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Abstract. Recognizing shapes in multiview imaging is still a challenging task, which usually relies on geometrical
invariants estimations. However, very few geometric estimators that achieve projective invariance have been
devised. This paper proposes a projective length and a projective curvature estimators for plane curves, when
the curves are represented by points together with their tangent directions. In this context, the estimations can
be performed with only three point-tangent samples for the projective length and five samples for the projective
curvature. The proposed length and curvature estimator are based on projective splines built by fitting logarithmic
spirals to the point-tangent samples. They are projective invariant and convergent.
Keywords: Projective Differential Geometry. Projective Splines. Projective Curvature. Projective Lenght.
Discrete estimators.
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Figure 1: Cross-ratio construction from point/tangent samples on the standard spiral.

1 Introduction
Computer Vision applications usually deal with im-

ages that are two-dimensional projections of tridimensional
scenes. Different projections of the same scene can be iden-
tified by isolating and matching the scene elements in each
projection. This matching gets robust if it relies on quantit-
ies that are invariant by the projective group [18, 7, 2]. Pro-
jective length and projective curvature are the two simplest
such quantities in differential geometry. Together, they are
sufficient to describe a planar curve up to a projective
transformation[6]. This means that a planar curve can be ex-
actly identified in different projections such as photos, using
those quantities, leading to a descriptor for curve matching,
in the line of recent applications[16]. However, their estima-
tion tends to be very sensitive to noise, since for a parametric
curve, they depend on the fifth and seventh order derivatives
respectively. This paper proposes numerically stable project-
ive length and curvature estimators for planar curves.

Instead of considering discrete curves as a sequence of
points, we choose here to sample a planar curve associating
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to each point its tangent direction. In Computer Vision, the
curves of a scene are usually obtained by edge detection,
which naturally generate these point-tangent samples. In this
context, the projective length estimator uses only three point-
tangent samples and the projective curvature estimator uses
five of them. The same model was considered in [3, 4] to
define affine length and affine curvature estimators.

The projective splines are obtained by fitting logarithmic
spirals to the point-tangent samples. These spirals have pro-
jective curvature zero, similarly to polygonal lines in the
Euclidean case [11] and parabolas in the affine case [3, 4].
The projective length of the spiral is estimated from a cross
ratio of four points obtained from the data. The projective
curvature estimator is obtained from the frames estimates
at two consecutive samples. The proposed projective length
and curvature estimators are proved to be convergent and nu-
merical experiments included in this work show their numer-
ical stability.

The work is an extension of [10], but the projective length
estimator proposed here is much better: it is projective invari-
ant. This fact makes the whole length and curvature estima-
tions much more precise and efficient, as we can see by the
experimental results. Moreover, with this new formulation,
we could prove the convergence of both estimators.
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Related work. The study of analytic expression for pro-
jective curvature is laborious. Faugeras [6] describes very
nicely the Euclidean, affine and projective geometry of plane
curves, with explicit formulas for projective length and
curvature. For affine quantities, the definition of affine invari-
ants for discrete curves has been studied in several works.
Callabi et al. [12, 13] propose affine length and curvature
estimators with convergence proofs for curves given by a
sequence of points, while Craizer et al. [3, 4] define es-
timators for curves given by points and tangent directions.
These estimators are particular combinations of joint invari-
ants, which are functions of the points’ coordinates that are
invariant under a given group action. Boutin [1] proposed
joint invariants for Euclidean and affine groups. Olver [14]
describes how to construct joint invariants for any group, in
particular describing all joint invariants for the affine group
in the plane. The authors of this work are not aware of any
previous work that explicitly estimates projective lengths and
curvatures for discrete curves. The probable reason for this
absence is that these concepts deal with high order derivat-
ives, which in general are numerically unstable. However,
several works try to define projective quantities, in particu-
lar in multi-view images [17, 5, 9]. In particular, Lazebnik
and Ponce [8] implement some notions of oriented project-
ive geometry, introduced by Stolfi [15], to characterize sil-
houette features.
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Figure 2: Homogeneous coordinates on a logarithmic spiral: point
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2 Projective invariant geometry

In this section, we shall review the definitions of the
basic quantities associated with smooth planar curves that
are invariant under the projective group. We will denote a
parametric curve C in homogeneous coordinates as x(t) =
(x(t), y(t), w(t)) (see Figure 2). The determinant of three
vectors is denoted |x1,x2,x3|. With this notation, C is
strictly convex if and only if |x′′(t),x′(t),x(t)| ̸= 0 for any
t.

