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Abstract. Image and geometry processing applications estimate the local geometry of objects using information
localized at points. They usually consider information about the tangents as a side product of the points coordinates.
This work proposes parabolic polygons as a model for discrete curves, which intrinsically combines points
and tangents. This model is naturally affine invariant, which makes it particularly adapted to computer vision
applications. As a direct application of this affine invariance, this paper introduces an affine curvature estimator
that has a great potential to improve computer vision tasks such as matching and registering. As a proof–of–concept,
this work also proposes an affine invariant curve reconstruction from point and tangent data.
Keywords: Affine Differential Geometry. Affine Curvature. Affine Length. Curve Reconstruction.

Figure 1: Parabolic polygon (right) obtained from a Lissajous curve with 10 samples vs. straight line polygon ignoring tangents (left).

1 Introduction
Computers represent geometric objects through discrete

structures. These structures usually rely on point-wise in-
formation combined with adjacency relations. In particular,
most geometry processing applications require the normal of
the object at each point: either for rendering [15], deforma-
tion [4], or numerical stability of reconstruction [1]. Modern
geometry acquisition processes for curves or surfaces usu-
ally provide measures of the normals together with the point
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measures. These normals can also be robustly estimated only
from the point coordinates [11, 9], or from direct image pro-
cessing [5, 16].

However, the normal or tangent information is usually
considered separately from the point coordinate, and the def-
inition of geometrical objects such as contour curves or dis-
crete surfaces depends rather on the point coordinates. Al-
though modeling already makes intensive use of this infor-
mation, in particular with Bézier curves, only recent devel-
opments in reconstruction problems proposed to incorporate
these tangents as part of the point set definition [1].

This work proposes a discrete curve representation that
intrinsically combines points and tangents: the parabolic
polygons (Figure 1), introduced in section 3 Parabolic poly-
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gons. This model is naturally invariant with respect to affine
transformations of the plane. This makes it particularly
adapted to computer vision applications, since two con-
tours of the same planar object obtained from different per-
spectives are approximately affine equivalent [17]. For ex-
ample, based on this parabolic polygon, estimators for the
affine length and the affine curvature are defined (see section
4 Affine Estimators). These estimators, being affine invariant,
have a great potential to improve computer vision tasks like
matching and registration [12].

The affine length estimator considered in this paper is
well-known: It has been adapted from [13, 14], and shown
to be optimal in [10]. With respect to affine curvature esti-
mators, the only works we are aware dealing with this issue
are [13, 14] and [2]. They all estimate affine curvature from
five consecutive samples only in convex position, interpolat-
ing them by a conic. The affine curvature estimator that is
proposed in this paper is more concise. It estimates the affine
curvature from just three consecutive samples, which is well
suited for applications such as reconstruction, interpolation
and blending. The convergence properties of both estimators
are described at section 4 Affine Estimators.

The application to curve reconstruction presented in sec-
tion 5 Affine Curve Reconstruction is a variation of [7], where
the Euclidean distance computation is replaced by affine esti-
mates. This leads to an affine invariant curve reconstruction,
which works well at least on synthetic examples. Moreover,
it was observed that the introduction of the curvature in the
algorithm significantly improves the stability of the recon-
struction, thus pledging for the validity of the affine curva-
ture estimator.

This paper is an extension of [6], where we handled
mainly convex curves. The main new aspect of the present
paper is the inclusion of double parabolic connections in the
construction of parabolic polygons for non-convex curves,
and the corresponding extensions of the reconstruction algo-
rithm. Subsequently a local, affine invariant criterion for lo-
cating these double parabolic connections is introduced. This
new aspect, although delicate in affine geometry, is critical to
the practical use of the proposed model in computer vision.

2 Review of Affine Geometry
This section quickly recalls the definitions of affine quan-

tities that are relevant to this work. The reader can find a
detailed presentation of affine geometry of plane curves in
Buchin’s book [3].

Affine invariance. Consider a smooth curve γ in the plane
and A an arbitrary linear transformation of the plane with
determinant 1. A scalar function g on γ is affine invariant
if, for every p ∈ γ, g (A (p)) = g (p). Similarly, a vector-
valued V on γ is affine invariant if, for every p ∈ γ,
V (A (p)) = A ·V (p). This notion is more precisely referred
to as equiaffine invariant, ant it is the only affine invariance
considered in this paper. If one considers also invertible

linear transformations with arbitrary determinant, then the
transformed functions are multiplied by constants.

