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Abstract. This work emerged from the following observation: usual search procedures for octrees start from the
root to retrieve the data stored at the leaves. But since the leaves are the farthest nodes to the root, why start from
the root? With usual octree representations, there is no other way to access a leaf. However, hashed octrees allow
direct access to any node, given its position in space and its depth in the octree. Search procedures take the position
as an input, but the depth remains unknown. This work proposes to estimate the depth of an arbitrary node through
a statistical optimization of the average cost of search procedures. Since the highest costs of these algorithms are
obtained when starting from the root, this method improves on both the memory footprint by the use of hashed
octrees, and execution time through the proposed optimization.
Keywords: Octree. Hashing. Quadtree. Geometric Modelling. Data Structures.
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Figure 1: Since the leaves are the farthest nodes to the root, why start from the root to look for the leaves? An optimal initial level greatly
reduces the search costs: (left) an octree refined to separate each vertex of the Stanford bunny; (middle) the histogram of the number of octree
leaves per depth; (right) cost of searching for a leaf starting from different depths.

1 Introduction
The local geometry of discrete objects is generally based

on groups of nearby elements. Therefore, Geometry Pro-
cessing relies heavily on search procedures such as retrieving
objects at or close to a given position. Some representations
of discrete objects, such as grids or meshes, contain expli-
citly some of the results of these procedures. In that sense,
they provide one extreme of the execution time/memory
space trade off. Unstructured representations such as point
sets stay on the other extreme.

In both situations, independent localization structures
usually complement the object proper data structure. Those
allow, for example, computing local properties of points
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sets such as normals or curvatures; triangulating sampled
surfaces through local algorithms such as moving least-
squares techniques, or global algorithms using Delaunay
triangulations; testing collision in animation; represent-
ing local physical interaction in simulation and generat-
ing multi–resolution representations of discrete objects. Re-
cently, many techniques use octrees to cluster point sets [10,
2] or render them [1, 3].

The classical search data structures are mostly based on
hierarchical representations, since they reduce locations to
a logarithmic complexity. They include octrees, kd–trees,
multigrids, triangulation hierarchies and more general binary
space partitions (BSP). This paper proposes an improvement
of search procedures for octrees based on statistical mod-
eling of nodes distribution. It works on previously known
space–optimized representations, and improves the execu-
tion time of these procedures.
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Related works. We will focus here on efficient implement-
ations of search methods in octrees. [8] provides a gen-
eral overview of octrees and their applications. Of particu-
lar interest are memory–efficient representations of octrees.
Among those, [4] introduced linear octrees which use the
classical vector representation of fixed valence trees together
with efficient codes for retrieving the position of a node from
its index. Her representation is very compact but represents
only full octrees, i.e. octrees with all the leaves at maximal
depth. More recently, [12] extended the work of [5] with
hashed octrees which represent an octree as a hash table of
nodes, indexed by their Morton codes [7], as detailed in sec-
tion 2 Octree Representations. This representation is both com-
pact and allows direct access of an octree node from its Mor-
ton code.

Search procedures can benefit from the direct access facil-
ity provided by Morton codes. For full octrees, [9] provides
a simple algorithm to generate the Morton codes of the ad-
jacent neighbors. [11] improved the efficiency of the code
computation using integer dilation. This optimized search
has been further extended to other neighbors in [6, chap.
III], starting from the same depth and computing the Mor-
ton codes of the parent or the children of a given node to
complete the traversal. Our work further improves their ap-
proach by extending it to direct search and using a statistical
estimation of the neighbors’ depths.

Contributions. We propose improved search procedures
for hashed octrees to benefit from the direct access offered
by that representation. Compared to classical octree repres-
entations, it reduces both execution time and memory con-
sumption. Compared to previous hashed octree operations, it
maintains the same memory usage and saves execution time.
Although the method relies on a simple statistical model-
ing, it improves on previous methods even in the worst case.
Moreover, the method is not specific to dimension 3, and can
be directly applied to quadtrees or higher dimensional 2d-
trees.

