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THOMAS LEWINER, HÉLIO LOPES AND GEOVAN TAVARES

Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
{tomlew, lopes, tavares}@mat.puc--rio.br.

Abstract. Morse theory is a powerful tool in its applications to computational topology, computer graphics and
geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a
version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting
objects (particularly meshes) to applications of Morse theory.

Once a Morse function has been defined on a manifold, then information about its topology can be deduced
from its critical elements. The main objective of this paper is to introduce a linear algorithm to define optimal
discrete Morse functions on discrete 2-manifolds, where optimality entails having the least number of critical
elements. The algorithm presented is also extended to general finite cell complexes of dimension at most 2, with
no guarantee of optimality.
Keywords: Morse Theory. Forman Theory. Computational Topology. Computational Geometry and Object
Modeling.

Figure 1: An optimal discrete Morse function on a Möbius strip, with 2 critical cells.

1 Introduction
Applications of computational topology [6, 23] in com-

putational science and engineering are many and growing.
These include meshing, morphing, feature extraction, data
compression, surface coding and more, in areas such as com-
puter graphics, solid modeling, computational medicine and
astrophysics. In applications to computer graphics, being
able to detect topological singularities helps designing more
robust and efficient algorithms in time and space.

Morse theory [19] is a fundamental tool for investigating
the topology of smooth manifolds. Particularly for computer
graphics, many applications have been induced [8, 21, 14]
from the smooth case.

Morse proved that the topology of a manifold is very
closely related to the critical points of a real smooth map
defined on it (i.e., the points where the gradient vanishes).
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The simplest example of this relationship is the fact that if
the manifold is compact, then any continuous function must
have a maximum and a minimum. Morse theory provides a
significant refinement of this observation.

Forman’s discrete Morse theory. Recent insights in Morse
theory by Forman [10, 11] extend several aspects of this fun-
damental tool to discrete structures. Its combinatorial aspect
allows computation completely independent of a geometric
realization: the algorithm does not require any coordinate or
floating-point calculation. Forman proves several results and
provides many applications of his theory [12, 13], and new
ones have appeared recently [2].

Once a Morse function has been defined on a smooth
manifold, then informations about its topology can be de-
duced from its critical points. Similarly to the smooth case,
Forman proved that the topology of a cell complex can be
partly read out of the critical cells of a discrete Morse func-
tion defined on it.
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Main results. We provide here a linear algorithm to com-
pute optimal discrete Morse functions on 2–manifolds,
where optimality entails having the least number of criti-
cal elements. We also extend this linear algorithm to build
valid discrete Morse functions for general finite cell com-
plexes of dimension 2 (non–manifolds). Reaching optimal-
ity in the general case is here proven to be NP-hard with
no polynomial approximation (see section 3(c) The optimality
problem and its complexity). However, the experiments of our
algorithm on non-manifolds lead to optimal results in most
of the cases (see section 5 Results).

Prior work. As far as we know, there have been no results
yet in computing explicitly a discrete Morse function with
optimality requirements. The work of Babson and Hersh [1]
gives a construction and some interpretation of Forman func-
tions on cell complexes out of lexicographic orders. The con-
struction of such lexicographic orders is not mentioned in [1]
and the optimality of the resulting function depends on it.

Outline. In section 3 Elements of discrete Morse theory, we
give a short introduction to Forman’s theory. The basics el-
ements of topology we will need for the proof of the opti-
mality are grouped in section 2 Basic concepts of combinatorial
topology. The algorithm, its proof and its extension are de-
scribed in section 4 Computing optimal discrete Morse functions
and section 4(c) Extension to general 2–cell complexes. We fi-
nally show some of the results in section 5 Results.

2 Basic concepts of combinatorial topology
(a) Finite cell complex

Figure 2: A triangulated torus model.

A cell complex is, roughly speaking, a generalization of
the structures used to represent solid models: it is a consistent
collection of cells (vertices, edges, faces. . . ). Figure 2 gives
an example of such a structure. A complete introduction to
cell complexes can be found in [18].

More formally, a cell α(p) of dimension p is a set home-
omorphic to the open p–ball {x ∈ Rp : ‖x‖ < 1}. When the
dimension p of the cell is obvious, we will simply denote α
instead of α(p).

A cell complex K is built by starting off with a discrete
collection of 0–cells (vertices) called K0, then attaching 1–
cells (edges) to K0 along their boundaries, obtaining K1,
then attaching 2–cells (faces) to K1 along their boundaries,
and so on, giving spaces Kn for each n.

A cell complex will be said to be finite when it is built
out of a finite number of cells. In this work, we will consider
only finite (and thus regular) cell complexes.

