case):

colorient colorient(b), with b a free boundary corner
of C: let v be the vertex incident to b, and let e, e′ be the
two edges delimiting b, with e′ after e in cw order around v.
Orient e and e′ outward of v, giving color 1 to e and color
0 to e′. Orient all the exterior edges of b toward v and give
color 2 to these edges (these edges are strictly between e and
e′ in cw order around v).

We also make use of the handle operations split
and merge, as defined in Section 3(b). Define an update-
candidate for C as either a free boundary corner, or a split
edge, or a merge edge.
COMPUTESCHNYDERANYGENUS(T ) (T a triangulation
of genus g)
Initialize C as the root-face f plus the vertices and edges of
f ;
while C &= T find an update-candidate σ
for C
If σ is a free boundary corner b

conquer(b); colorient(b);
If σ is a merge edge e = {u,w} for C

merge(u,w);
If σ is a split edge e = {u,w} for C

split(u,w);
end while

Note that the above algorithm performs conquests, merge
operations, and split operations in whichever order, i.e., with
no priority on the 3 types of operations.

Figure 8 shows the traversal algorithm executed on a tor-
oidal triangulation. Observe the subtlety that, for positive
genus, the vertices incident to merge/split edges have sev-
eral corners that are conquered, as illustrated in Figure 7.
Precisely, for a vertex v incident to k ≥ 0 merge/split edges,
its conquest occurs k + 1 times if v is an inner vertex and k
times if v ∈ {v0, v1}.

The corresponding work was published in Discrete and Computational Geometry, volume xx, number xx, pp. . Springer, 2009.
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w

T \ C

C
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u

w

conquer(bw)+
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conquer(bu)+
colorient

u

w
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C
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C

Figure 7: These pictures show the result of colorient operations in the higher genus case. Any split (or merge) edge (u, w) can be directed
in one or two directions (having possibly two colors), depending on the traversal order on its extremities (we denote by bw a boundary corner
incident to vertex w).

Note also that, if the algorithm terminates (which will be
proved next), the number of merge edges must be g and the
number of split edges must be g. Indeed, in the initial step,
C has k = 1 boundary face and genus g′ = 0, while (just
before) the last step C has k = 1 boundary face and genus
g′ = g. Since the effect of each split is {k ← k+1, g′ ← g′}
and the effect of each merge is {k ← k − 1, g′ ← g′ + 1},
there must be the same number of splits as merges (for k to
be the same finally as initially) and the number of merges
must be g (for g′ to increase from 0 to g). As we will see,
these 2g edges are the special edges of the Schnyder wood
computed by the traversal algorithm.

Theorem 8 Any triangulation T of genus g admits a g-
Schnyder wood, which can be computed in time O((n+g)g).

This theorem is proved in several steps: first we show
in Lemma 9 that the traversal algorithm terminates and in
Lemma 10 that it can be implemented to run in time O((n +
g)g). Then we show in Lemma 11 (local conditions) and
Corollary 13 (cut-graph condition) that it computes a g-
Schnyder wood.

(c) Termination and complexity of the algorithm
Here C denotes the growing subcomplex in the traversal

algorithm, and D denotes the complementary dual of C.

Lemma 9 (Termination) Let T be a genus g triangulation.
Then at any step of COMPUTESCHNYDERANYGENUS(T )
strictly before termination, there is an update-candidate

incident to the boundary face containing {v0, v1}. Hence
COMPUTESCHNYDERANYGENUS(T ) terminates.

Proof : Consider the boundary face f0 of C containing the
edge {v0, v1}, at some step strictly before termination of
the traversal. Assume that there is no split edge nor merge
edge incident to f0 (i.e., no split nor merge edge has one
of its two extremities incident to a boundary corner of f0):
we are going to show that, in this case, there must be a
free boundary corner incident to f0. Each chordal edge e
incident to f0 is separating. Hence e is in fact incident to f0

at its two extremities (otherwise e would be a merge edge).
Consider the complete list L of brins around f0, as defined
in Section 3(a). Let d and e be any pair of chordal edges
incident to f0 (provided f0 has at least two incident chordal
edges). Note that d∗ and e∗ are bridges of D.