For the hashed octree introduced in section 2 Octree Rep-
resentations, the retrieval of a node by its spatial position and
its depth has an average constant execution time. The main
idea for retrieving the leaf in a given position is to estim-
ate its depth (see section 3 Optimized Search). This involves a
simple statistical modeling (presented in section 4 Statistical
Modeling), which also applies to and improves neighbor re-
trievals. The method improves searches by an average factor
above 15, as shown by the experiments reported in section
5 Experiments.

2 Octree Representations
An octree is a hierarchical data structure based on the

recursive decomposition of a 3D region (see Figure 2). A
node of an octree represents a cube in that region. Each
of the eight children of a node represents one octant of its
parent, and the data is usually stored at the leaves. This
hierarchy of subdivisions is commonly represented by a

directed tree where each node is either a leaf or has eight
children (this work actually includes octrees where a node
can have less than eight children). We will consider here
general octrees, sometimes called variable resolution octrees
since they have leaves at different depths. This section recalls
the basic implementations of octrees and search procedure.
The reader will find a more exhaustive description in [8].
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Figure 2: Quadtree with the node keys, using the following orient-
ation for the nodes bottom-left, top-left, bottom-right, and top-
right.

Classical octree structures. The two most common rep-
resentations of octrees use pointers to allow variable resol-
utions of a tree. The first one relies on an exhaustive tree
representation (see Figure 3(a)): each node has eight point-
ers, one for each of its eight children, and a pointer to the
data. The children pointers are null for leaves, and the data
pointer is null for intermediate nodes. The second one re-
lies on the brother/child tree representation (see Figure 3(b)):
some nodes have a pointer to its first child and to the next
child of its parent, and a pointer for the stored data.

In addition, some implementations add pointers to the
parent to accelerate bottom-up traversals. The second option
uses less memory, but requires more execution time to search
for a given leaf.

Hashed octrees. Another type of octree representation,
more compact, stores the nodes in a hash table, which allows
direct access to any node while avoiding explicit pointers for
the octree hierarchy (see Figure 3(c)). This representation as-
signs to each node a key, which identifies it and serves for
computing its address in the hash table. The key can be com-
puted either from the position of the node inside the octree
hierarchy through a systematic orientation of the octants of
a node (see Figure 4), or from the coordinates of the node in
space. In efficient schemes, the key can be equally computed

The corresponding work was published in Computer Graphics Forum, volume 27, number 6, pp. 1557-1566. Blackwell, 2008.
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(a) Hierarchical representation.

100 101 110 111

1

100111000110000 10010 111111111011100 11101

1111000 1111001 1111010 1111011

(b) Brother/child representation.
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(c) Hashed representation

Figure 3: Three representations for the quadtree of Figure 2.
The hash table uses the three least significant bits of the key: k
mod 23. The octree case is identical.

by both methods. At the same, this allows time to identify
the children of a node by the octant orientation for traversal
algorithms, and to access a node directly from its position for
search procedures.

Morton keys. To our knowledge, the most efficient key
generation mechanisms use the codes of Morton [7]. The
key k (n) of a node n can be generated recursively from the
octree hierarchy: the key of the root is 1, and the key of the
child of n is the concatenation of k (n) with the 3 bits of the
child octant (see Figure 4). With that convention, the depth of
n is ⌊ 1

3 log2 (k (n))⌋ and the key of the parent of n is obtained
by truncating the 3 least significant bits of k (n): k (n) ≫ 3
(shift right by 3 bits).

The key k (n) can also be generated from the depth l
of n and the position (x, y, z) of its center: assuming that
the root is the unit cube [0, 1]3, the key k (n) is computed
by interleaving the bits xi, yj , zk, of x, y and z: k (n) =

X

Y

Z

001 101

011

111

000 100

010

110

Figure 4: Suffixes to append to the parent key to obtain the child
keys.