In homogeneous coordinates, a projective transformation

is defined by an invertible linear transformation of R3,

T =

 A B C
D E F
G H I

 ,

taking into account that linear transformations T and λT are
projective equivalent, for any λ ̸= 0.

(a) Projective length and curvature.

Assuming that |x′′,x′,x| > 0, we can decompose x′′′ on
the frame (x,x′,x′′), obtaining: x′′′ + px′′ + qx′ + rx = 0,
where

p = −|x′′′,x′,x|
|x′′,x′,x|

, q =
|x′′′,x′′,x|
|x′′,x′,x|

, r = −|x′′′,x′′,x′|
|x′′,x′,x|

.

Consider the function H = r − 1
3pq + 2

27p3 − 1
2q′ + 1

3pp′ +
1
6p′′. Assuming that H(t) ̸= 0, one defines the projective
length σ by

σ(t) =
∫ t

0

3
√

H(u)du.

If one takes σ as a new parameter for the curve, then H(σ) =
1.

Since x(σ) and λ(σ)x(σ) are equivalent curves, we can
force p(σ) to be zero by choosing the value of λ(σ) as
λ(σ) = exp ( 1

3

∫ σ

0
p(τ)dτ) [6]. Thus,

x′′′(σ) + q(σ)x′(σ) + r(σ)x(σ) = 0. (1)

Since 1 = H(σ) = r(σ) − 1
2q′(σ), one can write q(σ) =

2k(σ) and r(σ) = k′(σ) + 1. The number k(σ) is called
projective curvature.

We can write these equations as:

∂x
∂σ = x1

∂x1
∂σ = −kx + x2

∂x2
∂σ = −x − kx1

The frame {x,x1,x2} is called the Frenet frame of the curve.

(b) Curves of zero projective curvature.

In the normalized form of Equation (1), a zero pro-
jective curvature curve x(σ) satisfies the differential equa-
tion x′′′(σ) + x(σ) = 0. A particular solution of this
differential equation is the logarithmic spiral: P(σ) =
(Px(σ), Py(σ), Pw(σ)), with

Px(σ) = e
1
2σ cos

(√
3

2 σ
)

Py(σ) = e
1
2σ sin

(√
3

2 σ
)

Pw(σ) = e−σ

Any other solution is given by T · P(σ), where T is a
projective transformation. The set of logarithmic spirals of
zero projective curvature is thus an 8-dimensional vector
space.

The corresponding work was published in Journal of Mathematical Imaging and Vision, Elsevier..
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3 Projective splines: fitting spirals to data
In this paper, we consider the discretization of the curve C

as a sequence {(xi,x′
i)}1≤i≤n of point-tangent samples. We

can think of xi as a point (xi, yi, 1) in the affine plane z = 1
and x′

i as a vector (x′
i, y

′
i, 0), parallel to z = 1 (see Figure 2).

Moreover, x′
i indicates only the direction of the tangent to the

curve, and its magnitude has no particular meaning.
Given three points-tangents samples, (xi−1,x′

i−1),
(xi,x′

i) and (xi+1,x′
i+1), we want to fit a spiral with

projective parameter 0 at (xi,x′
i), σi at (xi+1,x′

i+1), and
−σi at (xi−1,x′

i−1). Thus we have implicitly assumed that
the projective lengths between samples are equal. We then
deduce from the estimated spiral the frame (Qi,Q′

i,Q
′′
i ) at

sample i.

(a) Relation between cross-ratio and projective length.