We claim that the brins (d1, d2) of d and (e1, e2) of e
are not in a crossing-configuration, i.e., cannot appear as
(. . . , d1, . . . , e1, . . . , d2, . . . , e2, . . .) in L. Indeed, if the or-
der was so, Lemma 3 would imply that the dual brins ap-
pear as (. . . , e∗2, . . . , d∗2, . . . , e∗1, . . . , d∗1, . . .) in Φ(L). But
this would imply that the dual edge d∗ of d belongs sim-
ultaneously to the two connected components of D\e∗.

Hence the cyclic boundary of f0 (the contour of f0 unfol-
ded as a cycle) together with its chordal edges forms a planar
chord-diagram with a root-edge {v0, v1}, as shown in Fig-
ure 3. It is well known that, in such a diagram (as shown for
instance by Brehm [7]), one can find a vertex v /∈ {v0, v1}
not incident to any chord. The corner at that vertex is hence
free. () !
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conquer

Figure 8: Execution of our traversal algorithm. (a) The traversal starts with a conquest at the outer vertex v2. (b)-(c) As far as only conquer
operations, (d) the area already explored (white triangles) remains homeomorphic to a disk. Whenever there remain no free corners, it is
possible to find split (e) and merge (g) edges (incident to black circles). Once the region T \ C is a topological disk (h), the traversal can be
completed with a sequence of conquer operations.

Lemma 10 (Execution time) There is an implementation
of the algorithm COMPUTESCHNYDERANYGENUS(T ) that
has running time O((n + g)g)—with g the genus and n the
number of vertices of T —and such that the update-candidate
is always incident to the boundary face containing {v0, v1}.

Proof : At each step, call f0 the boundary face of C con-
taining {v0, v1} and call f∗

0 the corresponding boundary face
of D. Note that there are 2g merge/split operations during the
execution of the algorithm. Accordingly, the execution time
consists of 2g + 1 periods: each of the 2g first periods ends
with a merge/split, and the last period finishes the traversal.
To prove that the execution time is O((n+ g)g), it is enough
to show that each period can be implemented to run in time
O(|E|), with |E| the number edges of the triangulation (by
the Euler relation, |E| is O(n+g)). Our implementation here

chooses always an update-candidate incident to f0 and gives
priority to free boundary corners over split and merge edges.

We manipulate maps using the half-edge data-structure;
each brin has several pointers: to the incident vertex, the
incident face, the opposite brin, the following brin, and the
dual brin. There are fixed half-edge data structures for the
triangulation T and for its dual T ∗, and there are evolving
half-edge data-structures for C and for the complementary
dual D. Each brin of D incident to a boundary face is dual to
a brin exterior to a boundary corner of C. Accordingly such
a brin of D has an additional pointer to the corresponding
boundary corner of C (a boundary corner of C is identified
with a boundary brin of C) . And the brins of D that are
on an edge with a boundary face on both sides have a flag
indicating this property; the dual of these edges are precisely
the chordal edges for C. The boundary corners of C have

The corresponding work was published in Discrete and Computational Geometry, volume xx, number xx, pp. . Springer, 2009.
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an additional parameter indicating the number of incident
chordal edges. Hence, those that have this parameter equal to
0 are the free boundary corners (except for the two corners
at each extremity of {v0, v1}). The free boundary corners
incident to f0 are stored in a list. As long as this list is not
empty, one chooses the free boundary corner at the head of
the list and performs the conquest/colorient operations. After
performing a conquest, as shown in Figure 4, some edges of
D are deleted and some faces f1, . . . , fr of D are merged
with a boundary face of D. The edges of f1, . . . , fr that
are not deleted are called uncovered by the conquest. Note
that the only edges that might change status (i.e., become
chordal) are the uncovered edges. If an uncovered edge e
becomes chordal (i.e., has now a boundary face of D on both
sides), one updates the status of e as chordal, and accordingly
one increments the parameter for the number of incident
chordal edges of the boundary corners (for C) at the two
extremities of the dual edge of e. Since an edge can be
uncovered by at most two conquests and since the number of
operations performed on an uncovered edge is constant, the
complexity of updating the half-edge data structures over the
whole period is O(|E|).

At the end of a period, there is no free boundary corner
incident to f0. Hence, by Lemma 9, either the algorithm
directly terminates, or there is a merge or split edge incident
to f0. To check for a merge edge incident to f0, one scans
the edges of D. If there is an edge e ∈ D having distinct
boundary faces on both sides and one of these faces is f∗

0 ,
then one performs a merge operation at e, which finishes the
period. Note that scanning all edges of D in search of merge
edges takes time O(|E|).