1xlylzlxl−1yl−1zl−1 . . . x1y1z1 (the codes in the 2D case are
drawn on Figure 2). Interleaving can be accelerated by in-
teger dilation [11].

The hash function assigns to a node n the b least signi-
ficant bits of its key: k (n) mod 2b. It tends to homogenize
the hash table (see Figure 3(c)), in the sense that its entries
are regularly distributed, especially when the octree is un-
balanced. In this paper, we will assume that the hash table is
homogeneous, and thus the access of a node by its key can
be performed in constant time.

Classical search procedures. The search for the data as-
sociated to a spatial position p in an octree consists in find-
ing the leaf containing p and retrieving its data. In pointer
octrees, the only way to access a node is to start from the
root and recursively choose the child whose octant contains
p. This procedure has a complexity proportional to the depth
of the found leaf. It is usually estimated as log8(N), where
N is the number of nodes of the octree, when the tree is bal-
anced, and O(N) in the worst case. This procedure is widely
used for pointerless octrees. Observe that we can avoid stor-
ing the position and size of a node, since they can be deduced
from the traversal.

Some other queries can be performed on an octree: find-
ing the nodes adjacent to a given node n (see Figure 5(a)),
which will be called adjacent neighbors hereafter, and the
nodes which are within a given radius ρ of n (see Fig-
ure 5(c)), which will be called inradius neighbors hereafter.
The usual algorithm also uses a top–down approach. In the
first case, it recurses on all the children that intersect n, and
in the second case the ones that intersect the ball of radius ρ
centered at the center of n. These searches are illustrated on
Figure 6.
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(a) Adjacent neighbors of node 10011.
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(b) Adjacent nodes to 10011 of depth 3.
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Figure 5: The adjacent neighbors search (a) and inradius neighbors search (c). When searching downward in the adjacency search (case 2),
only the keys of the adjacent children are needed (b).

(a) Direct search. (b) Adjacent neighbors search. (c) Inradius neighbors search.

Figure 6: Illustration of the search procedures in 3D, on an octree adapted to the 34,834 vertices of the bunny point set.

Algorithm 1 find(point p): find the leaf containing p.
1: compute the key kmax of p at maximal depth
2: compute the key k of p at depth l̂ using kmax

3: access the node n corresponding to k in the hash table

// Case 2: n is not a leaf
4: while n exists in the hash table do
5: increase by one the depth of k using kmax

6: access the child of n in the hash table with k
7: end while
8: retrieve the last valid access

// Case 3: n is below the leaf
9: while n does not exist in the hash table do

10: decrease by one the depth of k
11: access the parent of n in the hash table with k
12: end while
13: return n

3 Optimized Search
This work emerged from the following observation (see

Figure 1): since the leaves are the farthest nodes to the root,
why start from the root when looking for a leaf? The answer
for the usual octree representation reduces to: there is no
other way to access a leaf. However, with hashed octrees,
a leaf can be directly accessed by its Morton code, which
depends only on the leaf position and depth. The position
is known when looking for a leaf, but its depth may not. The
following algorithms describe how to retrieve a leaf (or more
generally a node) from its position and an estimated depth l̂.
The next section will describe how to estimate the depth of a
leaf.

(a) Direct Search

The direct search procedure of Algorithm. 1:find is a
straightforward application of this idea: In order to find the
(unique) leaf containing a point p, the algorithm generates
the key kl(p) of p at the estimated depth l = l̂. Looking
for the node nl(p) corresponding to that key, three situations
may occur:

1. The node nl(p) is a leaf: the algorithm thus returns

The corresponding work was published in Computer Graphics Forum, volume 27, number 6, pp. 1557-1566. Blackwell, 2008.
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nl(p).

2. The node nl(p) is not a leaf: it means that the estim-
ated depth l is too low, and l is incremented until nl(p)
points to a leaf, which is returned

3. There is no node corresponding to nl(p): it means that
the estimated depth l is too high, and l is decremented
until nl(p) points to a node. The first node is then a
leaf, and the algorithm returns it.

