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Abstract. Recognizing shapes in multiview imaging is still a challenging task, which usually relies on geometrical
invariants estimations. However, very few geometric estimators that are projective invariant have been devised.
This paper proposes projective length and projective curvature estimators for plane curves, when the curves are
represented by points together with their tangent directions. In this context, the estimations can be performed with
only the four point-tangent samples for the projective length and five for the projective curvature. The proposed
length estimator is based on affine estimators and is proved to be convergent. The curvature estimator relies on
the length to fit logarithmic spirals to the point-tangent samples. It is projective invariant and experiments indicate
its convergence. Preliminary results using both estimators together are promising, although the estimators’ lack of
robustness would require additional work for noisy cases.
Keywords: Projective Differential Geometry. Projective Curvature. Projective Lenght. Discrete estimators.

1 Introduction
Computer Vision applications usually deal with images

that are two-dimensional projections of three-dimensional
scenes. Different projections of the same scene can be
identified by isolating and matching the scene elements in
each projection. This matching usually relies on quantities
that are invariant by the projective group [Zis95, Hann01,
Boutin01]. Projective length and projective curvature are the
two simplest such quantities in differential geometry. To-
gether, they are sufficient to describe a planar curve up to a
projective transformation ([Fau93]). However, their estima-
tion tends to be very sensitive to noise, since for a parametric
curve, they depend on the fifth and seventh order derivatives
respectively. This paper proposes numerically stable project-
ive length and curvature estimators for planar curves.

Instead of considering discrete curves as a sequence of
points, we choose here to sample a planar curve associating
to each point its tangent direction. In Computer Vision, the
curves of a scene are usually obtained by edge detection,
which naturally generate these point-tangent samples. In this
context, the projective length estimator uses only four point-
tangent samples and the projective curvature estimator uses
five of them. The same model was considered in [CLM06]
to define affine length and affine curvature estimators. These
affine quantities are used here to estimate the derivative of
the affine curvature which leads to our projective length
estimator. The proposed projective length estimator is proved
to be convergent and numerical experiments included in
this work show its numerical stability. We then estimate the
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projective curvature through the frames estimates at three
consecutive samples. For this task, we fit logarithmic spirals
to the point-tangent samples. These spirals have projective
curvature zero, similarly to polygonal lines in the Euclidean
case [Mok92].

The knowledge of the projective lengths allows adjust-
ing such spirals with only three point-tangent samples. When
the exact projective lengths are known a priori, the estimator
proposed here is stable, and numerical experiments indicate
its convergence. When one uses the length estimator to es-
timate the projective curvature, experimental results remains
promising, but numerical problem also appears, especially
when the projective lengths are small.

Related works. The study of analytic expression for pro-
jective curvature is laborious. However, Faugeras [Fau93]
describes very nicely the Euclidian, affine and projective
geometry and evolutions of plane curves, with explicit for-
mulas for projective length and curvature.

For affine quantities, the definition of affine invariants for
discrete curves has been studied in several works. Callabi et
al. [Olver97, Olver98] propose affine length and curvature
estimators with convergence proofs for curves given by a se-
quence of points, while Craizer et al. [CLM06] define es-
timators for curves given by points and tangent directions.
These estimators are particular combinations of joint in-
variants, which are functions of the points’ coordinates that
are invariant under a given group action. Boutin [Boutin00]
proposed joint invariants for Euclidian and affine groups.
Olver [Olver97] describes how to construct joint invariants
for any group. In particular, he described all joint invariants
for the affine group in the plane.

The authors are not aware of any previous work that
explicitly estimates projective lengths and curvatures for
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discrete curves. The probable reason for this absence is that
these concepts deal with high order derivatives, which in
general are numerically unstable. However, several works
try to define projective quantities, in particular in multi-view
images [, , ]. In particular, Lazebnik and Ponce [] implement
some notions of oriented projective geometry, introduced by
Stolfi [], to characterize silhouette features.
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, 1) is the pro-
jection of point (x, y, w) onto the plane {w = 1}. They are
projective equivalent points. Similarly, any line in the plane {α ·
(x′, y′, w′) + β · (tx, ty, 0)} is projective equivalent to the tangent
line at (x′, y′, w′).

2 Preliminaries
In this section, we shall review the definitions of the

basic quantities associated with smooth planar curves that
are invariant under the special affine group and under the
projective group. We will denote a parametric curve C in
homogeneous coordinates as x(t) = (x(t), y(t), w(t)). The
same curve C in planar coordinates will be denoted by
x(t) = ( x(t)

w(t) ,
y(t)
w(t) ). We will use the planar notation for

affine quantities and the homogeneous one for projective
quantities.