If the traversal is not finished and one finds no merge edge
incident to f0, then by Lemma 9 there must be a split edge
incident to f0, i.e., an edge of D that is not a bridge but has
f∗
0 on both sides. One can find all the bridges of D in O(|E|)

time using the depth-first search principles of Tarjan [37, 38].
Then one looks for a non-bridge edge e of D with f∗

0 on both
sides, and performs a split operation at e, which finishes the
period. Again this scanning process in search of a split edge
takes time O(|E|). () !

(d) The local conditions

We introduce some invariants on the colors and directions
of the edges of a genus g triangulation T that remain satisfied
all along the traversal and ensure that the computed structure
is a g-Schnyder wood.

In order to describe the invariants, we need to introduce
some terminology. First we recall that the special edges
are “fat”, i.e., considered as two parallel edges that delimit
a face of degree 2 (this face is part of C as soon as the
special edge is in C). Given a vertex v ∈ C, let L =
(e1, f1, e2, f2, . . . , er, fr) be the sequence of edges and faces
(which are either triangular or special) incident to v in ccw
order around v. In this list, the faces that are special (2-sided)
are only those for special edges that are already in C. Let

us first introduce two invariants that are easily checked to
remain satisfied all along the traversal:

– The edges already colored and directed are those
whose two incident faces are in C (we include the spe-
cial faces for the special edges already in C).

– Each inner vertex v ∈ C has a unique outgoing edge
of color 2; the outer vertices do not have any outgoing
edge of color 2.

At each step, let k be the number of special edges of C
incident to v ∈ C. If v is an inner vertex of T , define a sector
as a maximal interval of L that contains no special face nor
the outgoing edge e of color 2. Note that v has k + 1 sectors,
which are disjoint. A sector is called filled if all its faces are
in C. We introduce the following invariants:

– Both faces incident to e are in C.
– The edges in each filled sector are in ccw order:

Seq(In1),Out0, Seq(In2), Out1, Seq(In0).

– In each non-filled sector the faces not in C form an
interval I of faces around v. In ccw order in the sector,
the directed/colored edges of C before I are ingoing
of color 1, and the directed/colored edges of C after I
are ingoing of color 0.

Similarly we define an invariant for v2 (which is true from
the first conquest):

– All inner edges incident to v2 are non-special and are
ingoing of color 2.

Finally we define invariants for v0 (and similarly for v1).
At each step, let k be the number of special edges of C that
are incident to v0. Let L = (e1, f1, e2, f2, . . . , er, fr) be the
sequence of edges and faces (which are triangular or special)
incident to v0 in ccw order around v0 (again, the special faces
are those for special edges already in C). Define a sector as
a maximal interval of L that contains no special face nor the
root-face. Note that v has k + 1 sectors, which are disjoint;
the one containing the edge {v0, v1} is called the root-sector.
Again a sector is called filled if all its faces are in C. We
introduce the following invariants:

– In each sector the faces not in C form an interval I of
faces around v0.

– The non-root face incident to {v0, v1} is never in
C strictly before termination. Hence the root-sector
is never filled strictly before termination. All the
colored/directed edges in the root-sector are going to-
ward v0 and have color 0.

– The edges in each filled non-root sector are in ccw
order:

Seq(In1),Out0, Seq(In2), Out1, Seq(In0).

– In ccw order in a non-filled non-root sector, the direc-
ted/colored edges of C before I are ingoing of color 1,
and the directed/colored edges of C after I are ingoing
of color 0.
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vertex conquest
f

f ′

f

f ′

Figure 9: A conquest of a free boundary corner shrinks the interior of a boundary face f (contour in dotted lines) as well as the interior of
the face f ′ (contour in dashed lines) of G′

2 that contains f (for the sake of clarity, the faces of C are shaded in this figure). The inclusion
f ⊂ f ′ remains true after the conquest.

merge

Figure 10: The effect of a merge operation on the growing subcomplex C and on G′
2 (the faces of C are shaded in this figure). Two faces of

G′
2 are merged and the two corresponding boundary faces of C are merged (the contours of the boundary faces of C are dotted while the

contours of the faces of G′
2 are dashed).

The invariants are the same for v1, except that the
colored/directed edges in the root-sector are going toward
v1 and have color 1.