(a) Basic affine invariant quantities

Affine length. Consider a curve γ parameterized by x(t),
t0 ≤ t ≤ t1, and assume that it is convex, i.e., that x′ (t) ∧
x′′ (t) does not change sign, where the cross product X ∧ Y
denotes the determinant of the 2 × 2 matrix whose columns
are the vectors X and Y . Assuming that x′ (t)∧ x′′ (t) > 0,
the number

s (t) =
∫ t

t0

(x′ (t) ∧ x′′ (t))
1
3 dt

is called the affine parameter and L = s (t1)−s (t0) is called
the affine length of the curve.

Affine tangent and normal. The affine invariant vectors
v (s) = x′ (s) and n (s) = x′′ (s) are called affine tangent
and affine normal, respectively. The affine tangent is tangent
to the curve, but the affine normal is not necessarily perpen-
dicular to the curve in the Euclidean sense. In fact, these vec-
tors are characterized by the equation

v (s) ∧ n (s) = 1. (1)

Affine curvature. Differentiating equation (1), one can see
that x′ (s) and x′′′ (s) are co-linear : x′′′ (s) = −µ (s)x′ (s).
The factor µ (s) is called the affine curvature. Equivalently,
one can define the affine curvature by µ (s) = x′′ (s) ∧
x′′′ (s).

Comparison with Euclidean geometry. In Euclidean ge-
ometry, points have zero length, lines have zero curvature
and circles have constant curvature. By comparison, in affine
geometry, lines have zero length, parabolas have zero curva-
ture and conics have constant curvature.

(b) Affine behavior close to inflection points

x(s)
t(s)

n(s)

Figure 2: Affine tangents and normals close to an inflection point.

In order to extend [6] to non–convex curves, it is impor-
tant to understand the behavior of the affine quantities near
a higher order tangent. Considering a convex arc x (s) be-
ginning at an inflection point x(0), its affine length remains
finite close to the inflection, while the affine curvature µ (s)
tends to ∞, when s → 0, and

∫ s1

0
µ (s) ds = ∞ for any

s1 > 0.
This behavior can be well observed on the curve x(t) =

(t, tn), n ≥ 3, 0 ≤ t ≤ 1, which has a higher order tangent
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at t = 0. Easy calculations lead to an affine parameterization
of the curve:

x (s) =
(
cs

3
n+1 , cns

3n
n+1

)
with c =

(
(n + 1)3

27n(n− 1)

) 1
n+1

.

The affine tangent and normal are obtained by derivation:

v(s) =
(

3c

n + 1
s

2−n
n+1 ,

3ncn

n + 1
s

2n−1
n+1

)
and

n(s) =

(
3c (2− n)
(n + 1)2

s
1−2n
n+1 ,

3ncn (2n− 1)
(n + 1)2

s
n−2
n+1

)
.

Observe that the affine tangent tends to an infinite length
vector in the positive x-direction, when s → 0, while the
affine normal tends to an infinite length vector in the x-
direction, but in the negative sense (see Figure 2). The affine
curvature is given by

µ (s) =
(n− 2) (2n− 1)

(n + 1)2
s−2.

Hence µ (s) → ∞, when s → 0, and
∫ s1

0
µ (s) ds = ∞, for

any s1 > 0.

3 Parabolic polygons

A discrete curve model usually consists of a discrete set of
ordered samples in the plane. When each sample carries only
its coordinates, straight line polygons are natural continuous
representations for it, since line segments have Euclidean
curvature 0. When the samples carry also the information
of the direction of the tangent line, parabolas are a natural
connection between two consecutive samples since they have
null affine curvature.

To be more precise, consider ordered samples (xi, li),
1 ≤ i ≤ n, where li is a line passing through point xi

representing the tangent (see Figure 1(left)). In this section
we shall define the parabolic polygon of these samples,
which is a curve consisting of arcs of parabolas passing
through the points and tangent to the lines of the samples
(see Figure 1(right)).

