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Abstract. This work introduces a new compression scheme for point sets. This scheme relies on an adaptive binary
space partition (BSP) which takes into account the geometric structure of the point set. This choice introduces
geometrical rather than combinatorial information in the compression scheme. In order to effectively improve the
final compression ratio, this partition is encoded in a progressive manner, decreasing the number of bits used for
the quantisation at each subdivision. This strategy distributes the extra cost of the geometry encoding onto the
maximal number of points, compressing in average 15% more than previous techniques.
Keywords: Point Sets. Compression. Binary Space Partition. Geometry–Driven Compression. Geometry
Processing.

Figure 1: Compressing the original bunny point set (34834 points), using 1.3, 4.1, 8.5 and 15.3 bits per vertex: points in the same BSP cell
have the same color.

1 Introduction
Geometry processing usually relies on pointwise repre-

sentation of the geometry, either through the vertices of a
mesh or directly on meshless models. In the context of col-
laborative or published work, these representations need to
be compacted before being transmitted. On one side, mesh-
less models, such as raw scans, statistical simulation or par-
ticle interaction models, must be compressed directly as a
point set. On the other side, meshes, built from mathemat-
ical tools or reconstructed from these point sets, can be
compressed by various means: connectivity–driven compres-
sion schemes deduce the geometry representation from pre-
viously transmitted elements, whereas the more recent area
of geometry–driven compression start with compressing the
geometry. Direct compression of the point set can thus im-
prove both mesh and meshless models compression.

This work proposes a new compression scheme for point
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sets. As opposed to previous point set compression schemes,
which rely on regular tree decomposition, it uses a care-
fully designed BSP decomposition to adapt better to the co-
herency of the input data. For example, if the point set has
been measured on a real surface by a scanning technique,
these points contains sequences of points on parallel planes.
If these planes are not parallel to the regular tree decompo-
sition, previous methods do not extract this redundancy, and
thus result in poorer compression ratios.

2 Related works
Among the point sets compression strategies, we can

distinguish the methods inspired by mesh compression, mesh
simplification and spatial subdivision. Although algorithms
of the last category were introduced first, they still provide,
until now, the best compression results for progressive and
lossless compression.

Local mesh encoding. Since the early works of Deer-
ing [3] and Taubin and Rossignac [15], mesh compression
reached impressive results. In particular, compressing the lo-
cal adjacency of the mesh triangles became inexpensive, and
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Figure 2: Our (quantised) adaptive subdivision captures the structure of the point set.

it helps in compressing the position of the point through sim-
ple local predictors. This idea grounds the works of Gumhod
et al. [5] and Merry et al. [8], who compute local spanning
trees of the points optimizing the prediction error. The extra
cost of the spanning tree is partly compensated by the effi-
ciency of these predictors.

Local simplifications. As opposed to the previous methods
which compress exactly the point set, several techniques re-
duce the complexity of the point set by recursively removing
points from the original point set. These methods retrieve
point sets either at a single reduced resolution, such as the
scheme of Waschbüsch et al. [16], or in multiresolution, such
as the one of Ochotta and Saupe [9]. Further work of Krüger
et al. [6] optimises the simplification process to allow com-
pact region and hardware implementation of this technique.

Lossy space subdivision. The above techniques use the
local structure of the point set to predict or remove the
next vertex to encode. Other strategies compress the whole
point set globally, by subdividing it recursively. The work
of Chen et al. [2], and the various variations of Peng and
Kuo [10, 11, 12] use a lossy octree subdivision scheme which
orders the subdivision by their importance. This scheme
provides quick and inexpensive decompressions of medium
quality, but waste many bits in recovering the original quality
of usual point sets.

Progressive space subdivision. The lossy subdivision
techniques actually intended to optimize the rate/distortion
ratio of progressive octree encodings. These schemes subdi-
vide an octree until separating each node, and then encode
the non–empty cells of following the octree hierarchy. The
number of points contained in each cell of the octree is
encoded explicitly in the work of Gandoin and Deviller [4],
while only the emptiness of each cell is transmitted in the
work of Botsch et al. [1]. A synthesis of those two methods

has been proposed in Lewiner et al. [7] work, as the first part
of a geometry–driven mesh compression.

3 Contributions and overview
This work introduces an efficient compression scheme for

point sets, which relies on a binary space partition (BSP)
adapted to the geometric structure of the point set:

Geometry–aware BSP. Although the space subdivision
techniques provide the best compression ratio, they do not
use the geometric structure of the point set. We propose here
to set the cut planes of each cell of the BSP orthogonal to the
principal direction of the point contained in that cell. This
strategy reflects correctly the structure of the point set, as
shown on Figure 2. Moreover, this choice will introduce ge-
ometrical rather than combinatorial information in the point
set compression.