Consider the standard spiral P (σ). For a fixed σ, let
P1(σ) be the intersection of the tangent lines at P (σ) and
P (0), P2(σ) be the intersection of the tangent line at P (σ)
and the line through P (0) and P (−σ), and P3(σ) be the
intersection of the tangent lines at P (σ) and P (−σ) (see
Figure 1).

We shall calculate the cross-ratio

f(σ) = [P (σ), P1(σ), P2(σ), P3(σ)] .

Denote by W = aeaσ the tangent vector of the spiral at
P (σ) , with a = 3

2 + i
2

√
3. If we write P1 = P + uW ,

P2 = P + vW and P3 = P + tW , then the cross-ratio is
given by

f(σ) =
u(t − v)
t(v − u)

.

But easy calculations show that

t =
−
√

3e−3σ − 3 sin(
√

3σ) +
√

3 cos(
√

3σ)
6 sin(

√
3σ)

,

u =
−
√

3e−
3σ
2 − 3 sin

(√
3σ
2

)
+

√
3 cos

(√
3σ
2

)
6 sin

(√
3σ
2

)
and

v = 2
[
e

3σ
2 sin

(√
3σ
2

)
+ e−

3σ
2 sin

(√
3σ
2

)
− sin(

√
3σ)

] /
[
−e

3σ
2

(
3 sin

(√
3σ
2

)
+

√
3 cos

(√
3σ
2

))
+

3 sin(
√

3σ) +
√

3 cos(
√

3σ)
]

.

By making extensive but straightforward calculations, one
can verify that f(0) = 1, f ′(0) = 0, f ′′(0) = 0 and
f ′′′(0) = 6/5. Thus f is an increasing function in a neigh-
borhood of σ = 0. The graph of f is shown in Figure 3.

σ

f(σ)

Figure 3: The cross ratio function f from the projective length
parameter σ.

(b) Projective length estimator.

From the above paragraph, we can estimate the pro-
jective length σi between samples xi+1 and xi (or xi and
xi−1). Denote by xi,1 the intersection of x′

i+1 and x′
i, by xi,2

the intersection of x′
i+1 and the line through xi and xi−1,

and by xi,3 the intersection of x′
i+1 and x′

i−1. Then σi =
f−1([xi+1,xi,1,xi,2,xi,3]). We use a bisection algorithm to
invert f . The projective length σi is in fact a convergent es-
timator as proved in the appendix.

(c) Linear equations of the fitting problem.

We know that there is a unique projective transformation
Ti =

[
A B C
D E F
G H I

]
that takes xi−1 to P (−σi), xi to P (0), xi+1 to

P (σi) and xi,3 to P3(σi).
The above conditions are described by the equations

A Px(0) +B Py(0) +C= (G Px(0) +H Py(0) +I)·xi

D Px(0) +E Py(0) +F= (G Px(0) +H Py(0) +I)·yi

APx(σi) +BPy(σi) +C= (GPx(σi) +HPy(σi) +I)·xi+1

DPx(σi) +EPy(σi) +F= (GPx(σi) +HPy(σi) +I)·yi+1

APx(−σi)+BPy(−σi)+C= (GPx(−σi)+HPy(−σi)+I)·xi−1

DPx(−σi)+EPy(−σi)+F= (GPx(−σi)+HPy(−σi)+I)·yi−1

APx,3(σi)+BPy,3(σi)+C= (GPx,3(σi)+HPy,3(σi)+I)·xi,3

DPx,3(σi)+EPy,3(σi)+F= (GPx,3(σi)+HPy,3(σi)+I)·yi,3

where we choose representatives of the points in the plane
w = 1.

(d) Projective splines.

The spiral obtained by the above system defines an inter-
polation of the point/tangent samples in a projective invari-
ant way. It has an explicit curve equation whose paramet-
ers are the coefficients of the projective transformation Ti

and respects exactly the three points and tangents conditions.
Moreover, these coefficients are continuous with respect to
the three samples. Thus we may call it a projective spline.