The parabolic polygon is constructed in two steps (Fig-
ure 3): The basic parabolic polygon (section 3(a) Basic
parabolic polygon) is a concatenation of single parabolas
between consecutive samples. However, this concatenation
may generate incoherencies in the tangent orientation. These
incoherencies can be corrected by choosing one of the
parabolas and replacing it by a double parabolic connection
(section 3(b) Double parabolic connections).

Figure 3: A parabolic polygon:
the basic parabolas in blue,
with the double parabolic con-
nection in brown. Observe that
the basic part contains inflec-
tion points.

xi

xi+1

xi+2

xi-1
zi-1

zi

zi+1

Figure 4: The support points
and triangles of a parabola
sampling.

(a) Basic parabolic polygon

Parabola between two samples. Let us first construct a
continuous interpolation between two consecutive samples
(xi, li) and (xi+1, li+1). If li is not parallel to li+1, there
exists a unique parabola Pi passing through xi and xi+1 and
tangent to li and li+1 at these points. Denote by zi the point
of intersection of the lines li and li+1. The triangle whose
vertices are xi, zi and xi+1 is called the support triangle (see
Figure 4). The orientation of the support triangle is defined
by the sign of ∆i = (zi − xi) ∧ (xi+1 − zi), and its area
will be denoted by Ai.

If the orientation of the support triangle is positive, the
affine tangent vectors of Pi at points xi and xi+1 are respec-
tively

vi,1 = − 2
Li

(xi − zi) and vi,2 =
2
Li

(xi+1 − zi)

where Li = 2A
1/3
i is the affine length of Pi. If the orien-

tation of the support triangle is negative, the signs must be
interchanged. In both cases, the affine normal and the affine
parameterization of Pi are given by

ni =
2
L2

i

(xi + xi+1 − 2zi) and γi (s) = xi+svi,1+
s2

2
ni.

Coherence in parabolas concatenation. To concatenate
properly two parabolas Pi−1 and Pi, the tangent vectors at
the common point xi must have the same orientation. This
coherence can be checked by the relative positions of points
zi−1, xi and zi in the line li (see Figure 4). Denote by λi be
the collinearity factor,

zi − xi = λi(xi − zi−1).

If λi > 0, sample i will be called coherent. If λi < 0, then
sample i will be called incoherent (see Figure 5(a)). Observe
that, if the curve is convex, all the samples are coherent,
although the concatenation of parabolas at coherent samples
may also contain inflection point, as shown on Figure 3.
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(b) Double parabolic connections

Simplifying hypothesis. This section describes how to han-
dle incoherent parabolas or parallel tangent lines at consec-
utive samples. In what follows, we shall assume that these
problems do not occur for three consecutive samples. This
hypothesis is not essential, but it makes the description of
the model close to inflection points easier. Besides, if the
samples are obtained with sufficiently density from a smooth
curve with a finite number of inflection points, the hypothesis
is valid.

xi+2

xi+1

xi

xi-1

∞

i

zi+1

zi-1

Pi

Pi-1z

(a) An incoherent sample at xi: zi

and zi−1 are on the same side of xi.

xi+2

xi+1

xi

xi-1

zi

zi+1

zi-1

Pi

Pi-1
~

Pi-1
~

∞

(b) Substituting the wrong con-
nection Pi−1 may generate self-
intersections.

xi+2

xi+1

xi

xi-1

zi

zi+1

zi-1

Pi

Pi-1

~

∞

(c) Substituting the right connection
Pi.

x
i+1/2

x
i

x
i+1

z
i-1

z
i+1

α

α

(d) Double parabola construc-
tion.

Figure 5: Criterion to construct connections from an incoherent
sample: substituting the wrong connection by a double parabolic
arc may create self-intersection. A pair of parabolas at the inflec-
tion point can then be constructed in an affine invariant manner.

Connections at incoherent samples. Incoherent samples
always appear close to an inflection point of the original
curve. If λi < 0, the parabolas Pi−1 and Pi cannot be con-
catenated. One should then substitute one of the parabolas,
Pi−1 or Pi, by a pair of parabolas concatenated at a virtual
inflection point that will be called a double parabolic con-
nection.