The determinant of three vectors is denoted |x1,x2,x3|,
and the determinant of two planar vectors will be de-
noted |x1,x2|. With this notation, a strictly convex curve
C satisfies |x′(t),x′′(t)| ≠ 0 in planar coordinates, and
|x′′(t),x′(t),x(t)| ̸= 0 in homogeneous coordinates.

(a) Affine invariant geometry

In this subsection, we describe the simplest quantities as-
sociated with a convex plane curve that are invariant under
the special affine group, i.e., the group of linear transform-
ations with determinant 1. There are two basic quantities:
the affine length and the affine curvature. Any convex plane
curve can be recovered, up to an affine transformation, from
these quantities.

Assume that the convex curve C satisfies |x′(t),x′′(t)| >
0. The affine length s is then defined by

s(t) =
∫ t

0

3
√
|x′ (u) ,x′′ (u)|du.

If one takes s as a new parameter then |x′(s),x′′(s)| = 1.
This implies that |x′(s),x′′′(s)| = 0 and that one can write

x′′′(s) = −µ(s)x′(s). The scalar µ(s) is called the affine
curvature of C at the point x(s).

Solving the differential equation x′′′(s) = 0, one obtains
the plane curves of zero affine curvature. The set of solutions
of this equation are parabolas that can be described in homo-
geneous coordinates as x(s) = Taff · A(s), where

Taff =

 A B C
D E F
0 0 1

 and A(s) =

 s
s2

2
1

 . (1)

(b) Projective invariant geometry

In this subsection, we describe the corresponding quant-
ities for the projective group. In homogeneous coordinates,
a projective transformation is defined by an invertible lin-
ear transformation of R3. Since, from the projective point of
view, two points in R3 that are in the same line through the
origin are equivalent (see Figure 1), linear transformations of
the form T and λT are projective equivalent, for any λ ̸= 0.
We will thus consider a projective transformation as a 3 × 3
matrix of determinant 1.

Projective length. Assuming that |x′′,x′,x| > 0, we can
decompose x′′′ on the frame (x,x′,x′′), obtaining: x′′′ +
px′′ + qx′ + rx = 0, where

p = −|x′′′,x′,x|
|x′′,x′,x|

, q =
|x′′′,x′′,x|
|x′′,x′,x|

, r = −|x′′′,x′′,x′|
|x′′,x′,x|

.

Consider the function H = r − 1
3pq + 2

27p3 − 1
2q′ + 1

3pp′ +
1
6p′′. Assuming that H(t) ̸= 0, one defines the projective
length σ by

σ(t) =
∫ t

0

3
√

H(u)du.

If one takes σ as a new parameter for the curve, then H(σ) =
1. The function H(t) has the following alternative definition:
Suppose that the curve is parameterized by affine arc length
s, then, following [Fau93],

H(s) =
1
2
µ′(s). (2)

So the condition H(t) ̸= 0 can be rewritten as µ′(s) ̸= 0.

Projective curvature. Since x(σ) and λ(σ)x(σ) are equi-
valent curves, we can force p(σ) to be zero by choosing
λ(σ) = exp ( 1

3

∫ σ

0
p(τ)dτ) [Fau93]. Thus,

x′′′(σ) + q(σ)x′(σ) + r(σ)x(σ) = 0. (3)

Since 1 = H(σ) = r(σ) − 1
2q′(σ), one can write q(σ) =

2k(σ) and r(σ) = k′(σ) + 1. The number k(σ) is called
projective curvature.

The corresponding work was published in the proceedings of the Sibgrapi 2008, pp. 223-229. IEEE Press, 2008.
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Figure 2: The impact of projective length estimation error on the projective curvature estimator. Given a spiral of constant projective
curvature with the noise of numeric operations, the projective estimator remains correct: the histogram is almost constant on the left image.
However, with an approximate length estimated from affine quantities (right), the curvature estimator becomes unstable (middle).

Curves of zero projective curvature. In the normalized
form (3), a zero projective curvature curve x(σ) satisfies
the differential equation x′′′(σ) + x(σ) = 0. A particular
solution of this differential equation is the logarithmic spiral:
P(σ) = (Px(σ), Py(σ), Pw(σ)), with

Px(σ) = exp( 1
2σ) cos(

√
3

2 σ)
Py(σ) = exp( 1

2σ) sin(
√

3
2 σ)

Pw(σ) = exp(−σ)

Any other solution is given by T · P(σ), where T is a pro-
jective transformation (see [Fau95]). The set of logarithmic
spirals of zero projective curvature is thus an 8-dimensional
space.