Distributed cost. During the compression, this direction
must be encoded in order to transmit the space subdivision,
generating extra bits. In order to distribute this extra cost
onto the maximal number of points, we use a strategy sim-
ilar to Gandoin and Deviller’s work [4], recalled at section
4 Space Partition Encoding. They compress explicitly the num-
ber of points inside each cell of the octree, which wastes
more bits close to the root of the octree (it contains all the
points) and only one bit close to the leaves (it contains at
most one point). The main observation is that, compared to
Botsch et al. [1], this strategy performs much better, although
[1] compresses only a binary information (emptyness of a
cell). We therefore oriented our scheme towards Gandoin and
Deviller’s work.

BSP quantisation. In order to factor out the extra cost of
the geometry, we need to send more information at for the
BSP cells close to the root, and less for the one closer to
the leaves. To do so, we propose an adaptive quantisation
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3 Point set compression through BSP quantization

of the cell subdivision planes. With no bit transmitted, this
quantisation reduces to a regular octree subdivision. Each
additional bit transmitted then encodes information on the
local statistical deviation of the point set.

BSP encoding. We also use the number of points inside the
cell to encode its emptiness, as in [4], as detailed in section
5 BSP Compression. Moreover, we shift the subdivision plane
in order to divide in almost equally parts the set of points
in the BSP cell. This strategy further reduces the cost of the
emptiness codification, since it will be accurately predicted.
All together, this technique improves compression ratios in
average by 15%, as described in section 6 Experiments.

4 Space Partition Encoding
Among point set compression techniques, the most effi-

cient ones rely on an encoding of a space partition. Aside
from the efficiency advantage, these techniques naturally
work for points in any dimension since space partition are
formulated for generic dimensions. Moreover, the hierarchi-
cal nature of these partitions allows a progressive encod-
ing: these procedures can traverse the space partition in a
breadth–first manner, and each step traversal increase the res-
olution of the previous one.

Recursive compression. The general principle of these
techniques relies on creating a space partition such that each
leaf cell has its size below the numerical precision of the
point set, typically 12 bits per coordinate, and contains only
one point of the set. The compression of the point set then
reduces to the encoding of the space partition, which is es-
sentially a fixed valence tree structure with the geometry of
each cell stored at each node of the tree. The encoding of this
tree is performed through a recursive traversal, which emits
a subdivision symbol at each step. The traversal stops only
when it reached a cell of size below the numerical precision
of the point set.

Subdivision symbols. A subdivision symbol corresponds
to the subdivision of the current cell in subcells. Those sym-
bols encode at the same time the geometry of the subdivision
and the repartition of the points inside the subcells. For some
space subdivision schemes such as octrees and 2d trees, the
geometry of the subdivision can be automatically deduced
without specific symbol. In that case, the only information
to encode is the repartition of the points during the subdivi-
sion, and on that point distinguishes the three closest previ-
ous works [1, 4, 7].

Examples The strategy of [1] encodes for each of the eight
subcells whether they are empty or not. This generates an
8-bits symbol which can be nicely predicted. However, it
wastes 8 bits even when there is only one point in the cell.

The technique of [4] works with binary trees, and encodes
the number of points contained in one of the two subcells, de-
ducing the number contained in the other one by difference.
This technique has the advantage of encoding only 1 bit per
coordinate when there is only one point left in the cell, but

has a higher cost for the first nodes.
The method of [7] encodes for each subcell whether it

is empty, has a single point or contains more points. This
method improves on [1, 4] for small and medium size point
sets, since it wastes few bits for the first nodes and maintain
1 bit per coordinate when there is only one point in the cell.
However, our proposal extends [4] rather than [7].

Partition Subdivision symbol
Geometry Combinatory

[1] octree none 0/+ nodes (×8)
[4] 2d tree none number of nodes
[7] 2d tree none 0,1 or + nodes

Ours BSP cut plane number of nodes

Table 1: Principle of our proposal compared to the closest previous
works.

5 BSP Compression
In computer graphics, point sets usually represent the

geometry of an object. However, the above methods rely on
encoding the combinatory of the point set in their subdivision
symbols, which lack of geometric information. We propose
to encode information specific to the geometry of the point
set within the subdivision symbols (see Table 1). The BSP
framework provides the basic structure for this goal, since
cuts of the BSP can contain geometric information such as
principal directions of the point set. Moreover, since octrees
and 2d trees are specific BSP, this framework extends the
above methods.