Observe that if the estimated depth is zero, the search starts
from the root and operates with the second case, which
corresponds to the usual hierarchical search. Moreover, the
key does not need to be recomputed in the third case, since
the key of nl−1(p) can be deduced from the key of nl(p) by
truncating the 3 least significant bits. Similarly in the second
case, the key at depth l+1 can be generated from the key at the
maximal depth kmax (p) as above : kl+1 (p) = kmax (p) ≫
3 · (lmax − l−1), which is faster than generating a new key.

(b) Adjacent Neighbors Search

The procedure to find the adjacent neighbors of a node
n (see Figure 5(a)) resembles the direct search, although
it must return a variable number of leaves. We considered
two options to optimize the adjacent node search. First, we
generated the keys of the adjacent neighbors at an optimal
depth l̂ and followed the octree hierarchy toward the leaves.
However, this requires many hash table accesses.

Algorithm 2 adjacent(n): find the adjacent neighbors of n.

1: put into set s the adjacent neighbors ni at depth l (n)
2: for all nodes ni in s do
3: in the hash table, find the node ni

// Case 1: ni is a leaf
4: if ni exists in the hash table and is a leaf then
5: add ni to the result set r

// Case 2: ni is not a leaf
6: else if ni exists in the hash table then
7: insert into s the children of ni adjacent to n

// Case 3: ni is below the leaf
8: else
9: call find(ni) using depth min

n

l̂, l (n)
o

10: add the found node to the result set r
11: end if
12: end for
13: return the result set r

We thus developed a second option for the neighbor
search, presented in Algorithm. 2:adjacent: we generate the
keys of the 26 nodes adjacent to n, with the same depth l (n).
Without statistical optimization, the algorithm would follow
the three cases of the direct search, with the following modi-
fication of the second case, in the spirit of [6]:

For the second case, several keys k (ni) may be gener-
ated at each increment of the depth: there is only one ad-
jacent (l−1)–neighbor if ni is in the diagonal of n, two if

ni shares an edge with n and four if ni shares a face with
n, as illustrated on Figure 5(b) for the 2D case. The keys of
these (l−1)–nodes are systematically generated using a small
lookup table, and the algorithm recurses on each of these ad-
jacent neighbors of depth (l−1).

Since an error of depth estimation in the second case
may result in generating many unused keys, we maintain the
above hierarchical search starting from the 26 adjacent nodes
in the second case. However, the third case can be optimized
in a similar way to the leaf search: if a neighbor of n has a
lower depth than n, we search for it directly at the estimated
depth l̂, if lower than the depth of n. This avoids many in-
termediate lookups in the hash table. Moreover, as opposed
to our first option, it benefits from the fact that, if node n is
already at the deepest level of the octree, at least 7 of its adja-
cent node have the same depth. This optimization is actually
effective, as shown in section 5 Experiments.

(c) Inradius neighbors Search

The search for nodes within a given radius of n mimics
the adjacent neighbor search. The only difference is again
in the second case, since there are eight neighbors of depth
(l −1) for each l–neighbor (instead of 1, 2 or 4), which
involves more key generation and hash table access than the
adjacent neighbor search (see Figure 5(c)). Moreover, if the
radius is greater than 2−l̂, some inradius neighbors may not
be adjacent to n and the initial set {ni} of inradius neighbors
must contain more than 26 nodes. We propose here the same
optimization as for the adjacent node, which restricts it to the
third case of the algorithm and gets similar results.

4 Statistical Modeling

The above algorithms rely on an estimated depth l̂ to look
for the leaf. If we set this depth to zero or lmax, the al-
gorithms always start from the root: the direct and the neigh-
bor search behave like the classical octree traversal, and the
adjacent neighbor search enhances classical procedures only
by avoiding geometrical tests. As we mentioned earlier, since
leaves are the farthest nodes from the root, l̂ = 0 corresponds
to the worst case (maintaining l̂ below the maximal depth).