The criterion to decide which parabola to discard is illus-
trated on Figure 5: If zi and xi−1 are on different sides of
the line connecting xi and xi+1, then one substitutes Pi−1.
If they are in the same side, then one substitutes Pi. This pro-
cedure was proposed in order to avoid local self-intersections
of the curve.

Constructing double parabolic connections. To construct
the double parabolic connection between Pi−1 and Pi+1, one
must find a reasonable point-tangent position to represent an
inflection point and its tangent. The choice of the exact in-
flection point has too many degrees of freedom to be deter-
mined only from (xi, li) and (xi+1, li+1). We thus propose

here a simple, affine invariant heuristic based on the previous
and next sample (see Figure 5(d)).

Consider the support points zi−1 and zi+1 and define
zi−1 = xi+α(xi−zi−1) and zi+1 = xi+1+α(xi+1−zi+1),
where α is fixed to 0.46, which approximates optimally a
regularly sampled cubic (see Figure 5(d)). The point of inter-
section of the diagonals of the quadrilateral xizi−1xi+1zi+1

is denoted xi+ 1
2

and the line that passes through zi−1 and
zi+1 is denoted li+ 1

2
. The double parabolic polygon is then

the concatenation of the parabola defined by (xi, li) and
(xi+ 1

2
, li+ 1

2
) with the parabola defined by (xi+ 1

2
, li+ 1

2
) and

(xi+1, li+1).
We can summarize the double parabolic connection pro-

cedure as follows:

1. [Coherence test] Compute the sign of λi for each
sample (xi, li) ;

2. [Valid parabola test] When λi < 0, if (zi−1 − xi) ∧
(xi − xi−1) and (xi+1 − xi)∧ (xi − xi−1) have op-
posite signs, discard Pi−1. Otherwise discard Pi.

3. [Double parabola construction] For each discarded
parabola Pi, insert the sample (xi+ 1

2
, li+ 1

2
) between

samples i and i + 1.

4 Affine Estimators
This section proposes an affine length estimator for any

smooth curve and an affine curvature estimator for convex
curves, both based on the parabolic polygon approximation
of the curve. We further study the convergence of these
estimators from the theoretical and experimental points of
view.

(a) The affine length and affine curvature estimators.

The affine length of a parabolic polygon P is the sum
of the affine lengths Li of the parabolic arcs Pi, where Li

was defined from the area of the support triangle at section
3(a) Basic parabolic polygon. This affine length can be used
as an estimate of the affine length of any curve. The affine
invariance of this affine length estimator can be seen in
Figure 6.

To obtain an estimator for the integral of the affine cur-
vature of a convex curve C, observe that the affine curvature
integral can be approximated by

µ(P ) =
∫

C

µds =
∫

C

(n′ (s) ∧ n (s)) ds

≈
∑ (

n(s+∆s)− n (s)
∆s

∧ n (s)
)

∆s

≈
∑

n(s+∆s) ∧ n (s) =
n−1∑

i=2

ni−1 ∧ ni.

For a parabolic polygon, the affine curvature is zero except
at the samples, where it is concentrated. One can define the
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Figure 6: Affine length estimations on a spiral with 100 samples,
before and after an affine transformation.

affine curvature at a convex sample i by

µi =
ni−1 ∧ ni

1
2 (Li−1 + Li)

.

The affine curvature at an inflection point is ∞. These esti-
mators have the important property of being affine invariant
(see Figure 7).
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Figure 7: Affine estimations on a lemniscate with 51 samples,
before and after an affine transformation.

(b) Convergence: Theoretical results

Consider a convex arc C in the plane. Let S =(
(xi, li)

)
, 1 ≤ i ≤ n be a sampling of C, where li is the

line tangent to C at xi. Denote by h the maximum affine
length between sample points along C. We say that the affine
length estimator is convergent if L (S) =

∑n−1
i=1 Li con-

verges to the affine length L of the curve, when h → 0.
Similarly, the affine curvature estimator is said to be conver-
gent if µ (S) =

∑n−1
i=2 ni−1 ∧ ni converges to

∫
C

µ (s) ds,
when h → 0.