One easily checks that these invariants remain satisfied
after each conquest, split, or merge operation.

Lemma 11 The structure computed by COMPUTESCHNYDER-
ANYGENUS(T ) satisfies the local conditions of a g-
Schnyder wood.

Proof : At the end, the fact that the invariants are satisfied
directly implies that the local conditions for edge directions
and colors of a g-Schnyder wood are satisfied. () !
(e) The cut-graph property.

Let T be a genus g triangulation on which the traversal
algorithm is applied. Let G2 be the graph formed by the
edges of color 2, the two edges {v1, v2} and {v0, v2}, and
the 2g special edges, not considered as doubled here.

Lemma 12 At each step strictly before the end of the tra-
versal algorithm, let M be the map associated with C and
let G′

2 be the embedded subgraph of G2 consisting of the
edges and vertices of G2 that are in C.

Then G′
2 is a cellular spanning subgraph of M . In ad-

dition there is a natural bijection between the faces of G′
2

and the boundary faces of M : each boundary face of M is
included in a unique face of G′

2.

Proof : First let us observe that G′
2 is a cellular spanning

subgraph of M iff it is connected, spanning, and has the same
genus as M .

The property is true initially. Indeed, C is the root-face,
which is planar, so M is the triangulation of the sphere with
one inner face and one root-face, which plays the role of
the boundary face; whereas G′

2 consists of the two edges
{v1, v2} and {v0, v2}, so G′

2 is a spanning tree of M .

Let k be the number of boundary faces of M , which is
also the number of faces of G′

2, and let g′ be the common
genus of M and G′

2 before an operation is performed. Let us
prove that the property stated in the lemma remains true after
the operation, whether a conquest (except the last conquest),
a merge, or a split.

Consider a conquest of a free boundary corner b, strictly
before the very last conquest (which closes C). The new
vertices appearing in C are connected to the former graph
G′

2 by an outgoing edge of color 2 in the new graph G′
2,

hence G′
2 is still a connected spanning subgraph of C after

the conquest. Note also that the genera of M and G′
2 are

unchanged (these two numbers stay equal to g′). Similarly
the number of boundary faces of M and the number of
faces of G′

2 are unchanged (these two numbers stay equal
to k). Finally, as shown in Figure 9, the boundary face of
M incident to b is still contained in the corresponding face
of G′

2 after the conquest. Hence the property stated in the
lemma remains true after a conquest.

Now let us consider a split operation. The new split edge
“splits” a boundary face of M into two faces f1 and f2, and
in the same way splits the corresponding face of G′

2 into two
faces f ′

1 and f ′
2 such that f ′

1 contains f1 and f ′
2 contains f2.

Thus the correspondence between boundary faces of M and
faces of G′

2 remains true. In addition, the genera of M and
of G′

2 remain unchanged, equal to g′, hence G′
2 remains a

cellular subgraph of M , and is still spanning (no vertex is
added to M nor to G′

2). Hence the property remains true after
a split.

Finally consider a merge. The new merge edge “merges”
two boundary faces f1 and f2 of M into a single face,
thereby adding a handle (informally, the handle serves to
establish a bridge so as to connect and merge the two faces).
Doing this the two corresponding faces f ′

1 and f ′
2 of G′

2 are
also merged into a single face that contains the merger of
f1 and f2, see Figure 10. Thus the correspondence between

The corresponding work was published in Discrete and Computational Geometry, volume xx, number xx, pp. . Springer, 2009.
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vertex conquestv v

Figure 11: The effect of a conquest on the complementary dual D0 of G0 is to attach a chain at a vertex v, hence D0 remains acyclic.

boundary faces of M and faces of G′
2 remains true. In

addition, the genera of M and of G′
2 both increase by 1, they

are equal to g′ + 1 after the merge, so G′
2 remains a cellular

subgraph of M , and is still spanning (no vertex is added to
M nor to G′

2). Hence the property remains true after a merge.
() !
Corollary 13 The graph G2 is a cut-graph of T .