We will now look for a simple statistical model for l̂ in or-
der to optimize the cost of the search procedures. The com-
putation of l̂ requires a small time overhead during the octree
construction, and can be updated dynamically. Observe that
since the worst case l̂ = 0 is also the most widely used, even
without any optimization for l̂ our method improves on pre-
vious works.

Cost model. The total cost of the search depends on how
many times, on average, each leaf n will be looked for.
We will denote this number by f(n). For example, if we
look for every position in the domain of the octree, f(n) is
proportional to the size of n, which is a power of its depth:
f(n) v 23(lmax−l(n)). If we look for some data related to the
octree structure, such as internal collision detection, we may
choose f(n) v 1.
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Point Set # Nodes Deepest Memory Build Optimization Number of Searches
Level 8ptr BCptr Hash 8ptr BCptr Hash Time Level Point Leaf

(x1000) (MB) (MB) (MB) (msec) (msec) (msec) (msec) (x1000) (x1000)
Sphere 4.4 6 0.2 0.1 45 5.6 5.4 11.1 7.8 4 0.9 3.8
Bunny 144 9 6.9 3.4 50 224 215 187 14.2 7 35 126
Maracanã 190 21 9.1 4.6 51 268 257 230 27.1 21 10 167
David head 395 13 19 9.5 51 726 682 548 32.4 9 100 346
Pig 401 11 19 10 51 772 725 583 38.2 10 100 351
CSG 529 19 25 13 52 819 768 642 50.7 8 82 463
Volcano 551 21 26 13 52 1 043 967 795 50.2 9 133 482
Fighter 723 14 35 17 54 1 584 1 509 1 211 58.6 9 257 632
Deltao 1 210 20 58 29 60 2 466 2 119 1 695 116 12 208 1 058
David 1 534 21 74 37 62 3 124 2 819 2 379 135 10 350 1 342
Rnd Sphere 2 883 18 138 69 82 5 756 5 100 4 053 268 9 500 2 523
Dragon 3 060 21 147 73 85 5 634 5 280 4 286 314 10 438 2 678
Happy 3 617 21 174 87 96 7 227 6 627 5 361 377 10 544 3 165
Blade 5 412 16 260 130 134 11 641 10 079 8 384 518 10 883 4 735
Chair 9 255 18 444 222 223 34 471 24 833 20 076 930 11 1 669 8 098
Rnd Cube 15 675 12 752 376 376 45 867 39 380 31 012 1 202 8 4 000 13 715
Thai Statue 22 296 20 1070 535 535 155 803 106 509 81 446 2 229 12 5 000 19 509

weighted average 632 316 321 68 436 49 213 38 084 354

Table 1: Building and preprocessing times on different point sets: varying density (Maracanã, David head, Pig, Fighter, Deltao), volumetric
(Volcano, Fighter, Deltao, Cube). The building of hashed octree is slightly faster than pointer octrees. The memory consumption is equal for
both cases on big point sets. The preprocessing consists in computing the optimal level and lasts less than one percent of the build time. The
averages are weighted by the octree size. The number of searches are reported for each point set according to the simulated frequency model
(the grid search has a constant number of searches 2097).

Our main assumption is that f(n) depends only on the
depth of n: f(n) = fl. In practice, this means that the
octree is used without geometric bias. Observe that this is
the case for the two examples mentioned above. The average
cost of the search is then the sum on each leaf n of the
cost of searching that leaf multiplied by f(n): cost(l̂) =∑

n∈leaves f(n) · costl̂(n) . Since the cost of searching a leaf
depends only on its depth, and denoting by pl the number of
leaves of depth l, we can write it as a sum indexed by the
depth:

cost(l̂) =
∑

l

pl · fl · costl̂(l) .