Preprint MAT. 09/01, communicated on February 17th, 2009 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(e) Estimating projective curvature

The estimated frame at sample i is given from the spiral’s
local frame: (Qi,Q′

i,Q
′′
i ) = Ti · (P,P′,P′′). It is clear

that this frame estimator is projective invariant. In order to
estimate the projective curvature, we need also an estimate
of Q′′′

i at sample i. Let

Q′′′
i =

Q′′
i+1 − Q′′

i−1
2σi

. (2)

The choice of central difference is justified in the next sec-
tion. By decomposing the vector Q′′′

i in the frame, one con-
siders the coefficient ki of Q′

i as the proposed projective
curvature estimator. Thus, we have

ki =
|Q′′′

i ,Q′′
i ,Qi|

4σi|Q′′
i ,Q′

i,Qi|
.

This projective curvature estimator is clearly projective
invariant. The corresponding estimator for the integral of k,∫

k dσ, is given by
n−2∑
i=3

|Q′′
i+1 − Q′′

i−1,Q
′′
i ,Qi|

4|Q′′
i ,Q′

i,Qi|
. (3)

This estimator is convergent as proved in the appendix.

4 Implementation and results
The implementation of the proposed estimators follows

the description of the previous section. The cross ratio in-
version for the length estimator is performed by a bisec-
tion method whose initial interval is centered on the affine-
based length estimator of [10]. However, the fitting prob-
lem of section 3(c), although linear, should be handled with
care. The curvature estimator then follows, but the conver-
gence is much faster when using central finite differences,
as described earlier. We have implemented these estimat-
ors to measure the estimation errors of discretized curves of
known analytic length and curvature. The results confirm ex-
perimentally the convergence of the estimators proved in the
appendix.

(a) Fitting problem inversion without division.

The fitting problem of section 3(c) is a homogeneous
system with 8 equations and 9 unknowns (the coefficients of
the transformation Ti). However, for small values of σ, the
samples are almost aligned, and therefore the system is ill
conditioned. We show here how to solve this system without
division, overcoming this problem.

Grouping the equations in x and in y, it can be written as
S · t = 0 with

t = [AB C D E F G H I]T

S =
[

P 0 (−X · P )
0 P (−Y · P )

]
,

where P =


1 0 1

Px(σi) Py(σi) 1
Px(−σi) Py(−σi) 1
Px,3(σi) Py,3(σi) 1

 ,

and
X =Diag (xi, xi+1, xi−1, xi,3)
Y =Diag (yi, yi+1, yi−1, yi,3)

.

This system can be solved directly as follows. Let P̃ be the
squared matrix made of the first three lines of P :

P̃ =
[

1 0 1
Px(σi) Py(σi) 1
Px(−σi) Py(−σi) 1

]
.

Similarly let X̃ and Ỹ be the first three components of X
and Y , respectively. We can invert P̃ to express unknowns
A to F in function of G,H, I:{

P̃ [A B C]T = X̃P̃ [GH I]T ,

P̃ [D E F ]T = Ỹ P̃ [GH I]T .

We are left with two homogeneous equations in G,H, I .{
VGG + VHH + VII=

(
P3 ·P̃−1X̃P̃−xi,3P3

)
· [G H I]T=0

WGG+WHH+WII=
(
P3 ·P̃−1Ỹ P̃−yi,3P3

)
· [G H I]T=0

,

where P3 is the last line of P : P3 = [Px,3(σi)Py,3(σi) 1].
This incomplete homogeneous system can be solved by a
simple cross product:

[GH I]T = [VG VH VI ]
T × [WG WH WI ]

T
.

In fact, a division is still present in the above homogen-
eous equations, when inverting P̃ . Observe that det

(
P̃

)
vanishes when σi = 0. A straightforward Taylor expansion
shows the flatness of this determinant near σi = 0:

det
(
P̃

)
= 3

√
3

2 σ3
i + 3

√
3

4480σ9
i + O(σ15

i ).

Since the system is homogeneous, we can consider the un-

known to be 3

√
det(P̃ )

−1

t instead of t, or equivalently mul-

tiplying P by 3

√
det(P̃ ), leading to det(P̃ ) = 1.