Proof : Before the very last conquest, G′
2 becomes equal

to G2; and C is equal to T minus the triangular face f on
the other side of the root-face from the base-edge {v0, v1}.
Hence the map M associated with C is equal to T , up to
marking f as a boundary face. According to Lemma 12,
G′

2 = G2 is a spanning cellular subgraph of M = T and has
a unique face (since M has a unique boundary face), hence
G2 is a cut-graph of T . () !
(f) The graphs in color 0 and 1 are also cellular

In this section we show that a g-Schnyder wood computed
by the traversal algorithm yields a decomposition of a trian-
gulation into 3 spanning cellular subgraphs G0, G1, G2, with
G2 having one face (G2 is the cut-graph of the Schnyder
wood) and G0 and G1 having each 1 + 2g faces. This is
a natural extension of the property that a planar Schnyder
wood yields a decomposition of a plane triangulation into 3
spanning trees.

Proposition 14 Let T be a triangulation of genus g en-
dowed with a g-Schnyder wood computed by the algorithm
COMPUTESCHNYDERANYGENUS. The special edges are
doubled (thus T gets 2g additional degenerated faces of de-
gree 2).

Let G0 be the graph formed by the edges with color 0
plus the outer edges incident to v0. Then G0 is a spanning
cellular subgraph of T with 1 + 2g faces (where some of
the faces might be degenerated, of degree 2). Similarly the
graph G1 formed by the edges of color 1 plus the two outer
edges incident to v1 is a spanning cellular subgraph of T
with 1 + 2g faces.

Proof : By the local conditions of g-Schnyder woods, G0

spans all inner vertices (each such vertex is incident to at
least one edge of color 0). Since one adds the two edges
{v0, v2} and {v0, v1}, G0 also spans the vertices of the root-
face, so G0 is a spanning subgraph of T . Let T ∗ be the dual
map of T . To show that G0 is cellular, it is enough to show
that the complementary dual D0 of G0 is acyclic (D0 is the
subgraph of T ∗ induced by all vertices of T ∗ and by the

edges of T ∗ that are dual to the edges of T \ G0). At each
step of the traversal algorithm, let D′

0 be the subgraph of D0

induced by the edges of D0 dual to edges having a face in
C on both sides. Let us show that D′

0 remains acyclic (i.e., a
forest) all along the traversal algorithm. The effect of a merge
or split is to add to C a special edge e, precisely, the two
edges representing e and the 2-sided enclosed face. Since the
two triangular faces incident to each side of e are not in C, a
merge or a split does not add any edge to D′

0, so D′
0 remains

acyclic. Now consider a conquest of a free boundary corner
b. Before the conquest, let e and e′ be the edges delimiting
b in cw order, let f be the face encountered just before e in
cw order around the origin of b, and let v be the vertex of D′

0

corresponding to f . Then, as shown in Figure 11, the effect
of the conquest on D′

0 is to attach a chain at v. Hence D′
0

remains acyclic. At the end, D′
0 is equal to D0, hence D0

is acyclic, so G0 is cellular. Finally, G0 has n vertices (G0

spans all vertices of T ) and has n+4g−1 edges according to
the local conditions. Since G0 has genus g, the Euler relation
ensures that G0 has 1 + 2g faces. The proof for G1 relies on
the same arguments. () !

Remark 5. The properties of G2 (cut-graph condition),
and of G0, G1 (stated in Proposition 14) can be considered as
extensions of the fundamental property of planar Schnyder
woods [34, 35]: in the planar case, for each color i ∈
{0, 1, 2}, the graph formed by the edges in color i plus the
two outer edges incident to vi is a spanning tree. Figure 12
shows an example in genus 1.

5 Application to encoding
In the planar case, Schnyder woods yield a simple en-

coding procedure for triangulations, as described in [22] and
more recently in [1]. Precisely, a planar Schnyder wood with
n vertices is encoded by two parenthesis words W,W ′ of re-
spective lengths 2n−2 and 2n−6. Let T2 be the tree T2 plus
the two outer edges incident to v2. Call θ the corner incident
to v2 in the outer face. The first word W is the parenthesis
word (also called Dyck word) that encodes the tree T2, that
is, W is obtained from a cw walk (i.e., the walker has the
infinite face on its right) around T2 starting at θ, writing an
opening parenthesis at the first traversal of an edge of T2

(away from the root) and a closing parenthesis at the second
traversal (toward the root). The second word W ′ is obtained
from the same walk around T2, but W ′ encodes the edges
that are not in T2, i.e., the edges of color 0 and 1. Precisely,
during the traversal, write an opening parenthesis in W ′ each
time an outgoing edge in color 0 is crossed and write a clos-
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Figure 12: A triangulated torus endowed with a Schnyder wood.
The dashed edges (color 2) form a tree T2, and the addition of the
two special edges and the two outer edges incident to v2 yields a
cut-graph G2. The solid edges (color 0) plus the two outer edges
incident to v0 form a spanning cellular subgraph G0 with 3 faces
(one face having degree 2). Similarly, the solid edges (color 1)
plus the two outer edges incident to v1 form a spanning cellular
subgraph G1 with 3 faces.

ing parenthesis in W ′ each time an ingoing edge of color 1
is crossed.