Direct Search. As mentioned earlier, we will assume that
the hash table is homogeneous, and that accesses to it are
made in constant time. We model the cost of the three cases
of the direct search as follows: if the depth is correctly es-
timated (case 1), the node is returned directly with a constant
time c. Moreover, since we use a unique key generation for
all the cases, the costs of computing the key of a parent or a
child are equal (cases 2 and 3). Since there are |l − l̂| gener-
ated keys when searching a node at depth d, the cost of that
search is the sum of a constant cost c for the key generation
plus an overhead proportional to the difference |l − l̂|:

cost
(
l̂
)

= c +
∑
l<l̂

pl · fl ·
(
l̂ − l

)
+
∑
l>l̂

pl · fl ·
(
l − l̂

)
We look for the value of l̂ that minimizes that cost. To do so,
we construct a differentiable cost function cost(l̂), and look

for a zero of its derivative, as detailed in the appendix:

dcost

dl̂

(
l̂
)

=
∫ l̂

0

p(l)f(l) dl −
∫ ∞

l̂

p(l)f(l) dl

The optimal cost l̂ is thus the median of the depths of
the octree leaves weighted by the number of times they
are looked for: l̂ must satisfy

∑
l<l̂ pl · fl =

∑
l>l̂ pl · fl.

This median can be dynamically computed during the octree
creation by maintaining a small histogram of the leaves
depth. It can also be approximated by the weighted mean,
which reduces the (already small) preprocessing time.

Adjacent and Inradius Neighbors Search. The estimation
of the depth for the other searches will differ from the
previous one in only one aspect: the statistical model or fl

depends on the node n whose neighbors we are looking for.
Whereas pln depends only on the depth ln = l (n), the
distribution pl depends on n. The optimum thus depends on
each node n. For extensive use of the octree, this optimum
can be computed for each node, and requires storing one
more integer per node. However, since we use this optimum
only in the third cases of the algorithms, where the neighbor
has a lower depth, we may consider that the distribution of
pln and pl are independent. Therefore, we approximate the
optimal depth for all nodes by the optimal depth of the direct
search.
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7 Statistical optimization of octree searches

Point Set Direct Search Find Adjacent Neighbors Find Inradius Neighbors
8ptr BCptr Unopt Ours 8ptr BCptr Unopt Ours 8ptr BCptr Unopt Ours

Sphere 2.17 7.24 11.47 0.58 23.10 23.85 41.55 7.63 28.38 25.39 41.49 0.71
Bunny 2.86 11.28 18.67 0.75 38.34 35.93 59.70 8.70 36.70 35.44 59.26 0.73
Maracanã 6.53 31.21 53.47 0.60 58.98 55.79 95.70 9.12 77.75 76.31 136.91 33.72
David head 3.29 12.98 21.27 0.64 43.57 40.88 68.69 9.43 42.61 40.93 70.30 1.39
Pig 3.71 15.40 25.65 0.71 46.46 43.90 74.64 11.73 53.53 51.59 91.88 10.67
CSG 3.30 13.34 21.98 0.79 40.60 37.75 63.22 9.76 38.79 37.18 62.81 4.57
Volcano 3.28 13.42 22.73 0.71 43.04 40.37 68.74 8.83 40.18 39.43 69.16 2.78
Fighter 3.89 14.82 24.53 1.06 54.70 50.38 86.60 12.88 51.81 49.92 87.79 2.18
Deltao 4.47 18.63 31.64 1.65 49.07 45.56 77.67 11.30 180.30 169.13 332.11 129.28
David 3.58 15.04 26.54 0.87 46.13 42.64 73.64 10.39 43.71 42.17 74.79 11.88
Rnd Sphere 4.50 16.42 27.92 1.59 46.51 42.55 73.15 14.45 42.43 41.42 72.71 9.02
Dragon 3.81 15.88 27.43 1.17 45.53 42.80 74.31 12.79 45.88 44.44 79.03 11.67
Happy 3.80 16.17 28.69 1.21 46.30 43.05 75.37 13.18 48.60 46.39 83.23 15.46
Blade 3.65 15.25 27.98 1.27 44.05 40.89 73.09 13.11 43.84 41.54 75.27 11.45
Chair 3.83 16.38 31.41 2.15 46.56 43.43 80.89 19.34 52.92 50.80 96.60 24.48
Rnd Cube 4.18 14.76 33.54 3.79 51.36 46.69 95.21 27.44 45.34 44.04 84.09 0.96
Thai Statue 3.93 17.38 37.51 3.13 49.99 47.58 94.86 22.43 79.50 77.18 163.46 53.56