A p–cell α(p) is a sub–face of a q–cell β(q) (p < q) if
α ⊂ closure (β). If q = p + 1, we will use the notation
α(p) ≺ β(q)., and say that α and β are incident.

(b) Homology groups and Betti numbers

Choice of Z2 homology The topology of a 2–manifold is
completely described by its orientability and its Betti num-
bers, which are the rank of its homology groups. We will use
the Betti numbers together with the weak Morse inequalities
(section 3(b) Morse inequalities) to provide a lower bound to
the number of critical cells of a discrete Morse function.

In the weak Morse inequalities, we are free to choose
any field for the coefficient of the homology groups. We
will choose here the field Z2, as this will generate higher
values for the Betti numbers (in the presence of torsion, Z2

homology “counts” some torsion as cycles). For the reader
interested only in computing the Betti numbers, a classical
algorithm is described in [5].

We would like to suggest [4] for a basic introduction to
homology theory, and [7] for a concise presentation of Z2

homology.

The chain group and the boundary operator Let K be a
cell complex. A p–chain c(p) is a subset of p–cells in K.

c(p) =
∑

σ(p)∈K

cσ.σ(p)

The coefficients cσ ∈ Z2 only counts whether the cell
belongs to the chain or not. The addition of two p–chains is
trivially defined element–wise on each cell. In other words,
the addition of two p–chains is the symmetric difference of
the two sets. The group Cp of all p–chains is called the chain
group. The empty set is the zero element of Cp.

The boundary ∂p(σ(p)) of a p–cell σ(p) is the collection of
its (p− 1)–dimensional faces, which is a (p− 1)–chain. The
boundary operator ∂p is extended to p–chain by linearity:

∂p


 ∑

σ(p)∈K

cσ.σ(p)


 =

∑

σ(p)∈K

cσ.∂p

(
σ(p)

)

A p–cycle z(p) is a p–chain whose boundary is null,
∂p

(
z(p)

)
= 0; and a p–boundary b(p) is the boundary of

a (p+1)–chain, b(p) = ∂p+1

(
c(p+1)

)
.

As the boundary operators ∂p preserve the addition from
Cp to Cp−1, the set of the p–boundaries im∂p+1 and the set
of the p–cycles ker∂p are subgroups of Cp.

Homology groups and Betti numbers An essential prop-
erty of the boundary operators is that the boundary of every
boundary is empty (∂p ◦ ∂p+1 = 0). Therefore, every p–
boundary is a p–cycle and Im∂p+1 ⊆ ker∂p.

For each p, the group Hp = ker∂p / Im∂p+1 is called the
p–th homology group (with coefficients in Z2).
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Homology groups are commutative and finitely–
generated (as the cell complex is finite). Thus, they can
be written as Hp

∼= Zβp

2 , where βp is called the p–th Betti
number. The basic interpretation for Betti numbers is a
way of counting “holes” in a given complex: β0 counts the
number of connected component, β1 is the dimension of
the vector–space of 1–cycles in a surface, β2 the voids of a
solid, and so forth.

(c) Combinatorial manifold

Figure 3: A part of a triangulation (on the left) and its dual
pseudograph (on the right)

An n–manifold is a topological space where each point
has a neighborhood homeomorphic to either Rn or R+ ×
Rn−1. The set of points whose neighborhood is R+ ×Rn−1

is called the boundary of the manifold. It can be shown [18]
that if a finite cell complex is an n–manifold, then each (n-
1)–cell is the sub–face of either one or two n–cells.

Thus, the (n-1)–cells of a manifold can be thought as
links of a pseudograph (i.e., a non–simple graph in which
both loops and multiple edges are permitted) whose nodes
are the n–cells of the manifold. This pseudograph will be
called the dual pseudograph of the manifold. In particular,
the cells of the boundary will be represented by loops in
the dual pseudograph. For example, Figure 3 shows a part
of a triangulation and its dual pseudograph (which is here a
simple graph).

The classification theorem The classification theorem for
surfaces [4] completely characterizes the topology of 2–
manifolds in terms of their Euler characteristic and their
orientability. The following theorem is a simple consequence
of it:

Theorem 1 For a connected 2–manifold K, orientable or
not:

H0 (K) ∼= Z2 and

H2 (K) ∼=
{
Z2 if K has no boundary
0 if K has a boundary

In this paper, we will consider 2–manifolds with possibly
many connected component. As our algorithm processes
on each component separately, we will be able to use this
theorem to guarantee the optimality of the result in the case
of 2–manifolds.