(b) Fast convergence with central finite difference.

The derivative Q′′′
i in Equation (2) must be approxim-

ated with a discrete differentiation. The choice of forward
or backward difference would have the advantage of requir-
ing only four samples to compute the curvature and would
simplify the expression of

∫
k dσ in Equation (3). However,

the convergence is slow, and central differences lead to much
better accuracy of the estimators. This behavior can be ob-
served in a simple case, where the input curve is the exact
logarithmic spiral P around σ = 0. In this case, the project-
ive transformation Ti is the identity matrix and the curvature
vanishes: ki = 0. We can compute the estimated curvature
from Equation (2) explicitly:

Q′′′(0) =

 1
0
1

 ,Q′′(0) =

 −1
2√
3

2
1

 ,

The corresponding work was published in Journal of Mathematical Imaging and Vision, Elsevier..
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and Q′′(σ) =


−e

1
2σ cos

(
π
3 −

√
3

2 σ
)

e
1
2σ sin

(
π
3 −

√
3

2 σ
)

e−σ

 .

A straightforward Taylor expansion shows that

kforward
i =

|Q′′
i+1 − Q′′

i ,Q′′
i ,Qi|

2σi|Q′′
i ,Q′

i,Qi|
= 1

2σi − 1
240σi

4 + O(σi
7),

kcentral
i =

|Q′′
i+1 − Q′′

i−1,Q
′′
i ,Qi|

4σi|Q′′
i ,Q′

i,Qi|
= − 1

240σi
4 + O(σi

10).

Thus, for small values of σi, the estimator kcentral
i is much

more precise.

(c) Numerical experiments.

In our model, as in several discrete models [11], curvature
is concentrated at vertices. Therefore, the convergence can
be better observed on integrals of the curvature rather than on
punctual curvature. The same is true for the length. We there-
fore compared our estimators with analytic ones by comput-
ing

∫
dσ and

∫
k dσ (Equation (3)). In order to compare

our estimators with the analytical length and curvature in-
tegrals, we restricted our experiments to spirals and power
curves, where we could explicitly compute these invariants.
To check the convergence for denser samplings, i.e. small σi,
we used a multi-precision library (MPFR C++).

The convergence of both estimators can be observed on
Figure 4. However, when the sampling is not regular, as for
the power curve sampled as (tn, tm, 1), the convergence is
much slower than when sampled uniformly (see Figures 5
and 6). The estimator in multi-precision needs around 4
milliseconds per point on a 2.8GHz computer, and only
fractions of millisecond in standard double precision.

The estimators are projective invariant, since the al-
gorithm deals only with projective quantities. To illustrate
this numerically, we consider the same curves before and
after projective transformations (see Figure 7). To get an or-
der of the sampling density, these examples are for curves
with 50 samples (the sparsest sampling on Figures 5 and 6),
which would correspond to an average distance of 10 to 15
pixels between sample, if the curve fits on a 1024 × 768 im-
age.

5 Conclusion and future works
In this paper, estimators for the projective length and

curvature of a plane curve given by point-tangent samples
are proposed. The projective estimators are based on an
estimator of the frame at each sample, which is obtained by
fitting logarithmic spirals to the given data. Its convergence
is proved and verified in numerical experiments.

Since the differential definitions of the projective length
and curvature involve seventh order derivatives, robustness
is a very delicate issue. The presence of noise may thus
have a significative impact on the result, particularly for
noise affecting the tangent sample. Moreover, the hypothesis
of regular sampling for the projective spline fitting may
not be respected, which harms the stability of the method
(e.g. comparing Figures 5 and 6), although still ensuring
projective invariance. However, the design of the solution
without division and the analysis of the right finite difference
scheme turns the method robust to degenerate case such as
almost aligned samples.