For a triangulation with n vertices, W has length 2n − 2,
and W ′ has length 2n − 6. Hence the coding word has total
length 4n − 8. This code is both simple and quite compact,
as the length 4n − 8 is not far from the information-theory
lower bound of log2

(
44/33

)
≈ 3.245 bits per vertex, which

is attained in the planar case by a bijective construction due
to Poulalhon and Schaeffer [32].

In the higher genus case there does not exist an ex-
act enumeration formula, nevertheless an asymptotic estim-
ate [21] of the number of genus g rooted triangulations with
n vertices leads to the information theory lower bound of
3.245n + Ω(g log n), i.e., the exponential growth rate is the
same in every genus. For the higher genus case we do not yet
know any linear time encoding algorithm matching asymp-
totically the information theory bound, and a bijective con-
struction based on a special spanning tree is still to be found.
Nevertheless we can here extend to higher genus the simple
encoding procedure of [22, 1] based on Schnyder woods.

Encoding in higher genus To encode the Schnyder wood
we proceed in a similar way as in the planar case except that
we have to deal with the special edges. Let T be a genus
g triangulation with n vertices endowed with a Schnyder
wood computed by our traversal algorithm; precisely, we
use the implementation described in Lemma 10. Let T2 be

the spanning tree of T consisting of the edges in color 2
plus the two edges {v0, v2} and {v1, v2}. Let G2 be the
cut-graph of the Schnyder wood, i.e., G2 is T2 plus the 2g
special edges. We classically encode G2 as the Dyck word
W for T2, augmented by 2g memory blocks, each of size
O(log(n)) bits, so as to locate the two extremities of each
special edge. In each memory block we also store the colors
and directions of the two sides of the special edge. Hence G2

is encoded by a word W of length 2n−2+O(g log(n)). The
encoding of the Schnyder wood is completed by a second
binary word W ′ that is obtained from a clockwise walk along
the (unique) face of G2 (cw means that the face is on the
right of the walker) starting at the corner θ incident to v2 in
the root-face. Along this walk, we write a 0 when crossing a
non-special outgoing edge of color 0 and we write a 1 when
crossing a non-special ingoing edge of color 1. Since there
are 2n−6+4g non-special edges of color 0 or 1, the word W ′

has length 2n−6+4g. Therefore the pair of words (W,W ′)
is of total length 4n + O(g log(n)). In addition these words
can be obtained in time O((n + g)g) from a Schnyder wood
on T (as we have seen in Lemma 10, the Schnyder wood
itself can be computed in time O((n + g)g).

Now we are going to show that the pair (W,W ′) actually
encodes the Schnyder wood (and in particular the triangula-
tion) and that the Schnyder wood can be reconstructed from
(W,W ′) in time O((n + g)g). The proof relies on two lem-
mas.

Lemma 15 Let T be a triangulation endowed with a g-
Schnyder wood. Then the Schnyder wood can be recovered
after the deletion process that consists in removing all the
non-special edges of color 0. In other words, the information
given by non-special edges of color 0 is redundant.

Proof : To have a unified treatment (no special case for
the vertex v0) it proves convenient here to direct the edges
{v0, v2} and {v0, v1} out of v0 and to give color 2 to {v0, v2}
and color 1 to {v0, v1}. Consider a maximal non-empty
interval I of non-special edges of color 0 going into a vertex
v of T . Let e and e′ be the edges that respectively precede
and follow I in cw order around v. By the local conditions
of Schnyder woods (Figure 6(b)), e′ is outgoing of color 1;
and either e belongs to a special edge and is ingoing of color
0, or e is outgoing of color 2. Let P = v0, v1, . . . , vk, vk+1

