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Abstract. Morse theory has been considered to be a powerful tool in its applications to computational topology,
computer graphics and geometric modeling. Forman introduced a discrete version of it, which is purely combina-
torial. This opens Morse theory applications to a much larger scope.

The main objective of this work is to illustrate Forman’s theory. We intend to use some of Forman’s concepts
to visually analyze the topology of an object. We present an algorithm to build a discrete gradient vector field on a
cell complex as defined in Forman’s theory.
Keywords: Morse Theory. Forman Theory. Vector Field Visualization. Computational Topology.

Figure 1: The gradient vector field on a figure eight knot model [20].

1 Introduction
Morse theory is a fundamental tool for investigating the

topology of smooth manifolds. Particularly for computer
graphics, many applications have been devised [9, 27, 18,
19]. Also in the new field of computational topology [7,
29], Morse theory has been used to devise topology based
algorithms and data structures [8, 23]. The aim of this work
is to visualize a similar tool for discrete structures (see
Figure 1).

Morse proved that the topology of a manifold is very
closely related to the critical points of a real smooth map
defined on it [26]. Morse theory is one of the most powerful
tools to understand the topology of a manifold.
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The recent results in Morse theory by Forman [11, 12]
extended several aspects of this fundamental tool to cell
complexes. This theory has already been used in a more
theoretical context [4, 5]. The main goal of this work is to
visually investigate topological aspects of a geometric or an
abstract model, by using this theory.

The paper is organized as follows. In section 2 Basic
concepts, we will briefly introduce the notion of cell complex,
define discrete gradient vector field and its critical elements
as defined in Forman’s theory, and state a very nice result of
Forman on homotopy. In section 3 Hypergraphs and Hypertrees
we will need some definitions of hypergraph theory, which
are slightly different from the classical ones [3]. In section
4 Algorithm, we will introduce our algorithm to build those
gradient fields, trying to reach optimality. This algorithm is
proven to give a minimal number of critical cells for the case
of 2-manifolds [21]. Reaching the minimum in the general
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case is MAX SNP hard [10]. However, our algorithm shows
to give a reasonable number of critical cells in quadratic
time. We will illustrate some applications to visualization in
the last section.

2 Basic concepts
This section aims to give familiarity with Forman’s the-

ory. For a given cell complex, discrete Morse theory as in-
troduced by Forman can be built on a class of discrete gradi-
ent vector field and its critical elements. We will define those
notions in the following paragraphs.

Similarly to the classical Morse Theory, Forman proved
that the topology of a cell complex is related to its critical el-
ements in a very strong way. More precisely, a cell complex
with a discrete gradient vector field V is homotopy equiva-
lent to a complex composed of only the critical elements of
V .

For a complete presentation of Forman’s theory and its
application, see [11, 12, 13, 14].

(a) Cell Complexes

A cell complex is, roughly speaking, a generalization of
the structures used to represent solid models: it is a consistent
collection of cells (vertices, edges,. . . ).

More formally, a cell α(p) of dimension p is a set homeo-
morphic to the p-ball {x ∈ Rp : ‖x‖ ≤ 1}. When the dimen-
sion p of the cell is obvious, we will simply denote α instead
of α(p).

A cell complex K of dimension n is a collection of p-
cells, 0 ≤ p ≤ n, such that every intersection of the closure
of two cells of K is also a cell of K. A complete introduction
to cell complexes can be found in [25].

A p-cell α(p) is a face of a q-cell β(q) (p < q) if α ∈ β.
We will use the notation α(p) ≺ β(q), and say that α and β
are incident.

In this paper, we will only consider finite cell complexes,
i.e. complexes with a finite number of cells.

(b) Forman’s discrete gradient vector fields

Forman’s theory relies on admissible functions on a cell
complex, or equivalently their gradient vector field. We
chose here to introduce the theory from the second point of
view, although our construction of a vector field can be done
in the same way to define discrete Morse function.

Definition 1 (Combinatorial vector field) A combinatorial
vector field V defined on a cell complex K is a disjoint
collection of pairs {α(p), β(p+1)} of incident cells : α(p) ≺
β(p+1).

For such pairs, V (α) = β and V (β) = 0. If a cell σ does
not belong to any pair, then V (σ) = 0.

We will represent this paring with an arrow from α(p) to
β(p+1).

A non-trivial closed V -path is an alternate sequence of r
p- and (p+1)-cells α0, β0, . . . , αr, βr, αr+1 = α0 satisfying
:

V (α(p)
i ) = β

(p+1)
i and β

(p+1)
i ≺ α

(p)
i+1 6= α

(p)
i .

Definition 2 (Discrete gradient vector field) A combinato-
rial vector field V will be called a discrete gradient vector
field if there is no non-trivial closed V -path.