3 Elements of discrete Morse theory
Forman’s discrete Morse theory relates the topology of a

cell complex to the critical cells of a discrete Morse function.
For a complete introduction, see Forman’s presentations [12,
13] and Chari’s works [2, 3]. The focus of this paper is to
provide an optimal construction of discrete Morse functions
– optimal in the sense that the function has the minimum
possible number of critical cells in each dimension. We
will introduce some basics of Forman’s theory in the next
paragraphs, and discuss the optimality problem in the last
one.

(a) Discrete Morse function
Definition 2 (Discrete Morse function [10]) A function f
mapping each cell of a cell complex K to a real value
is a discrete Morse function if it satisfies, for every cell
σ(p) ∈ K:

#
{

τ (p+1) Â σ(p) : f (τ) ≤ f (σ)
}
≤ 1

#
{

υ(p−1) ≺ σ(p) : f (υ) ≥ f (σ)
}
≤ 1

So there is at most one “counterbalancing” sub–face
τ (p+1) of codimension 1 and one “counterbalancing” bound-
ing cell υ(p−1) for every cell σ(p). It is easy to show that a
cell cannot have both of them. A cell that has none of them
will be called critical:

Definition 3 (Critical Cell [10]) A cell σ(p) is a critical cell
of f if:

#
{

τ (p+1) Â σ(p) : f (τ) ≤ f (σ)
}

= 0

#
{

υ(p−1) ≺ σ(p) : f (υ) ≥ f (σ)
}

= 0

We will denote by mp (f) the number of critical cells of
dimension p.

Examples One can define a trivial discrete Morse function
by f

(
σ(p)

)
= p, for which every cell is critical (see Fig-

ure 4(a)). Of course, not all functions are valid as discrete
Morse function: on Figure 4(b) for example, the face (with
value 4) and the edge with value 0 are assigned values invalid
for definition 2. The critical cells of Figure 4(c) are assigned
values 0 and 5.

(b) Morse inequalities

We aim to construct optimal Morse functions, i.e., func-
tions with the minimum number of critical cells. To ensure
we reached the optimality, we need a lower bound to the
number of critical cells. The weak Morse inequalities pro-
vide such a bound in terms of the Betti numbers. Those in-
equalities are valid whatever the field is chosen to calculate
the Betti numbers [11].

Preprint MAT. 03/02, communicated on December 3rd, 2001 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) trivial (valid) (b) invalid (c) valid (optimal)

Figure 4: Examples of trivial, invalid and optimal discrete Morse functions on a small cell complex with 5 vertices, 6 edges and 1 face.

Theorem 4 (Weak Morse inequalities [11]) For a given fi-
nite cell complex K, any discrete Morse function f defined
on it satisfies:

∀p, mp (f) ≥ βp (K)
χ (K) =

∑
p

(−1)p · βp (K) =
∑
p

(−1)p ·mp (f) .

(c) The optimality problem and its complexity

Optimality problem
Instance: A pair (K, n), where K is a finite cell complex

of dimension at least 2 and n is a non-negative
integer

Question: Does it exist a discrete Morse function on K
with at most n critical cells?

The Morse optimality problem reduces, in the gen-
eral case, to the Collapsibility problem, which is proven
in [9] to be a MAX–SNP hard problem, i.e., an NP-hard
problem for which any polynomial approximation algo-
rithm can lead to a result arbitrary far from the optimum:

Collapsibility problem
Instance: A pair (K,n), where K is a finite simplicial

complex of dimension 2 and n is a non-negative
integer

Question: Does K contain a subset F of 2–simplicies of
cardinality at most n such that K \ F collapses?

Let’s consider a simplicial complex K of dimension at
most 2. Suppose we find a discrete Morse function f on
K having the minimum possible number of critical cells.
The number of critical vertices is the number of connected
components. From the weak Morse inequalities, we deduce
that the discrete Morse function has the minimum number of
critical faces. Then, [11, Theorem 3.3] proves that the subset
F of the critical 2–cells is a solution to the Collapsibility
problem.

However for 2–manifolds, we provide an algorithm that
reaches optimality in linear time (see section 4 Computing

optimal discrete Morse functions). For the case of general finite
cell complexes of dimension 2 (see section 4(c) Extension
to general 2–cell complexes), our algorithm is still linear and
generates a valid discrete Morse function, which is optimal
in most of the cases we have experimented (see section
5 Results).

4 Computing optimal discrete Morse functions
Our construction defines first the discrete Morse function

on a spanning tree of the dual pseudograph, and then on its
complement graph. The optimality of the resulting function
relies on the weak Morse inequalities.

