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Abstract. Geometry processing applications estimate the local geometry of objects using information localized at
points. They usually consider information about the normal as a side product of the points coordinates. This work
proposes parabolic polygons as a model for discrete curves, which intrinsically combines points and normals. This
model is naturally affine invariant, which makes it particularly adapted to computer vision applications. This work
introduces estimators for affine length and curvature on this discrete model and presents, as a proof–of–concept,
an affine invariant curve reconstruction.
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Figure 1: Example of a parabolic polygon with 10 arcs (left), our estimation of their affine length (middle) and affine curvature (right).

1 Introduction
Geometric objects are represented by discrete structures

for computer applications. These structures usually rely on
pointwise information combined with adjacency relations.
Most geometry processing applications require the normal
of the object at each point: either for rendering [10], evolu-
tion [4], or numerical stability of reconstruction [1]. Modern
Geometry acquisition processes for curves or surfaces usu-
ally provide measures of the normals together with the point
measures. These normals can also be robustly estimated only
from the point coordinates [11, 7].

However, the normal or tangent information is usually
considered separately from the point coordinate, and the
definition of the geometrical object depends rather on the
point coordinates. Although modelling already makes inten-
sive use of this information, in particular with Bézier curves,
only recent developments in reconstruction problems pro-
posed to incorporate these tangents as part of the point set
definition [1].

In this work, we propose a discrete curve representation
based on points and tangents: the parabolic polygons, intro-
duced in section 2 Parabolic polygons. This model is naturally
invariant with respect to affine transformations of the plane.
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As opposed to implicit affine representations [12], our rep-
resentation uses only local information. This makes it par-
ticularly adapted to computer vision applications, since two
contours of the same planar object obtained from different
perspectives are approximately affine equivalent.

In section 4 Affine estimates, we propose geometric esti-
mators that are affine invariant, which makes the model ef-
fective for applications. The theoretical validity of our esti-
mators is verified on representative cases, as can be seen in
section 5 Convergence issues. In section 6 Experimental results,
the practical validity of the estimators is verified on samples
of analytic curves.

The only works we are aware about affine curvature esti-
mators are due to Calabi, Olver, Tannenbaum et al. [8, 9] and
Boutin [2]. They estimate affine curvature from five consec-
utive samples, by interpolating these points by a conic. The
affine curvature at the central point is then estimated by the
affine curvature of that conic. They further prove that this es-
timator derives from discrete affine volume forms, which are
the only affine invariant forms for points. With the concise-
ness of parabolic polygons, we estimate the affine curvature
from just three consecutive points, which is well suited for
applications such as reconstruction, interpolation and blend-
ing.

For the application in curve reconstruction of section
7 Affine curve reconstruction, we changed the distance compu-
tation in [5] by our affine estimates. This leads to an affine in-
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variant curve reconstruction, which works well on synthetic
examples. Moreover, we observed that the introduction of
the curvature in the algorithm improves the stability of the
reconstruction, thus pledging for the validity of our affine
curvature estimator.

2 Parabolic polygons
When we consider just the position of the sample points

of a curve as the data, it is natural to connect them by line
segments, thus forming a Euclidean polygon. In our model,
each point carries more information: Besides its position, we
know also its tangent line. Then it is natural to connect a pair
of points by an arc of parabola that passes through and is
tangent to the tangent line at each point. The ”polygon” thus
formed will be called a parabolic polygon (see Figure 1).

Consider a curve γ in the plane. If li and li+1 are the tan-
gent lines at xi and xi+1 of a convex arc of γ, then li is
not parallel to li+1. We shall assume that we are given a fi-
nite sequence of points {x1, · · · ,xn} and lines {l1, · · · , ln}
passing through the points such that li is not parallel to li+1,
for any 1 ≤ i ≤ n.

zi

xi+1 xi

Figure 2: Support triangle.

Support point and support triangle. Denote by zi the point
of intersection of li and li+1. This point is called the support
point and the triangle (xi, zi,xi+1) is called the support
triangle . As pointed out in [8] the cubic root of the area
Ai of the support triangle is a good measure of the distance
between (xi, li) and (xi+1, li+1).

Parabolic arcs. For each pair of consecutive indexes
(i, i + 1), denote by Pi the unique parabolic arc passing
through xi and xi+1 with tangent lines li and li+1 at these
points. The parabolic polygon obtained by the concatenation
of Pi, 1 ≤ i ≤ n− 1, will be denoted by P .