(c) A simple example

In the example of Figure 2, the discrete gradient vector
field V is represented by arrows, from a cell of the complex
to its image by V : from an edge to a face, and from a vertex
to an edge.

The corresponding Hasse diagram (Figure 3) represents
every cell by one node. The faces (2-cells) are aligned on
top rank, the edges (1-cells) on the middle one and the
vertices (0-cells) on the bottom rank. A link between two
nodes symbolizes that the corresponding cells are incident.
We linked by a red line paired cells. Blue lines represent the
incidences we selected for the spanning tree, as we will do
in the algorithm (see section 4 Algorithm.

The Hasse diagram are drawn as a directed graph with the
AT&T software named GraphViz - dot [16].

(d) Critical cells

Morse proved that the topology of a manifold is related to
its critical elements. Forman gave an analogous result, with
the following definition for the critical cells.

Definition 3 (Critical Cells) A cell α is critical if it is not
paired with any other cell, i.e.:

V (α) = 0 and α /∈ Im (V )

In the example of Figure 2, critical cells are drawn in red:
there is one critical vertex and one critical edge. In the Hasse
diagram of Figure 3, red nodes represent those critical cells.

The number of critical cells is not a topological invariant,
as it depends on the discrete gradient vector field defined.
For example, an empty discrete vector field (i.e. no cells
are paired) would have all its cells critical. Our algorithm is
proven to give a minimal number of critical cells for the case
of 2-manifolds [21]. Reaching the minimum in the general
case is MAX SNP hard [10]. However, our algorithm gives a
reasonable number of critical cells in quadratic time.

(e) Homotopy properties

Forman proved that a cell complex with a discrete gradi-
ent vector field V is homotopy equivalent to a complex built
with exactly one cell for each critical element of V . In the
example of Figure 2, there is one critical vertex and one crit-
ical edge: the corresponding complex has the homotopy of a
circle.

Homotopy equivalence means continuous deformation
(see [1]), and Forman gave an explicit way of doing this de-
formation.

From homotopy theory, we know there is exactly one crit-
ical vertex (1-cell) per connected component of the complex.

The corresponding work was published in Visualization and Mathematics III, pp. 95–112. Springer, 2002..
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Figure 2: A cell complex with its discrete gradient field.

2-cells:

1-cells:

0-cells:

Figure 3: The Hasse diagram with the pairing.

Starting from that vertex, we can follow the gradient to go
from one cell to the incident ones, and from those to their
paired cells, and so on as on Figure 4. Critical cells are not
paired, so this route stops at those, and forks at regular cells.

Forman proved that the inverse routes, without the critical
parts, are deformation retracts, so do not alter the homotopy.
The routes that end with a critical cell can also be retracted
as above if we glue back the critical cell on the remaining
cells. Thus, the critical cells represent the modification of
the homotopy in this route.

On Figure 4 we see this route at different steps. This
corresponds to cutting a differentiable manifold at different
heights, as in classical Morse theory [26], although Forman’s
theory is completely independent of the geometry of the
complex.

3 Hypergraphs and Hypertrees
We need here to generalize the notion of graphs. For

example, in the triangulation of a solid, an edge can be
incident to more than one face. Thus the graph whose nodes
are the triangles of the triangulation, and whose links joins
triangles that share an edge would not be an ordinary graph:
such links can have more than two end nodes.

(a) Simply oriented hypergraphs

We use here a slightly different structure of hypertrees
than the classical ones. A complete introduction to hyper-
graphs can be found in [3] for more details.

Definition 4 (Hypergraph) A hypergraph is a pair (N, L).
N is the set of nodes. The elements of L are family of nodes,
and are called hyperlinks.

We will classify hyperlinks into the regular hyperlinks (or
shortly, link), which join two distinct nodes as in ordinary
graphs, and the non-regular hyperlinks, which loop on one
node or join three nodes or more.

We will give a hypergraph a simple orientation by distin-
guish one node in every non-regular hyperlink. We will call
that node the source node of the hyperlink lk and write nlk.
The other nodes of lk will be called destination nodes of lk.

A node can be the source of at most one link. The regular
hyperlinks are not necessarily oriented.

(b) Illustration

Figure 5: A part of the dual hypertree resulting while processing a
solid 2-sphere.

The graph of Figure 5 represents a simply oriented hyper-
graph. Every regular link (in blue) has not yet a meaningful
orientation (it represents the gradient vector field).

The non-regular hyperlinks are of two kinds: those inci-
dent to only one node (boundary links in orange), and those
incident to more than two nodes (in green). In both cases,
exactly one node is the origin of the non-regular hyperlink.

(c) Hypertrees
Definition 5 (Regular components) The regular compo-
nents of a hypergraph (N, L) are the connected components
of the ordinary graph (N,R), where R is the set of regular
hyperlinks.