(a) Algorithm outline

Given a finite cell complex K that has the topology of
a 2–manifold, the algorithm proceeds on each connected
component in 4 steps:

1. Construct a spanning tree T on the dual pseudograph
of K.

2. If K has a boundary, add one boundary edge of K to
T .

3. Define the discrete Morse function on T .

4. Define the discrete Morse function on the complement
of T .

First step: Construction on a face–spanning tree. The
face–spanning tree T can be constructed by any of the stan-
dard algorithms [22]. In particular, we can use some mesh
compression’s strategies. For example, Figure 6 shows a
spanning tree constructed by the Edgebreaker’s compression
algorithm [17].

Second step: Addition of one edge of the boundary. We
test whether the manifold has a boundary during the first
step. If we found a boundary edge, we add it to T . This
edge will be a loop in the dual pseudograph, so T becomes
a pseudograph. For example on Figure 5, the boundary edge
(represented by a loop) has been added to T .

The corresponding work was published in Computational Geometry: Theory and Applications, volume 26, numer 3, pp 221–233. Elsevier, 2003.
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(a) A triangulated torus (with the
identified vertices and edges)

(b) Edgebreaker mesh compres-
sion traversal.

(c) The discrete Morse function on
the spanning tree T . The root is the
only critical face, having value 25.

(d) The complement graph G and
its discrete Morse function: 1 crit-
ical vertex (0) and 2 critical edges
(9).

Figure 6: Triangulated torus. The Edgebreaker mesh compression traversal can be used to define the spanning tree T of step 1: the critical
edges correspond to the handles of [17].

(a) The cylinder model with
8 square faces.
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(b) The face–spanning tree T (the loop
represents the boundary edge added at step
2).
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(c) The discrete Morse function on the complement graph G.

Figure 5: Algorithm’s execution on a small cylinder model: 1
critical vertex and 1 critical edge with values 0 and 12.

Third step: Definition of the function on T . We select a
root of T , and we assign to every node of T (i.e. 2–cells of
K) its height in the tree plus v + 1, where v is the number
of 0–cells of K. We assign to every edge of T (i.e. 1–cells of
K) the minimum value of its two end nodes (see Figure 5).

Fourth step: Definition of the function on the complement
of T . We will now consider G, the complement of T : G is
a simple graph whose nodes are the vertices of K, and whose
edges are the edges of K that are not represented in T . We
build another spanning tree U on G. We assign to every node
of G its edge distance to a selected root of U , and to every
edge of U the maximum value of its two end nodes. This can
be done at the same time as building the spanning tree U .
We finally assign the value v to each edge of G \ U (see the
critical edge of Figure 5 with value 12).

(b) Proof and analysis of the algorithm

Valid discrete Morse function. From the construction on
the trees T (step 3) and U (step 4), the resulting function f
respects the inequalities of Definition 2 (for each connected
component K). Moreover, there is exactly one critical ver-
tex: the root of U . If K has no boundary, the root of T will
be the unique critical face. In the other case, there is no crit-
ical face in K.

We now just need to check that the edges of K are
assigned valid Morse values. From the value of the constant
v, the critical edges are those of G \ U , which are assigned
a value greater than the value of any vertex, and inferior to
the value of any face (es). The inequalities of Definition 2
there are v nodes in G, so at most v different regular valuare
obvious for each cell represented in the trees T and U . From
the value of the v, every cell of T has a value greater than
any cell of G. Thus, those inequalities are strictly respected
between the edges of T and the vertices of G, and between
the edges of U and the faces in T .

Thus, our construction yields a valid discrete Morse func-
tion with exactly 1 critical vertex (m0 (f) = 1), possibly
many critical edges, and 1 critical face (m2 (f) = 1) only if
K is a manifold without boundary (m2 (f) = 0 otherwise).

Optimal discrete Morse function. From Theorem 1, we
obtained the same values m0 (f) and m2 (f) as the values of
β0 (K) and β2 (K) as the Betti numbers in the same cases.
From the second weak Morse inequality (Theorem 4), we
deduce m1 (f) = β1 (K). Therefore, we reached our lower
bound: the function built by the algorithm is a valid, optimal
discrete Morse function.

Complexity. Once the spanning trees are built, the algo-
rithm visits each node and edge at most once. Thus, steps
2, 3 and the second part of step 4 are of linear complexity.
Building a spanning tree can be linear with a simple greedy
algorithm. Therefore, the whole algorithm is linear in time.

(c) Extension to general 2–cell complexes

If the given complex does not have the topology of a
2–manifold, some edges can be incident to 3 faces and the
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above proof does not state anymore. However, the algorithm
still produces a valid discrete Morse function, which is op-
timal in several cases. In fact, a cell complex of dimension
2 is not a manifold if it combines some of the following 3
elements (see Figure 7):

(1) Dangling edge: an edge not incident to any face.