As future work we propose to consider tridimensional sur-
faces defined by points and tangent planes. In this context,
one can try to define Euclidean, affine or projective estimat-
ors.
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A Convergence of the estimators
To make calculations easier, we use complex notation

in this appendix. Consider a smooth curve w(t) and the
standard spiral z(σ) = eaσ , where a = 3

2+i
√

3
2 . Assume that

the three point-tangent samples at w(t2),w(0) and w(t1),
t2 < 0, t1 > 0 are fitted by the standard spiral at−σ1, 0 and
σ1, which writes

w (t1) = z( σ1) ,

w (t2) = z(−σ1) ,

w′(t1) ∥ z′( σ1) ,

w′(t2) ∥ z′(−σ1) .

(4)

Any such smooth curve that passes through z(0) and has
tangent line parallel to z′(0) can be written as w(t) =
ea(t+b(t)t2 . We first reduce the problem to the case where
b(t) is purely imaginary.
Claim 1: By a change of variables, we can assume that
b(t) = iβ(t), with β(t) real.
In fact, if b(t) = β1(t)+ iβ2(t), we consider u = t+β1(t)t2

to obtain w(u) = ea(u+iβ(u)u2
.

The second claim shows that β(t) is close to 0 in the C3

topology if the sampling is dense enough.
Claim 2: We have that t1 = −t2 = σ1 and we can write
β(t) = γ(t)(t2 − t21)

2.
In fact, we can rewrite Equation (4) as

t1 + iβ(t1)t21 = σ1

t2 + iβ(t2)t22 = −σ1

2t1β(t1) + β′(t1)t21 = 0

2t2β(t2) + β′(t2)t22 = 0

We conclude that t1 = −t2 = σ1 and that β(t1) = β′(t1) =
β(t2) = β′(t2) = 0.

Denote by s the projective lengths of w in the interval
[t2, t1]. We have computed this projective length with a
symbolic calculation software and obtained that

s = 2t1 + O(t31),

thus proving the convergence of the projective length estim-
ator.

Denote by (wi, w
′
i, w

′′
i ) the Frenet frame of w at xi, and

by (Qi, Q
′
i, Q

′′
i ) the estimated Frenet frame: Observe that

Qi = wi = w(0) = 1, Q′
i = w′

i = w′(0) = a and
w′′

i = w′′(0) = a2 + 2aβ(0)i. Since Q′′
i = a2, we conclude

that Q′′
i = w′′

i + O(t4i ). From this, it easy to prove the
convergence of the projective curvature estimator.

The corresponding work was published in Journal of Mathematical Imaging and Vision, Elsevier..

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv04b.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv04b.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv06a.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/ijcv06a.pdf
http://lear.inrialpes.fr/people/triggs/pubs/Triggs-dlt-iccv99.ps.gz
http://lear.inrialpes.fr/people/triggs/pubs/Triggs-dlt-iccv99.ps.gz
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Figure 4: Convergence tests on logarithmic spirals (ea·t cos((b+
√

3/2)t), ea·t sin((b+
√

3/2)t), e−t), t ∈ [0.1, 1.1] uniformly sampled:
number of samples × error of the estimators

R

dσ (left) and
R

k dσ (right) compared with the analytical quantities.
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Figure 5: Convergence test on power curves (ta, tb, 1), t ∈ [0.1, 1.1], sampled regularly in t: number of samples × error of the estimators
R

dσ (left) and
R

k dσ (right) compared with the analytical quantities. The sharp variations of the projective length between samples close to
t = 0.1 harms the convergence of the estimators.
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Figure 6: Convergence test on power curves (ta, tb, 1), t ∈ [0.1, 1.1], uniformly sampled in σ: number of samples × error of the estimators
R

dσ (left) and
R

k dσ (right) compared with the analytical quantities. As opposed to the tests of Figure 5, the uniform sampling ensures the
convergence of the estimators.
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Figure 7: The estimated projective length on a polynomial curve (t2
√

t, t, 1) sampled with 50 points ant tangent, regularly in t, i.e. not
equally spaced. Comparing before (top) and after (subsequent) projection illustrate the projective invariance of the estimator.

The corresponding work was published in Journal of Mathematical Imaging and Vision, Elsevier..
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