An hypercircuit in a simply oriented hypergraph is a
sequence of hyperlinks lk1, lk2, . . . , lkr where :

– lki and lki+1 share a node, with the convention
lkr+1 = lk1 : lki ∩ lki+1 6= ∅.
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(a) Original complex (b) One retraction triangle / boundary edge (c) One retraction triangle / edge

(d) Passing below a critical cell (e) One retraction vertex / edge (f) Last steps until the critical vertex

Figure 4: The inverse route of the gradient of last example

– if lki+1 is a non-regular hyperlink, the shared node of
lki and lki+1 is the source node of lki+1 : lki∩lki+1 =
nlki

Definition 6 (Hypertree) We will say that a simply oriented
hypergraph (N,L) is a hypertree if the 3 conditions below are
satisfied :

1. Every regular component of (N, L) is an ordinary tree.

2. There is at most one source node in each regular
component.

3. (N,L) has no hypercircuit.

(d) Example

On Figure 6 for example, we can see different regular
component in blue. They are isolated or connected by a non-
regular hyperlink (in green). Those hyperlinks in green form
a kind of tree, respecting the above definition 6.

The regular component only have one source node. This
source node is the one incident to a boundary link (orange
loops) or to a non-regular hyperlink (on the dark green arrow
side).

4 Algorithm
In this section we will introduce our algorithm to de-

fine a discrete gradient vector field for a given cell complex.
This algorithm’s validity and analysis will be published else-
where.

The algorithm is optimal for surfaces [21], in the sense
that it minimizes the number of critical cells. But the general
case has been proven to be MAX SNP hard, i.e. any polyno-
mial approximation can be arbitrarily far from the optimal.
However, our algorithm shows to give a reasonable number
of critical cells.

(a) Outline

Let us consider a finite cell complex K of dimension n.
The algorithm consists in the following steps :

1. In the first step, we select all n-cells, with some inci-
dent (n−1)-cells, as explained in section 4(d) Selecting
cells of the dual hypertree. The algorithm optimality re-
lies on this step, and its complexity is quadratic in the
worst case. Elsewhere it has a linear complexity.

2. We then define the vector field for the selected cells as
presented in section 4(c) First steps: construction on dual
hypertrees. The cells of K not selected in the last step
form again a complex K ′. As every n-cell is selected
during the first step, K ′ has dimension at most n− 1.

3. So we repeat those steps until the unselected cells form
a complex of dimension 1, i.e. a graph. At last, we
build the vector field on that graph as explained in
section 4(b) Last step: construction on graphs.

Figure 7: First step : selecting
faces and edges in a spanning
tree fashion.

Figure 8: Last step : process-
ing the remaining vertex/edge
graph.

Working again on the example of Figure 2, we see on Fig-
ure 7 and Figure 8 the two steps of the algorithm. During the

The corresponding work was published in Visualization and Mathematics III, pp. 95–112. Springer, 2002..
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5 Visualizing Forman’s discrete vector field

Figure 6: The dual hypertree resulting while processing a model of S2 × S1.

first step, the vector field is defined on a dual tree contain-
ing all faces (see section 4(c) First steps: construction on dual
hypertrees and section 4(d) Selecting cells of the dual hypertree).
The unpaired vertices and edges form another cell complex,
actually an ordinary graph. During the second and last step,
the vector field is defined on it.

(b) Last step: construction on graphs

An ordinary graph is a pair (N, L). N is a set which
elements are called nodes. L is a family of pairs of nodes (i.e.
duplicated edges are allowed), whose elements are called
links. Such a graph is an ordinary tree if it is connected and
contains no cycle.

We know from the topology of a graph that any graph is
homotopy equivalent to a node with loops. From the vector
field point of view, we have to pair every node except one,
leaving the loops unpaired.

We build a spanning tree (with any of the classical meth-
ods) of the nodes of the graph. All the links which are not in
the tree will remain unpaired, and thus be critical. We then
choose a root node r for the tree, which will also be left un-
paired. Then, every link {r, s} incident to r will be paired
with their other end node s. We repeat the process on all
those nodes m, and so on until the leaves are reached. Fi-
nally, we have paired all the nodes and links of the spanning
tree, except r.

As the tree contains no cycle, the resulting vector field is
admissible as a discrete gradient vector field. On Figure 9,
we can visualize the vector field on a graph resulting of the
process of a model of Poincare’s homological sphere [17].
There are two cycles in the graph, which remains unpaired
and critical edges. The root node of the graph also remains
unpaired, and is critical. Those graphs are drawn with the
AT&T software named GraphViz - neato [15].

Figure 9: The graph remaining after processing Hachimori’s model
of Poincare’s homological sphere [17].