(2) Singular vertex: a vertex that, when removed, discon-
nects incident faces.

(3) Non–regular edge: an edge incident to 3 or more face.

(1) Dangling edge. That case reduces to a graph glued to a
complex. For a graph, β1 is the number of edges that cannot
be included in a spanning tree. This graph will be processed
in step four of the algorithm. Thus the number of critical
edges is still β1 : the algorithm still reaches the optimality in
that case.

(2) Corner vertex. This case corresponds to several cell
complexes glued at a vertex. For steps one, two and three
of the algorithm, each of those cell complexes is processed
as distinct connected component. During step four, the algo-
rithm will generate only one critical vertex. Therefore, the
algorithm still reaches the optimality in that case.

(3) Non–regular edge. That case is the most difficult one.
We will only give a heuristic that always build valid discrete
Morse function, but we know from section 3(c) The optimality
problem and its complexity that, for some very particular cases,
the resulting functions can be arbitrary far from the optimum.

In that case, we will first remove from the dual pseudo-
graph the edges that are incident to 3 nodes or more (i.e.
the non–regular edges). The algorithm then runs normally
through steps one to four, and the non–regular edges that
cannot be included in the spanning tree of step four will be
critical.

5 Results

(a) Reaching optimality

We tested our algorithm on more than 150 models from
various types: triangulations, quadrangulations and general
polygons; manifolds and non-manifolds; models with a con-
sistent connectivity and topology and raw scans or VRML
importation with deficient topology. The algorithm always
builds a valid discrete Morse function. For all the man-
ifolds cases, the resulting function was optimal. For the
non-manifolds complexes (in particular for the examples of
Moriyama and Takeuchi [20]), the function had at most 4 re-
dundant critical cells. The experimental results on a Pentium
III, 550 MHz, confirm the linear complexity (Figure 10(a))
and the independence of the complexity from topology (Fig-
ure 10(a)).

(b) Mixing with geometry

Our construction is completely independent of the geom-
etry. This advantage of Forman’s discrete Morse theory ap-
pears here on two points. First, the whole algorithm is done
without any floating–point operation. Second, it is possible
to add some external constraints, for example geometrical
ones, without loosing optimality. There are different con-
straints we can add on our discrete function:

– The face–spanning tree T can be chosen to be a mini-
mal spanning tree. This leads to a time complexity in
O(#K · log #K).

– The loop added at step two can minimize the same
function, in order to have the root of the face–spanning
tree at a minimal position.

– The roots of the face–spanning trees T of step one and
U of step four, can also be at a minimal position.

(a) Without geometrical constraint (b) With geometrical constraint

Figure 8: Two discrete gradient vector fields on a 2–sphere, both
with 2 critical cells.

The way we include geometric constraint does not change
the optimality of the resulting function. For example, Fig-
ure 8 shows two discrete gradient vector field on a 2–sphere,
both with 2 critical cells. This can be used to build a discrete
Morse function with localized critical points, as on Figure 9.
Moreover, Forman proved in [11] that for a given cell com-
plex K and a discrete Morse function f defined on it, the cell
complex L built out of the only critical cells of f is homo-
topy equivalent to K. This corresponds in the smooth case to
the handlebody decomposition [16].

6 Future works
We introduced a scheme for constructing discrete Morse

function on finite cell complexes of dimension 2. This con-
struction is linear in time in all cases, and is proven to be
optimal in the case of 2-manifolds.

This algorithm has been extended for arbitrary finite di-
mensions in [15], without proof of optimality. However, the
experimental results showed our algorithm gave an optimal
result in most of the cases. This opens the question of which
conditions on the cell complex would ensure the optimality
of the resulting function.

Forman’s theory seems to have still a huge potential of
applications, particularly in computer graphics. More specif-
ically, we are interested in solid mesh compression.

The corresponding work was published in Computational Geometry: Theory and Applications, volume 26, numer 3, pp 221–233. Elsevier, 2003.
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(a) dangling edge. (b) singular vertex. (c) non–regular edge.

Figure 7: 3 non–manifold cases: 1 critical vertex and 2 critical faces (squares).

(a) Execution time versus the number of cells of the cell com-
plex K: the complexity is linear.

(b) Ratio execution time / size of K versus the number of
critical cells of K: independence.

Figure 10: The critical steps of the extension of a torus.

(a) Critical face (b) Collapses (c) More collapses

(d) Second critical
edge

(e) First critical edge (f) Critical vertex

Figure 9: Steps of the retraction of a torus with geometrical con-
straint, with 1 critical vertex, 2 critical edges and 1 critical face.
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