3 A projective length estimator based on affine
estimators
In this paper, we consider the discretisation of the curve

C as a sequence {(xi,x′
i)}1≤i≤n of point-tangent samples.

The vector x′
i only indicates the direction of the tangent to

the curve, and its magnitude has no particular meaning. In
this section, we describe the affine estimators of [CLM06]
for this model since we will use them for estimating the pro-
jective length. Moreover, they have a similar structure as the
projective estimators. However, they will not be projective
invariant, which may harm the projective curvature stability
(see Figure 2).

(a) Affine estimators

Denote by si the affine length of the arc of C between
(xi,x′

i) and (xi+1,x′
i+1), by µi the affine curvature at xi

and by νi the derivative of the affine curvature at xi.

Affine length estimator. For any pair of samples (xi,x′
i)

and (xi+1,x′
i+1), there exists a unique parabolic arc passing

through xi and xi+1, being tangent to x′
i and x′

i+1 at these
points. The affine length Li of this parabolic arc is given by
2A

1/3
i , where Ai is the area of the triangle whose vertices

are xi, xi+1 and the intersection of the lines defined by
(xi,x′

i) and (xi+1,x′
i+1). The length Li is an estimator for

si. An estimator for the affine length of C is
∑n−1

i=1 Li. In

appendix A, it is shown that Li = si +O(s5
i ). Therefore, the

estimator for the affine length of C is convergent.

Affine frame. The above parabola can also be seen as
an affine transformation of a basic arc of parabola A(s),
0 ≤ s ≤ Li, defined by formula (1). Let Taff be
the affine transformation that transforms (A(0),A′(0)) and
(A(Li),A′(Li)) to (xi,x′

i) and (xi+1,x′
i+1). The affine

frame at sample i is then (q′
i,q

′′
i ) = Taff · (A(0),A′(0)).

Affine curvature estimator. For three consecutive samples,
consider the frames (q′

i−1,q
′′
i−1) and (q′

i,q
′′
i ) as above. An

estimator of the third derivative is given by

q′′′
i =

2(q′′
i − q′′

i−1)
Li−1 + Li

.

Thus, an affine curvature estimator at sample i is given by

µi =
2|q′′

i−1,q
′′
i |

Li−1 + Li
.

The estimator for
∫

µds is given by
∑n−1

i=2 |q′′
i−1,q

′′
i |. In

appendix A, it is shown that the affine curvature estimator
satisfies µi = µi + O(si−1 + si). Therefore, the estimator
for the integral of the affine curvature is convergent.

First derivative of the affine curvature. For four consecut-
ive samples, consider the affine curvatures µi and µi+1. The
estimator for the derivative of the affine curvature is given by

νi =
10 (µi+1 − µi)

3Li−1 + 4Li + 3Li+1
,

In appendix A, it is shown that, under reasonable sampling
conditions, νi = νi + O(si−1 + si + si+1).

Any plane curve can also be recovered, up to affine
transformations, from its affine signature, which is the pair
(µ(s), µ′(s)). This kind of representation is interesting for
computer vision, since µ(s) and µ′(s) can be estimated loc-
ally, while the affine length is a global quantity. The pair
(µi, νi), 2 ≤ i ≤ n − 2, is an affine invariant signature
estimator of the curve C [Boutin00].
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Figure 3: Convergence test: relative error of the estimators (in logarithmic scale) vs. the number of samples on constant projective curvature
curves. The curves chosen were (ea·t cos((b+

√
3/2)t), ea·t sin((b+

√
3/2)t), e−t), uniformly sampled, and (ta, tb, 1), uniformly sampled

and also with a different sampling, uniformly in t. We have estimated the relative error |σ − σ|/σ of the length integral (left), the relative
error

˛

˛k − k
˛

˛/k of the curvature integral using the exact analytic length for the spiral fitting (middle), and the same relative error of the
curvature integral, but using the estimated length for the spiral fitting (right).

(b) Projective length estimator

For four consecutive samples, one can estimate the
projective length of the arc of C between (xi,x′

i) and
(xi+1,x′

i+1) by formula (2). Thus, the projective length can
be estimated by

σi =
3Li−1 + 4Li + 3Li+1

10
· 3

√
νi

2
.

An estimator for the projective length of C is thus given by
σ =

∑n−2
i=2 σi. Assuming that µ′(s) ̸= 0, one can show

that σi = σi + O(σ2
i ). Hence, the estimator σ for the

projective length of C is convergent. Although convergent,
this projective length estimator is not projective invariant.

4 A projective curvature estimator
In this section, a projective curvature estimator is defined,

assuming that projective lengths between samples are
known.