average 3.81 15.62 27.79 1.33 45.55 42.59 75.12 13.09 56.02 53.72 98.88 19.09
gain x 3.8 x 15.7 x 26.9 x 1 x 3.8 x 3.6 x 6.2 x 1 x 14.5 x 13.8 x 24.2 x 1

Table 2: Execution time (in microseconds) of our optimized searches, compared to classical top-down searches on classical 8-pointers (8ptr)
brother/child (BCptr) and hash (Unopt) representations. Our optimized direct search returns 15 times faster than brother/child searches,
and between 10% (random volume) and 1090% faster (maracanã) than classical representations. Each time reported is the average of the
searching time for each point of the set. The gain corresponds to the ratio of the pointer search times over our search times.

5 Experiments
We tested our optimization on octrees tracking geomet-

rical objects in two settings: raw searches inside the octree
and within a collision detection context. The tests were per-
formed on a 3GHz Pentium IV machine.

Raw search. We test each of the three proposed search
procedures on octrees adapted to a set of points: the nodes
are subdivided until they contain less than one point of the
set or if their level is maximal (21 since we work with
64-bits keys). The octree build is slightly faster on hashed
octrees, and the optimization time is around one percent of
the build time (see Table 1). In our tests, we fix the hash
function to return the 21 least significant bits of the key.
This generate hash tables of sizes similar to the memory
consumption of pointer representation on the big point sets
we used. We compare our results with the classical top-down
search procedures on classical 8-pointers representation and
brother/child representation and hashed representation (see
Table 2). Searches on unoptimized hashed representation are
slower since the access to the child of a node requires an
access to the hash table. Our algorithm performs in average
15 times faster than the pointer representation. For the other
searches, the performance of our method remains several
times faster.

Moreover, we compare different optimizations depending
on the a priori access frequency f(n) to a leaf of level n, as
described in Section 3. We experiment with three frequency
model: searching for each point of the set (fpoints(n) =
#points ∈ n), for each leaf of the octree (fleaves(n) =

fpoints fleaves fgrid

Search all Points 1.30 1.33 2.45
Search all Leaves 0.95 0.93 1.52
Search on a Grid 1.70 1.66 0.89

Table 3: Average on all the point sets of the execution times (in mi-
crosecons) of the direct search, simulating different frequency mod-
els (lines). Optimizing according to the correct frequency model
(diagonal terms) improves the search performance between 2%
(points) and 92% (grid). The number of searches in each case is
reported on Table 1.

1) and for each voxel of a regular grid 1273 (fgrid(n) =
23(7−l(n))). This optimization is experimentally validated on
Table 3: the searches return significantly faster when we
choose the correct frequency model for the optimization.

Collision detection. We also tested our optimized search
on a real context of collision detection: we simulated a small
ball kicking inside a 3D mesh. Here the octree is adapted
to the triangles of the mesh, and each leaf is eventually as-
sociated with one of the mesh triangles intersecting it. At
each iteration, the algorithm searches the octree for the leaf
containing the ball. If there is a triangle associated with that
leaf, the ball changes direction according to Snell-Descartes
reflection. Since these operations use direct searches intens-
ively, our optimized octree outperforms the classical repres-
entation (see Table 4).
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Surface # trigs # nodes Frame rate
(×103) (×103) 8ptr BCptr Ours

Sphere 2 4 432 11.3 9.0 60.0
Bunny 69 16 671 7.0 5.0 20.4
David 700 11 236 4.6 3.2 7.4
Dragon 871 23 904 5.0 4.1 7.5
Buddha 1 088 19 525 3.9 2.9 4.1

average x 2.5 x 3.3

Table 4: In a collision detection environment where a ball kicks
into a 3D surface, our optimization improves the frame rate (in Hz),
including the whole pipeline from the ball position computation to
the rendering.