In [13], it is shown the convergence of the affine length
estimator. The same paper proves that if S1 ⊂ S2, then

L(S1) > L(S2). Moreover, [10] proves that this estimator
is of order 4: |L (S) − L| = O(h4). In the rest of this
subsection we prove the convergence of the affine curvature
in the particular case of constant affine curvature curves
and equally spaced samples. A general proof in the convex
case can be found at http://www.mat.puc-rio.br/
˜tomlew/convergence_puc.pdf.

Constant positive curvature. In this example, we consider
the case of a curve with constant positive affine curvature.
By making an affine transformation of the plane, we can
assume that this curve is a circle. Consider points (xi, yi),
1 ≤ i ≤ n, in a circle of radius R at an affine distance
s = L/n, where L = 2πR

2
3 is the affine length of the

circle [3]. The affine curvature of this circle is µ = R−
4
3 .

The central angle determined by two consecutive points is
2α = 2π

n .
Simple calculations shows that the affine length of the arc

of parabola Pi is given by

Li =
2R

2
3 sin α

(cos α)
1
3

and that the affine normal is orthogonal to the chord
connecting (xi, yi) and (xi+1, yi+1), with norm ‖ni‖ =
(R cosα)−

1
3 . Thus the estimated affine curvature is given by

ni ∧ ni+1 = (R cos (α))−
1
3 sin (2α). The estimated affine

length of the circle is then
n−1∑

i=1

Li = 2R
2
3 (n− 1)

sin
(

π
n

)
(
cos

(
π
n

)) 1
3

which converges to the affine length of the circle when
n →∞. And the estimated affine length

µ(P ) = (n− 2)
(
R cos

(π

n

))−2
3

sin
(

2π

n

)

converges to 2πR−
2
3 = Lµ, when n →∞.

Constant negative curvature. In this example, we consider
the case of a curve with constant negative affine curvature.
By making an affine transformation of the plane, we can
assume that this curve is a hyperbola xy = c, for some c >
0 [3]. Consider points (xi, yi), 1 ≤ i ≤ n, in the hyperbola
at an affine distance s = L/n, where L = (2c)

1
3 ln (xn/x1)

is the affine length of the arc of hyperbola between (x1, y1)
and (xn, yn). The affine curvature of this hyperbola is µ =
−(2c)−

2
3 .

Denote by r = xi+1
xi

= yi

yi+1
. From the fact that the affine

lengths between (xi, yi) and (xi+1, yi+1) along the hyper-
bola is (2c)

1
3 ln(r), one conclude that r does not depend on

i. Straightforward calculations shows that the area of the sup-
port triangle defined by (xi, yi) and (xi+1, yi+1) is given by
c (r−1)3

2r(r+1) and so the affine length of Pi is given by

Li =
(

4c

(r + 1)r

) 1
3

(r − 1).
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Figure 8: Convergence of the affine estimators when the number of
samples grows.

Also, the affine normal to Pi is given by

ni =
(

r2

2(r + 1)c2

) 1
3

(xi, yi+1) ,

thus

ni−1 ∧ ni =
(

r + 1
4cr2

) 1
3

(1− r).

We conclude that

n−1∑

i=1

Li = (n− 1)
(

4c

(r + 1)r

) 1
3

(r − 1)

converges to L. And that the estimated affine curvature of the
arc

n−1∑

i=2

ni−1 ∧ ni = (n− 2)
(

r + 1
4cr2

) 1
3

(1− r)

converges to (2c)−
1
3 ln (xn/x1) = Lµ.

(c) Convergence: Experimental results

The proposed estimators were tested with samples of
smooth curves, sometimes with isolated singular points. The
affine lengths were estimated for all curves, but the total cur-
vature,

∫
C

µds, only for convex curves. The local curvature
at a fixed point was calculated for all curves. The results con-
firm the theoretically proved convergence of the affine length
and curvature estimators (see Figure 8).

Calabi et al. [13] estimate, from 5 points, the affine curva-
ture at the central point, while in our method, this estimation
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Figure 9: Comparison of the relative total curvature error using
[13] and our technique.

is obtained from 3 pairs (xi, li). The experimental compar-
ison of both methods is shown in Figure 9. In these experi-
ments, our method had shown a faster convergence.