(a) Estimating frames by fitting spirals to data

Given three points-tangents samples, (xi−1,x′
i−1),

(xi,x′
i) and (xi+1,x′

i+1), and projective parameters σi−1,
σi and σi+1, we want to find a logarithmic spiral that passes
through the samples with the given projective paramet-
ers. We then deduce from the obtained spiral the frame
(Qi,Q′

i,Q
′′
i ) at sample i.

Linear equations of the fitting problem. Denote by Ti =[
A B C
D E F
G H I

]
the projective transformation that fits the logar-

ithmic spiral P(σ) to the three consecutive samples. The
condition that this spiral passes through the point xj =
(xj , yj , wj) at σ = σj is given by the equations APx(σj) + BPy(σj) + CPw(σj) = λj · xj

DPx(σj) + EPy(σj) + FPw(σj) = λj · yj

GPx(σj) + HPy(σj) + IPw(σj) = λj · wj

where λj is an unknown parameter. And the condition that
the spiral is tangent to x′

j = (x′
j , y

′
j , w

′
j) at xj is given by

A Px
′(σj) + B Py

′(σj) + C Pw
′(σj)= αj xj + βj x′

j

D Px
′(σj) + E Py

′(σj) + F Pw
′(σj)= αj yj + βj y′

j

G Px
′(σj) + H Py

′(σj) + I Pw
′(σj) = αj wj + βj w′

j

where αj and βj are unknown parameters (see Figure 1).

Relaxing one tangency condition. Assuming that the pro-
jective length parameters are known, one has to determine 9
unknown parameters of the projective transformation plus 9
multipliers λj , αj , βj for i = i − 1, i, i + 1, from 18 homo-
geneous equations. Unless one of these equations is redund-
ant, this system has only the trivial solution. However, if a
tangency equation is relaxed, the new homogeneous linear
system has 15 equations and 16 variables.

We thus drop one tangency condition, which, for the
sake of symmetry, is chosen to be at the central point. The
corresponding linear system has now rank 15. By fixing the
condition det(Ti) = 1, one can find a unique solution Ti.

Projective frame. The estimated frame at sample i is given
by (Qi,Q′

i,Q
′′
i ) = Ti ·(P,P′,P′′). It is clear that this frame

estimator is projective invariant.

(b) Estimating projective curvature

In order to estimate the projective curvature, we need also
an estimate of Q′′′

i at sample i. Let

Q′′′
i = 2

Q′′
i+1 − Q′′

i−1

σi + σi−1
.

By decomposing the vector Q′′′
i in the frame, one considers

the coefficient ki of Q′
i as the proposed projective curvature

estimator. Thus, we have

ki = −|Q′′′
i ,Q′′

i ,Qi|
|Q′′

i ,Q′
i,Qi|

.

This projective curvature estimator is clearly projective
invariant. The corresponding estimator for the integral of k,

The corresponding work was published in the proceedings of the Sibgrapi 2008, pp. 223-229. IEEE Press, 2008.
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Figure 4: Same test as in Figure 3, but after applying a projective transformation Ttest: the length estimator (left) and, consequently, the
curvature estimator based on it (right) is not projective invariant. Nevertheless, the behavior of the curvature estimator based on exact lengths
(middle) is close to that of the original curve, since this estimator is projective invariant.

∫
k dσ, is given by

k =
n−2∑
i=3

|Q′′
i+1,Q

′′
i ,Qi| − |Q′′

i−1,Q
′′
i ,Qi|

|Q′′
i ,Q′

i,Qi|
.

We expect that this estimator is convergent, but until now, we
were not able to prove it. Nevertheless, experimental results
strongly indicate its convergence (see Figure 3).

Projective signature. The above method can also be used
to estimate the derivative of the projective curvature. We
obtain an estimator (ki, k′

i) for the projective signature of
the curve writing

k′
i =

|Q′′′
i ,Q′′

i ,Q′
i|

|Q′′
i ,Q′

i,Qi|
− 1.

5 Implementation and results
Implementation choices. For small values of σ, the
samples are almost aligned, and therefore the matrix of the
linear system for fitting the spiral to the data has a small
determinant. In this context, the method for solving the
linear system must be adapted, and we have chosen the
LU decomposition. We have also experimented calculating
the eigenvector associated with the lowest eigenvalue of
the linear system without the tangency relaxation, but the
solution was very sensitive to noise.

Another choice that we have done was to use central
differences to estimate Q′′′

i (see section 4(b)), instead of
left or right differences. In fact, in all tests that we have
performed, the resulting frames with central differences were
better than the ones with left or right differences.