3 Affine length and curvature
This section quickly recalls the definitions of the relevant

affine quantities. The reader will find a detailed presentation
of affine geometry in Buchin’s book [3].

Affine length. Consider a smooth curve γ in the plane.
Take a convex arc of γ and parameterize it by x(t), t0 ≤
t ≤ t1, with x′(t) ∧ x′′(t) > 0. The number

s(t) =
∫ t

t0

x′(t) ∧ x′′(t)
1
3 dt

is called the affine parameter of the arc. Observe that s can
be characterized by the equation

x′(s) ∧ x′′(s) = 1. (1)

The affine length L of the arc is defined by L = s(t1)−s(t0).

v(s)

n(s)

x(s)

Figure 3: Affine tangent v(s) and normal n(s). The area of the
parallelogram is equal to 1.

Affine tangent and normal. The first derivative x′(s) is
called the affine tangent and is tangent to the curve. It will be
denoted by v(s). The second derivative x′′(s) is called the
affine normal and will be denoted by n(s). Observe that the
affine normal is not necessarily perpendicular to the curve in
the Euclidean sense.

Affine curvature. Differentiating equation (1), we obtain
that x′(s) and x′′′(s) are co-linear. The affine curvature µ(s)
is defined by the equation

x′′′(s) = −µ(s)x′(s).

One can also define the affine curvature by µ(s) =
x′′(s) ∧ x′′′(s).

Figure 4: The affine normal of a cubic near its inflection point.

Affine behaviour of inflections. In section 7 Affine curve re-
construction, it will be important for us to understand the be-
haviour of the affine quantities near a higher order tangent.
This behaviour can be well observed in the following exam-
ple:

Consider the curve x(t) = (t, tn), n ≥ 3, 0 ≤ t ≤ 1,
which has a higher order tangent at t = 0 (see Figure 4).
Easy calculations show that, for c > 0,

x(s) =
(
cs

3
n+1 , cns

3n
n+1

)
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is an affine parameterization of the curve. Thus we have that
the affine tangent

v(s) =
(

3c

n + 1
s

2−n
n+1 ,

3ncn

n + 1
s

2n−1
n+1

)

converges to an infinite length vector in the positive x-
direction, when s → 0. The affine normal

n(s) =

(
3c (2− n)
(n + 1)2

s
1−2n
n+1 ,

3ncn (2n− 1)
(n + 1)2

s
n−2
n+1

)
.

also converges to an infinite length vector in the x-direction,
but in the negative sense (see Figure 4). The affine curvature
is given by

µ(s) =
(n− 2) (2n− 1)

(n + 1)2
s−2.

4 Affine estimates
We will now propose an affine length estimator and an

affine curvature estimator for a parabolic polygon.

Affine length. Denote by Li the affine length of the
parabolic arc Pi and by ni its affine normal. In [8], it is
proved that Li = 2A

1
3
i , where Ai is the area of the support

triangle. The affine length of a parabolic polygon P is the
sum of the affine lengths Li of the parabolic arcs Pi.

Affine normal. The expression for ni is given in the fol-
lowing lemma:

Lemma 1 Denote by vi,1 and vi,2 the affine tangents of
the parabola Pi at xi and xi+1, respectively. If the support
triangle (xi, zi,xi+1) is positively oriented, then

vi,1 = − 2
Li

(xi − zi)

vi,2 =
2
Li

(xi+1 − zi)

If the support triangle is negatively oriented, the signs must
be interchanged. In any case

ni =
2
L2

i

(xi + xi+1 − 2zi) .

Proof : Just observe that the parabola

γ(s) = xi + svi,1 +
s2

2
ni

is parameterized by arc length and passes through xi and
xi+1 with tangent lines li and li+1, respectively. ¥

Affine curvature. Consider a convex arc C in E2. Then
∫

C

µds =
∫

C

n′(s) ∧ n(s)ds

can be approximated by

∑(
n(s+∆s)− n(s)

∆s
∧ n(s)

)
∆s =

∑
n(s+∆s) ∧ n(s).

We propose as a definition of the integral of the affine curva-
ture along a parabolic polygon the sum

µ(P ) =
n−1∑

i=2

ni−1 ∧ ni.