5 Affine Curve Reconstruction
This section proposes a curve reconstruction algorithm

from points and tangents to test the validity of the proposed
model and estimators on a simple and practical application.
This is the typical case, for example, of a shape extracted
by edge detection from an image, or from direct measures
produced by laser scanner. Given a finite set of point-line
samples {(x1, l1) , · · · , (xn, ln)}, where li represent the tan-
gent line at point xi, how to sort these pairs to obtain a
parabolic polygon representing a “reasonable” curve? If the
samples are obtained from a smooth curve, one expects the
reconstructed parabolic polygon to be “close” to the original
curve. The solution proposed here uses intrinsically the tan-
gent information and is affine invariant. It is a greedy method
adapted from [7] for the parabolic polygon model. It further
uses our affine curvature estimator in a way similar to [8].

x1

x2

x3

x4

x5
x6

x

Figure 10: Point x5 is at the smallest affine distance of x, but it is
rejected because it would induce a big affine curvature (left area),
while connection with x1 induces a smaller curvature (right area).

(a) The reconstruction algorithm

The algorithm starts with the pair ((xi, li) , (xj , lj))
which have the smallest affine distance. The algorithm then
proceeds greedily, looking for the pair (xk, lk) which is at a
minimum affine distance of (xj , lj), with three restrictions:

1. it avoids samples which were already connected to two
other samples ;

2. it rejects big changes in affine length, say L(xj ,xk) >
rL(xi,xj), for some r > 0 ;

3. it rejects big affine curvatures, say µ(xi,xj ,xk) > κ,
for some κ > 0.

This last condition is added to avoid undesirable deviations
as illustrated on Figure 10, but it can also indicate proximity
of an inflection point. Observe that the affine length compu-
tation uses the double parabolic connection in case of inco-
herence at a sample. The algorithm can get stuck when all
the free samples would induce big curvatures or big affine
length. In such case, the algorithm returns to the initializa-
tion phase, looking for the smallest available connection.

The corresponding work was published in Journal of Mathematical Imaging and Vision, volume 29, numers 2-3, pp. 131–140. Springer, 2006.
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(b) Reconstruction results on synthetic examples

Figure 11 provides a visual comparison between the pro-
posed algorithm and the Euclidean reconstruction algorithm.
The algorithm used for the Euclidean reconstruction is based
on [7]. As expected, the use of the tangent information im-
proves dramatically the result. It is also interesting to observe
the affine invariance of the proposed algorithm. The effect of
the parameter k, that controls undesirable deviations, can be
observed in figures Figure 12 and Figure 13.

(a) Euclidean (b) affine (c) affine

Figure 11: Euclidean and affine reconstructions of a singular
curve, before and after an affine transformation: colors indicate
the reconstruction order, from blue to red.

6 Conclusion and Future Work
Conclusion. In this work the parabolic polygon is pro-
posed as a model for discrete curves that takes into account
the position and the tangent line at each sample. Based on
this model, an affine length estimator and an affine curvature
estimator are proposed. The model and the estimators are
affine invariant, which shows they have a great contribution
potential in computer vision tasks like matching and regis-
tering. This work proposes also a curve reconstruction algo-
rithm based on the model. The validity of the affine length
and affine curvature estimators were checked in this algo-
rithm.

(a) κ = 1 (b) κ = 10 (c) κ = 100

Figure 12: Influence of the curvature threshold on the reconstruc-
tion of a Lissajous curve.

Future work. From the theoretical point of view, an inter-
esting problem, related to the use of projective differential
invariants in computer vision, is to look for the delicate prob-
lem of projective invariant models and projective invariant
estimators.

Another interesting generalization is related to the recon-
struction problem for surfaces in 3D: given a set of sample
points and normals in 3D, how to describe an affine invariant

(a) κ = 2.5 (b) κ = 3.5 (c) κ = 4.5

Figure 13: Influence of the curvature threshold on the reconstruc-
tion of a rosace.

model of the corresponding surface. Closely related to this
question is the definition of good estimators for the affine
area and affine curvatures of a surface.

From the practical point of view, the effective use of the
estimators in computer vision tasks is certainly a possibility
that should be explored.
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