6 Conclusions
In this work, we introduced a statistical optimization for

octree searches. The optimization applies to pointer–less
octrees, such as hash table representations. In particular,
these representations allow a direct access of a node from
its key, and replace geometrical tests by bitwise key ma-
nipulations. Within this context, we proposed to search a
node directly at its estimated level, instead of starting from
the root. The resulting algorithms combine the memory effi-
ciency of the hashed octree with an execution time perform-
ance around ten times less than a classical implementation.
The proposed strategy works particularly well on geometric
data with multiple level of details (like the Maracanã model),
but has limited, although positive gain on data with depth
distributions with high variance (like random volume mod-
els). Mixed statistical models may extend this work to more
general geometric data.
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Figure 8: Discrete cost function cost(l̂) and differentiable cost
function cost(l̂) for the bunny: the differentiable cost has a unique
minimum, whose integer part is the minimum of the discrete cost.

A Minimization of the cost

We aim at minimizing the discrete cost function cost(l̂)
defined in section 4 Statistical Modeling (see Figure 8):

cost
(
l̂
)

= c +
∑
l<l̂

pl · fl ·
(
l̂ − l

)∑
l>l̂

pl · fl ·
(
l − l̂

)
+

To do so, we consider a differentiable function cost interpol-
ating the discrete cost function: ∀l̂ ∈ N, cost(l̂) = cost(l̂).
From the intermediate value theorem, the level l̂m includ-
ing the lowest cost cost(l̂) is at a distance less than 1 to a
local minimum cost(lm) of the differentiable function cost:∣∣∣l̂m − lm

∣∣∣ < 1. We will now construct the differentiable
function cost in order to have generically only one minimum
lm, and we will round it to optimize the cost function.

We define cost(l̂) by the following integral :

cost(l̂) = c+
∫ l̂

0

p(l)f(l)
(
l̂ − l

)
dl+

∫ ∞

l̂

p(l)f(l)
(
l − l̂

)
dl

Considering p(l) as a probability density for pl and f(l) as
a density for fl, the differentiable function cost interpolates
the discrete cost function. As a canonical construction, we
define pl by parts on each integer interval [l, l+1]. Each part
is a parabola of area p(l) canceling at the interval bounds
(see Figure 7). With a similar construction for fl, the func-
tions to be integrated in the definition of cost are continuous,
and thus cost is a differentiable function (see Figure 8). For
generic distributions pl and f(l), this function has a unique
local minimum lm, which can be computed by differenti-
ation:

dcost

dl̂

(
l̂
)

=
d

dl̂

(
c +

∫ l̂

0

p(l)f(l)
(
l̂ − l

)
dl+∫ ∞

l̂

p(l)f(l)
(
l − l̂

)
dl

)
=

d

dl̂

(
l̂ ·
∫ l̂

0

p(l)f(l) dl +

−
∫ l̂

0

p(l)f(l) · l dl+∫ ∞

l̂

p(l)f(l) · l dl +

−l̂ ·
∫ ∞

l̂

p(l)f(l) dl

)
=
∫ l̂

0

p(l)f(l) dl + l̂ ·
(
p(l̂)f(l̂)

)
− p(l̂)f(l̂) · l̂

−
(
p(l̂)f(l̂) · l̂

)
−
∫ ∞

l̂

p(l)f(l) dl − l̂ ·
(
−p(l̂)f(l̂)

)
=
∫ l̂

0

p(l)f(l) dl −
∫ ∞

l̂

p(l)f(l) dl

Since this minimum is unique, it must be close to the
minimum of the discrete cost (see Figure 8).
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