The main difficulty with this idea consists in maintaining
a small number of bits for each subdivision symbol. The
clue is also the interpretation of the efficiency of [4]: on one
hand, although [4] wastes many bits for the first nodes since
it encodes the whole number of nodes instead of a 0/1/+
symbol. On the other hand, this information is shared by
all the points of the set, and when reaching lower nodes,
the overhead of encoding the number of nodes shrinks. The
balance is globally positive, as proved in [4].

We will use here a similar strategy: the geometric sym-
bols of the cut are encoded with precision for the first nodes,
and as we subdivide the BSP the precision of these symbols
reduces, until not being encoded at all. At that point, the ge-
ometry of the subdivision is automatic, and corresponds to
2d tree encoding. We can then adopt any of the above men-
tioned strategies for the combinatorial subdivision symbols.
However, we chose to extend [4] since our analysis came
from the study of their algorithm. Moreover, we will design
the BSP in order to distribute almost equally the points be-
tween the subcells. The number of nodes of the subcell tends
to be half of the number of nodes of the cell, improving the
prediction mechanism.
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Figure 3: Our BSP is constructed in a top–down manner, subdividing according to the local structure of the point set.

(a) BSP Construction

Cell geometry. We define our adaptive space decomposi-
tion by a BSP with planar cuts (see Figure 3). We choose
conventionally a unit cube for the root cell. The construc-
tion of the BSP subdivides this cube into two convex poly-
hedrons, assigned to the two sons of the root in the BSP. For
lossless compression, these polyhedrons are further subdi-
vided until their assigned cell fit in a box of size 2−b, where
b is the numerical precision, in bits, of each coordinate of the
point cell. In computer graphics applications, the usual data
precision is b = 12 bits. For lossy compression, the cell may
not be subdivided if it contains less that a few points.

median

PCA

shift

Figure 4: Cell planar cut from the principal component analysis
and the median of the points

Principal Component Analysis. We define the cut plane
direction using a common statistical technique, known as
principal component analysis (PCA), similarly to [14]. The
PCA is a least square minimization that extracts the main
structure of a statistical data, here the coordinates of the
points contained in a cell (see Figure 4): Given a cell and the
set of points it contains, we compute the covariance matrix of
their positions. The eigenvector corresponding to the greatest
eigenvalue of this matrix corresponds to the closest line to
the point, which is called the principal direction of the points.
In order to best separate the points, we will chose the cut
plane perpendicular to the principal direction.

Algorithm 1 compress( points, cell ): encode the BSP re-
cursively.

// compute the principal deviation of the points in the cell

1: plane← PCA⊥ (points)
2: (ϕ,ψ)← quantise (plane)
// shift the plane to separate the points into equal parts

3: shift← median (points, ϕ, ψ)
4: α← quantise (shift)
// subdivide the cell

5: (cellfront, cellback)← subdivide (cell, ϕ, ψ, α)
// encode the subdivision and the number of points of the front cell

6: encode (ϕ,ψ, α,#cellfront)
// recurse

7: compress (cellfront) ; compress (cellback)

Median shift. The PCA thus defines the direction of the
cutting plane, and we can then adjust where to cut the cell
along that direction. In order to predict efficiently the number
of nodes, we will place the cut at the median of the points
(see Figure 4). We compute this median by projecting all the
points onto the PCA line, deduce the median of the resulting
1D data and shift the plane along the PCA line until it passes
through the median.

(b) Quantization parameters

Plane parameters ϕ and ψ. The cut plane is represented
in the following local frame of the cell: the first axis ~u is
the biggest diagonal of the cell (convex) polyhedron P , the
second axis ~v is the biggest diagonal of the projection of P
along ~u, and the third axis ~w is the vector product ~w = ~u∧~v
(see Figure 5). In this frame, we express the normal ~n of
the cut plane through the angle ϕ and ψ: cos(ϕ) = ~n.~u,
cos(ψ) = ~n.~v. The coordinate of ~n along ~w can be deduced
from the unity of ~n: ~n.~w = ±

√
1− cos2(φ)− cos2(ψ).

Since the plane is defined without the normal orientation,
we take as a convention that ~n.~w ≥ 0. This orientation
determines whether a subcell is the front or the back one.