be the path of T formed by the neighbors of v in cw order
between e and e′, that is, v0 is the other end of e, vk+1 is
the other end of e′, and the vi’s for 1 ≤ i ≤ k are the
other ends of the edges of I taken in cw order around v.
Then, by the local conditions of Schnyder woods, each edge
{vi, vi+1}, for 0 ≤ i ≤ k, either is of color 1 directed from
vi to vi+1 or is of color 2 directed from vi+1 to vi. Hence,
the edges of P and the edges e and e′ are not removed by
the deletion process. Call M the map created from T by the
deletion process. Then there is a face f in M delimited by
P , e and e′: this is the face of M formed by the removal of
the edges in I . In addition the corner formed by e and e′ is
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the unique corner of f whose right-edge (looking toward the
interior of f ) is outgoing of color 1. Thus the edges removed
inside f (and more generally all the removed edges) can be
recovered: one looks for the unique corner of f whose right-
edge is outgoing of color 1, and then one inserts an interval
of ingoing edges of color 0 at the corner so as to triangulate
f . () !

v0

v1

v2

θ

f0

f ′

0

e

Figure 13: An edge e colored 1 (dotted arc) has the boundary face
f0 on its right just before the conquest coloring e. Hence, just before
the conquest, a cw walk around f ′

0 (dashed lines) encounters the
outgoing brin of e first.

Lemma 16 Consider a g-Schnyder wood S calculated by
the traversal algorithm under the implementation described
in Lemma 10. Denote by G2 the cut-graph of S and by θ the
corner incident to v2 in the root-face (θ is also a corner of
G2). Let e be a non-special edge of color 1 of S.

Then, during a cw walk along G2 (i.e., with the unique
face of G2 on the right of the walker) starting at θ, the
outgoing brin of e is crossed before the ingoing brin of e.

Proof : At each step of COMPUTESCHNYDERANYGENUS
strictly before termination, let f0 be the boundary face of C
containing {v0, v1} and let f ′

0 be the corresponding face of
G′

2 (we use the notation of Lemma 12, G′
2 consists of the

edges and vertices of G2 that are in C), that is, f ′
0 is the

face of G′
2 containing f0. An edge e of color 1 has f0 on

its right just before the conquest coloring e (by definition
of the colorient rule). Hence, as shown in Figure 13, e
is encountered first at its outgoing brin during a cw walk
around f ′

0 starting at θ; and this property will continue to
hold for e until the end of the traversal. () !

We can now describe how to reconstruct the Schnyder
wood from the two words (W,W ′). First, construct the cut-
graph G2 using W . Note that the directions of edges and
colors of the two sides of each special edge of G2 are known
from W . Hence, by the local conditions of Schnyder woods,
we can already insert the outgoing brins of color 0 or 1 that
are non-special (a non-special brin is a brin of a non-special
edge). The non-special outgoing brins of color 0 are ordered
as b1, b2, . . . , bk according to the order in which they are
crossed during a cw walk along G2 (i.e., with the unique
face of G2 on the right of the walker). Next, the word W ′

indicates where to insert the non-special ingoing brins of
color 1. Precisely, factor W ′ as

W ′ = 1r101r201r3 . . . 01rk+1 ,

where the integers ri’s are allowed to be zero. Then, for each
i ∈ [1..k], insert ri ingoing brins of color 1 in the corner
(bi, follower(bi)) (where the follower of a brin b is the next
brin after b in cw order around its origin). And insert rk+1

ingoing brins of color 1 in the corner incident to v1 delimited
to the right by {v1, v0}.

Afterwards, we use Lemma 16 to form the non-special
edges of color 1. Write a parenthesis word π obtained from
a cw walk along G2 starting at θ, writing an opening par-
enthesis each time a non-special outgoing brin of color 1 is
crossed and writing a closing parenthesis each time a non-
special ingoing brin of color 1 is crossed. Then, Lemma 16
ensures that the matchings of π correspond to the non-special
edges of color 1 in the Schnyder wood, so we just have to
form the non-special edges of color 1 according to the match-
ings of π.

Finally, since the edges of color 0 are redundant (by
Lemma 15), there is no ambiguity to insert the edges of color
0 at the end (i.e., complete the already inserted outgoing half-
edges of color 0 into edges).