5 Convergence issues
Consider a convex arc C in E2. Let (xi, li), 1 ≤ i ≤ n be

a sampling of the curve, where li is the line tangent to C at
xi. Assume that the sampling points are equally spaced, i.e.,
that the affine length between sample points along the curve
is equal to L/n, where L is the affine length of the curve. We
say that the affine length estimator is convergent if

∑n−1
i=1 Li

converge to the affine length L of the curve, when n → ∞.
And that the affine curvature estimator is convergent if µ(P )
converges to

∫
C

µ(s)ds, when n →∞.
In [8, p.14], it is shown the convergence of the affine

lengths estimator. In the rest of the section, we shall consider
the particular case of constant affine curvature curves. For
these curves, we compute explicitly the estimators to show
the convergence of the affine length and of the affine curva-
ture. The experiments of section 6 Experimental results also
indicate that our affine curvature estimator is convergent.

Figure 5: Fifty affine equally spaced samples of an ellipse.

Positive curvature. In this example, we consider the case
of a curve with constant positive affine curvature (see Fig-
ure 5). By making an affine transformation of the plane,
we can assume that this curve is a circle. Consider points
(xi, yi), 1 ≤ i ≤ n, in a circle of radius R at an affine dis-
tance s = L/n, where L = 2πR

2
3 is the affine length of

the circle. The affine curvature of this circle is µ = R−
4
3 .

The central angle determined by two consecutive points is
2α = 2π

n .
Simple calculations show that the affine length of the arc

of parabola Pi is given by

Li =
2R

2
3 sin α

cos
1
3 α
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(a) Estimated affine length vs number of samples.
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(b) Estimated integral of the affine curvature vs number of samples.

Figure 6: Convergence of the estimators for the positive curvature case with R = 1.

and that the affine normal is orthogonal to the chord connect-
ing (xi, yi) and (xi+1, yi+1), with norm

||ni|| = R−
1
3 cos−

1
3 α.

Thus the estimated affine curvature is given by

ni ∧ ni+1 = R−
2
3 cos−

2
3 (α) sin (2α) .

The estimated affine length of the circle is then

n−1∑

i=1

Li = 2R
2
3 (n− 1)

sin
(

π
n

)

cos
1
3

(
π
n

)

which converges to the affine length of the circle when
n →∞ (see Figure 6(a)). And the estimated affine length

µ(P ) = (n− 2) R−
2
3 cos−

2
3

(π

n

)
sin

(
2π

n

)

converges to 2πR−
2
3 = Lµ, when n →∞ (see Figure 6(b)).

Figure 7: Twenty affine equally spaced samples of a hyperbola.

Negative curvature. In this example, we consider the case
of a curve with constant negative affine curvature (see Fig-
ure 7). By making an affine transformation of the plane, we

can assume that this curve is a hyperbola xy = c, for some
c > 0. Consider points (xi, yi), 1 ≤ i ≤ n, in the hyperbola
at an affine distance s = L/n, where L = (2c)

1
3 ln (xn/x1)

is the affine length of the arc of hyperbola between (x1, y1)
and (xn, yn). The affine curvature of this hyperbola is µ =
−(2c)−

2
3 .

Denote by r = xi+1
xi

= yi

yi+1
. From the fact that the affine

lengths between (xi, yi) and (xi+1, yi+1) along the hyper-
bola is (2c)

1
3 ln(r), one conclude that r does not depend on

i. Straightforward calculations shows that the area of the sup-
port triangle defined by (xi, yi) and (xi+1, yi+1) is given by
c (r−1)3

2r(r+1) and so the affine length of Pi is given by

Li =
(

4c

(r + 1)r

) 1
3

(r − 1).

Also, the affine normal to Pi is given by

ni =
(

r2

2(r + 1)c2

) 1
3

(xi, yi+1) ,

and so

ni−1 ∧ ni =
(

r + 1
4cr2

) 1
3

(1− r).

We conclude that

n−1∑

i=1

Li = (n− 1)
(

4c

(r + 1)r

) 1
3

(r − 1)

converges to L (see Figure 8(a)). And that the estimated
affine curvature of the arc

n−1∑

i=2

ni−1 ∧ ni = (n− 2)
(

r + 1
4cr2

) 1
3

(1− r)

converges to (2c)−
1
3 ln (xn/x1) = Lµ (see Figure 8(b)).

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 19–26. IEEE Press, 2006.
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(a) Estimated affine length vs number of samples.
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(b) Estimated integral of the affine curvature vs number of samples.