Shift parameter α. The shift to the median determines the
constant coordinate of the plane equation. Again, we use the
biggest diagonal PQ of the cell polyhedron to represent that
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Figure 5: The quantisation parameters for the cut plane: the quantisation of the optimal plane (left) moves slightly the plane (middle) by
clamping the parameters ϕ, ψ and α.

shift: denoting by O the intersection of the plane with the
diagonal PQ, we define α by:

−−→
PO = α

−−→
PQ.

(c) Quantization strategy

Bit allocation. Following the strategy deduced from [4],
we will quantise the cut plane parameters with fewer bits
at each subdivision. More precisely, the number of bits nb
allocated for each parameter depends on the number # of
points contained in the cell: nb = blog2 (#)c − k. We chose
k = 7 for α, k = 5 for ψ, and k = 3 for ϕ. Moreover,
in order to avoid degenerated cases, nb is set to zero if the
cell has level below a given maximal value lmax (we chose
lmax = 10 for our experiments).

Parameters quantisation. In order to quantise the cut
plane, we first restrict the values of our parameters. α is
generally a number between 0 and 1, although planes par-
allel to the diagonal may induce other values. Since this case
has a low probability and may induce degenerated cell cut,
we clamp α into the interval [0.2, 0.8]. We then map it to
[−1, 1] with an inverse quadratic function in order to have
more quantised values close to α = 1

2 .
The plane parameters are treated similarly: we encode

sin(ϕ) by clamping it into
[− 1

2 ,
1
2

]
. Then cos(ϕ) is clamped

into [−| sin(ϕ)|, | sin(ϕ)|] (since cos2(φ)+cos2(ψ)≤‖~n‖=
1). For both parameters we apply the same apply inverse
quadratic function as α.

0 bit quantisation. When the number of bits allowed to
encode the plane is zero, the above scheme cuts the cell
perpendicularly to the diagonal, and at its middle point. This
scheme is efficient in practice, but may not converge quickly,
since the cut may not reduce significantly the volume of the
cell. However, since we aim at encoding a constant precision
for all the points of the set, we need to reduce quickly the size
of the cells. We thus change the above scheme when a cell
contains only one point of the set. In that case, we subdivide
it as a regular octree, which is guaranteed to converge (see
Figure 6).

Prediction. We finally encode these quantised parameters
using a simple arithmetic coder [13], where the initial prob-
ability of the symbols is a Gaussian distribution. This suits

#verts Comp. ratio Comp. Decomp.
(bits/vert) time (sec) time (sec)

0− 1000 21.1975 0.17 0.99
1000− 5000 19.1819 0.19 3.23
5000− 10000 17.6372 0.21 6.50
10000− 20000 16.0554 0.24 11.77
20000− 50000 14.6821 0.32 20.62
> 50000 14.5613 0.42 35.32

Table 2: Compression ratios and timings on a hundred classical
models of Computer Graphics, ordered by size.

particularly well since the plane parameters were designed
to be close to 0 with high probability. Moreover, the median
cut of the cells increase the probability for the number of
points inside the subdivided cell to be half of the number of
points inside the whole cell. We thus use the same Gaussian
distribution for encoding the number of points in the front
cell.

6 Experiments
We implemented the above method for points in R3 as

described in the previous section, and resumed in Algo-
rithm. 1:compress. We obtain compression ratio in average
15% lower than the previous methods (see Table 3). This
validates the analysis presented here and puts the BSP com-
pression for point set in front of octree based compression.
Our method is relatively fast in execution (see Table 2) and
very robust in geometric calculus.

7 Conclusions
This work introduced a new scheme for progressive com-

pression of point sets. It introduces geometry information in
the subdivision scheme, and proposes an efficient method to
distribute the extra cost of coding this information. Further-
more, this geometry information contributes to the point set
compression in such a way that it ends up improving the final
compression ratio.

The improvement on previous lossless compression meth-
ods for point sets advocates for the use of geometry–driven
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(a) Level 2. (b) Level 5. (c) Level 8. (d) Level 11.

(e) Level 14. (f) Level 17. (g) Level 20. (h) Level 23.

(i) Level 26. (j) Level 29. (k) Level 32. (l) Level 35.

Figure 6: The size of each cell of the BSP must converge quickly to zero.

techniques for mesh compression, since the geometry com-
pression alone tends to be sufficiently efficient. Moreover,
our design of the adapted binary space partition turned out
to be particularly efficient, and may serve for other applica-
tions.
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Figure 7: Adaptive compression of the point set of the happy Buddha model.
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