To conclude, the non-special edges of color 0 are redund-
ant, the cut-graph can be encoded by a parenthesis word W
of length 2n − 2 (for the tree T2) plus O(g log(n)) bits of
memory for the special edges, and the edges of color 1 can
be inserted from a word W ′ of length 2n − 6 + 4g. Clearly
the reconstruction of the Schnyder wood from (W,W ′) takes
time O((n + g)g), since it just consists in building the cut-
graph G2 and walking cw along G2. All in all, we obtain the
following result:

Proposition 17 A triangulation of genus g with n vertices
can be encoded—via a g-Schnyder wood—by a binary word
of length 4n + O(g log(n)). Coding and decoding can be
done in time O((n + g)g).

We mention that one could also design a more sophistic-
ated code that supports queries, as done in [14, 2]. The ar-
guments would be similar to the ones given in [2], which
treats plane (labeled) triangulations. To wit, given a genus
g (unlabeled) triangulation T with f faces and e edges, one
could obtain a compact representation of T using asymptot-
ically (2 log 6)e + O(g log e) bits, or equivalently 7.755f +
O(g log f) bits, which answers queries for vertex adjacency
and vertex degree in O(1) time. The main idea would be to
compute a g-Schnyder wood of T and to encode the cor-
responding maps Gi, i ∈ {0, 1, 2}. In order to efficiently
support adjacency queries on vertices, we would have to en-
code the three maps G0, G1, G2 using a multiple parenthesis
system (3 types of parentheses).

In [9] is described another partitioning strategy (not
based on Schnyder woods nor canonical orderings) answer-
ing queries, which achieves a better compression rate of
2.175f +O(g log f) bits when dealing with genus g triangu-
lations having f triangles (using a different face-based nav-
igation). Nevertheless, we believe that, compared to [9], an
approach based on Schnyder woods would make it possible
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to deal in higher genus with more general graphs ([14]) and
labeled graphs (as done in [2] in the planar case).

6 Conclusion and perspectives
We have extended to arbitrary genus the definition of

Schnyder woods, a traversal procedure for computing such
a Schnyder wood in linear time (for fixed genus) and an
encoding algorithm providing an asymptotic compression
rate of 4 bits per vertex (again for fixed genus). Some further
problems and related topics are listed next.

Applications of Schnyder Woods as canonical orderings

We point out that our graph traversal procedure induces
an ordering for treating the vertices so as to shell the surface
progressively. Such an ordering is already well known in the
planar case under the name of canonical ordering and has
numerous applications for graph encoding and graph draw-
ing [14, 23]. It is thus of interest to extend this concept to
higher genus. The only difference is that in the genus g case
there is a small number —at most 2 · 2g— of vertices that
might appear several times in the ordering; these correspond
to the vertices incident to the 2g special edges (split/merge
edges) obtained during the traversal. There are several open
questions we think should be investigated concerning the
combinatorial properties of such orderings and the corres-
ponding edge orientations and colorations. A related ques-
tion in our context is to ask if any Schnyder wood can be
obtained as a result of our traversal procedure (if not, which
property the Schnyder wood has to satisfy). Another line of
research is to see whether such an ordering would yield an
efficient algorithm for drawing a graph on a genus g surface
(as it has been done in the planar case [23]).

Further extensions

Our approach relies on quite general topological and com-
binatorial arguments, so the natural next step should be to
apply our methodology to other interesting classes of graphs
(not strictly triangulated), which have similar characteriza-
tion in the planar case. Our topological traversal could be
extended to the 3-connected case, precisely to embedded 3-
connected graphs with face-width larger than 2, which cor-
respond to polygonal meshes of genus g. We point out that
our encoding proposed in Section 5 could take advantage of
the existing compact encodings of planar graphs [14, 13, 22],
using similar parenthesis-based approaches.

Lattice structure and graph encoding applications

From the combinatorial point of view it should be of in-
terest to investigate whether edge orientations and colora-
tions in genus g have nice lattice properties, as in the planar
case. In the planar case, so-called minimal α-orientations
have a deep combinatorial role (they yield bijective construc-
tions for several families of planar maps, including triangula-
tions), and as such, have also applications in graph drawing,
random sampling, and coding [32].

In the planar case, as shown by Brehm [7], the minimal
Schnyder wood is reached by a “left-most driven” traversal
of the triangulation, and is computable in linear time. We
would like to extend these principles to any genus and derive
from it a linear time encoding procedure with (asymptotic-
ally) optimal compression rate. Hopefully these principles
can also be applied to polygonal meshes of arbitrary genus.
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