Figure 8: Convergence of the estimators for the negative curvature case, with c = 1.
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Figure 9: Convergence of the estimators for a cubic with y = x3, x ∈ [0, 2
3
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√
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6 Experimental results
We have tested the above estimates on samples analytic

curves. In section 5 Convergence issues, the cases of constant
affine curvature were tested. In this section, we test the cubic
y = x3, 0 ≤ x ≤ 2

3
4
√

2.
In Figure 9, we can see the convergence of the affine

length and of the affine curvature when the number of sam-
ples grows. It is interesting to observe that the affine length
is a non-increasing function of the number of samples, as
pointed out in [8]. Another important property of our esti-
mators is their affine invariance, which can be observed in
Figure 10.

7 Affine curve reconstruction
In this section, we consider the following problem to

validate our parabolic polygon model and the related affine
estimators: Given a finite sequence of points {x1, · · · ,xn}
and tangent lines {l1, · · · , ln} passing through the points, we
look for a parabolic polygon that is in some sense close to the
original curve. We propose an algorithm that will combine

the affine invariance of our model with the ability to use
the tangent as intrinsic information. The estimator of affine
curvature proposed above is used in the algorithm in a way
similar to [6, 5].

The algorithm works as follows: In the first step of the
algorithm one look at the pair (xi, li) , (xj , lj) which have

x1

x2

x3

x4

x5

x6

x

Figure 11: Point x5 is at the smallest affine distance of x, but it is
rejected because it would induce a big affine curvature.
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Figure 10: Invariance with respect to the affine transform x 7→ 3
4
x, y 7→ 4

3
y: our estimators gave exactly the same values for both cases:

lengths 0.254381, 0.250007, 0.250001 and 0.250000, curvatures 11.0122, 1.40326, and 0.583464.

(a) µmax = 1. (b) µmax = 10. (c) µmax = 105.

Figure 12: Reconstruction close to an inflection point.

the smallest affine distance. Then we proceed in a greedy
fashion to find the next pair (xk, lk) which is at a minimum
affine distance of one of the ends of the reconstructed curve.
We validate he optimal pair (xk, lk) as follows:

1. If the affine curvature of arc (xi, li) , (xj , lj) , (xk, lk)
is smaller than threshold µmax, the point is accepted.

2. If the affine curvature is bigger than µmax, two things
may occur:

(a) either the pair (xk, lk) induces an undesirable
deviation, and the point is rejected,

(b) or we are close to a higher order tangent, such as
an inflection point, and the point is accepted.

As we have seen in section 3 Affine length and curvature, cases
2(a) and 2(b) can be characterized by the product nij ∧ njk

between the affine normals of each parabolic arc: nij ∧ njk

is small in case 2(a) and big in case 2(b) (see Figure 11).
If the point is rejected, we continue our greedy selection

for completing the curve with another pair (xk, lk). If the
point is close to a higher order tangent, the algorithm com-
pletes the curve with (xk, lk), but stops on that end (Fig-
ure 12), as explained below.

In our algorithm, we reconstruct only the convex arcs of
the curve, since passing through inflection points is very del-
icate. The parameter µmax controls how much we can get
close to an inflection point. The bigger we take µmax, closer
we can get to the inflection point (see Figure 12). But we can-
not take µmax very big because in this case we would accept
undesirable deviations (see Figure 11).

We compared our parabolic polygon model with affine
estimates with the classical Euclidean polygon model. The
algorithm used for the Euclidean reconstruction is based
on [5], using the curvature as described in the affine case
but not the information of the tangents. In Figure 13, we can
observe how the intrinsic use of the tangent information of
our model improves the result. In Figure 14, we can check
the affine invariance of the reconstruction algorithm, and the
non–affine invariance of its Euclidean version. Moreover, we
can see the importance of the tangent information at cusps.

8 Conclusion
In this work we propose the parabolic polygon as a model

for discrete curves that combine intrinsically the position
and the tangent line of each sample. This model has the
property of being affine invariant, which makes it particu-

The corresponding work was published in the proceedings of the Sibgrapi 2006, pp. 19–26. IEEE Press, 2006.
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(a) Affine reconstruction. (b) Euclidean reconstruction.

Figure 13: Our intrinsic use of tangents improves the reconstruction.

larly interesting for computer vision. Based on this model,
we propose an affine length estimator and an affine curvature
estimator. The validity of these estimators was checked on a
curve reconstruction application.

As future work, we intend to consider the corresponding
problems in 3D. One of the important questions in this
context is how to estimate the affine area and curvatures of a
surface given by sample points and normals.
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(a) Affine reconstruction. (b) Euclidean reconstruction.

(c) Affine reconstruction. (d) Euclidean reconstruction.

Figure 14: Affine invariance of the reconstruction.
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