Error measures. In our model, as in several discrete mod-
els [Mok92], curvature is concentrated at vertices. Therefore,
the convergence can be better observed on integrals of the
curvature rather than on punctual curvature. The same is true
for the length. We therefore compared our estimators with
analytic ones by computing

∫
dσ and

∫
k dσ. To test the pro-

jective invariance, we consider the same curves before and
after a projective transformation Ttest. Here, we have chosen
Ttest =

[
1 0 0
−1 1 0
2 1 1

]
.

Results. As can be observed in Figures 3 and 4, the length
and curvature estimators (left and middle graphs) are conver-
gent, when they are considered independently. However, for
small values of σ, i.e. for a higher number of samples, the
numerical instabilities of the length estimator (left graphs)
induce a high instability of the combined estimator (right
graphs and Figure 2). Figure 5 corroborates the projective
invariance of the curvature estimator alone.

  < 0.0138

  0.0248

  0.0358

  0.0469

  0.0579

  0.0689

  0.0799

  0.091

  0.102

  > 0.113

  < 0.0138

  0.0248

  0.0358

  0.0469

  0.0579

  0.0689

  0.0799

  0.091

  0.102

  > 0.113

Figure 5: The estimated projective curvature using the exact ana-
lytic lengths on a polynomial curve (t, t3, 1). Comparing before
(left) and after (right) projection Ttest, the error distribution is sim-
ilar, corroborating the projective invariance of the estimator.
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6 Conclusion and future works
In this paper, estimators for the projective length and

curvature of a plane curve given by point-tangent samples
are proposed. The projective length estimator is based on af-
fine estimators that were proved here to be convergent. The
projective length estimator converges in theory and in prac-
tice, but it is not projective invariant. We will keep looking
for a stable length estimator that is projective invariant.

The projective curvature estimator is based on an estim-
ator of the frame at each sample, which is obtained by fit-
ting logarithmic spirals to the given data. If one assumes that
the projective lengths are known in advance, the proposed
curvature estimator becomes projective invariant. Its conver-
gence was verified in numerical experiments, but a theoret-
ical proof remains to be done. Taking together both estimat-
ors, the experimental results are promising, but also indicate
some numerical instability. We plan to continue this work
by researching other projective invariant methods for fitting
logarithmic spirals to the curve samples. These alternative
methods may lead to more robust numerical schemes.
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A Convergence of the affine estimators
Let x(s) = (x(s), y(s)), −u ≤ s ≤ t, be a convex plane curve

parameterized by affine arc-length, with affine curvature µ(s). De-
note µ = µ(0), ν = µ′(0). Assume that x(0) = (0, 0), x′(0) =
(1, 0) and x′′(0) = (0, 1). We can write x(s) = s − µ

6
· s3 − ν

24
·

s4 + O(s5) and y(s) = s2

2
+ µ

24
· s4 + − ν

60
· s5 + O(s6).

Consider that the samples are xi = x(0), xi−1 = x(−u) and
xi+1 = x(t). Denoting by z(t) = (z(t), 0) the intersection of the
lines defined by x′(0) and x′(t), the affine length of the parabola is
L(t) = 3

p

4z(t)y(t). Let

T =

»

A(t) B(t)
0 D(t)

–

be the affine transformation that fixes (x(0),x′(0)) and takes
(xi+1,x

′
i+1) to ((t, t2

2
), (1, t)).

Then direct calculations shows that :
8

>

>

>

>

<

>

>

>

>

:

z(t) = 1
2
· t+ µ

24
· t3+ ν

60
· t4+ O(t5),

L(t) = t+ O(t5),
A(t) = 1+ µ

12
· t2+ ν

30
· t3+ O(t4),

B(t) = −µ
2
· t− 3ν

20
· t2+ O(t3),

D(t) = 1− µ
12

· t2− ν
30

· t3+ O(t4).

The affine curvature estimator is given by

µi(t, u) = −2
|q′′(t),q′′(−u)|

L(t) + L(u)
.

where q′′ = (B, D). Direct calculii show that µi(t, u) = µi +
3
10

(t − u)ν + O(t2 + u2), which proves the convergence of the
affine curvature estimator.

Assuming that the ratios between the affine lengths t, u, v are
bounded, we obtain

µi+1 −µi = νi[u +
3

10
(t− u)− 3

10
(u− v)] + O(t2 + u2 + v2),

and so νi = νi + O(t + u + v), thus proving the convergence of
the derivative of the affine curvature estimator.

The corresponding work was published in the proceedings of the Sibgrapi 2008, pp. 223-229. IEEE Press, 2008.
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