(c) First steps: construction on dual hypertrees

As an extension of the case of a vertex spanning tree,
we will define the vector field on dual hypertrees. A vertex
spanning tree of a complex K has its nodes representing the
vertices of K and its links representing some edges of K.

We will now consider a dual hypertree (N, L) extracted
from K. Its nodes will represent the p-cells of K. A hyper-
link representing a (p − 1)-cell σ of K will join the nodes
corresponding to the p-cells incident to σ. On the contrary
of the previous case, the vector field will pair a node to a
hyperlink. In the next section, we will present a procedure
to choose the hyperlinks in such a way that (N,L) will be a
hypertree.

We will process regular component per regular compo-
nent. As (N, L) does not have any hypercircuit (definition 6
condition 3), there is at least one component that has no des-
tination node. If this component has a source node (and there
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is at most one by definition 6 condition 2), we will denote it
r. In the other case, r will denote an arbitrary node.

The component is an ordinary tree (definition 6 condition
1). Thus we can pair each leaf node with its unique incident
link. The unpaired elements of the component form again an
ordinary tree, and we repeat the pairing until there is only the
root node r left.

If the component had a source node, we pair that source
node with its non-regular hyperlink. In the other case, we
leave the root r unpaired and it will remain critical.

Figure 10: A spanning tree tetrahedra/triangles processing Hachi-
mori’s model of Poincare’s homological sphere [17].

For example on Figure 10, the tree is processed from the
leaves to the root, which is critical (in red).

As the hypertree does not contain hypercircuit, the result-
ing vector field will be admissible as a discrete gradient vec-
tor field.

The unpaired elements of (N, L) form again a dual hyper-
tree, and we repeat the process above to pair all the hypertree
except possibly the critical root nodes.

(d) Selecting cells of the dual hypertree

We use a greedy algorithm to select cells of the dual
hypertrees. As in the construction of a spanning tree, we
maintain an auxiliary structure that assigns to each cell its
component number. This structure is similar to the union/find
structure of [6].

The dual hypertree must contain all the cells of maximal
dimension, say p, which will be represented by nodes. It
must also contain some of the cells of dimension (p − 1)
represented by hyperlinks.

To reach optimality, we will try to select the maxi-
mum number of hyperlinks into the hypertree. For example,
adding the hyperlink of the left side of Figure 11 allows us
to pair it with the node on the left. Thus, there will be less
critical (unpaired) nodes.

First, for each regular hyperlink, we test whether it loops
inside a component or it joins two components. In the latter
case, we select it for the hypertree and (lazily) update the
auxiliary structure. At the end of this step, the connected

Figure 11: Detail of a hyperlink insertion in the dual hypertree
appearing with a solid torus model.

components of the tree are the regular components of the
final hypertree.

Then we process every boundary cell, i.e. a (p − 1)-
cell that is incident to only one p-cell in the complex. We
add to the hypertree at most one boundary cell per regular
component (to respect definition 6 condition 2). A regular
component without boundary cell will be said deficient and
in the other case completed.

Among the non-regular hyperlinks, we give priority to the
boundary cell: it is the cheapest way to ensure the resulting
hypergraph will not contain hypercircuit.

We finally process the non-regular hyperlinks. For each
non-regular hyperlink lk left, we test if it is incident to
a deficient component. We require the selected deficient
components to have only one node of lk. We also check
whether lk is incident to at least one completed component.
In that case, we add lk to the hypertree and consider the
deficient component as completed. As this has changed the
configuration of deficient and connected component, we test
again all non-regular hyperlinks.

As long as there are deficient components, we try until
we cannot add non-regular hyperlinks. This is the bottleneck
point where the algorithm is, in the worst case, quadratic in
the number of those non-regular hyperlink.

5 Applications

(a) Visualizing the gradient field of a geometric model

In differentiable Morse theory, the gradient vector field
can be obtained with a Morse function by a derivative com-
putation. For height functions, this leads to a very simple
geometric interpretation of the vector field.

A similar result can be obtained by a purely combinatorial
way, using Forman’s theory, as in Figure 12. The relation of
classical Morse theory to geometry does not stand as is in
the discrete theory. For example, the discrete gradient vector
field can be disconnected from the geometry, even for simple
models as for a sphere (see Figure 13). This gives a real
power of Forman’s theory: all the above figures has been
done without any geometrical test.

The corresponding work was published in Visualization and Mathematics III, pp. 95–112. Springer, 2002..
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7 Visualizing Forman’s discrete vector field

Figure 12: A discrete gradient
vector field on a shelf model.

Figure 13: A discrete gradi-
ent vector field on a simple 2-
sphere.

As mentioned in section 2(e) Homotopy properties, there
is a natural way to go along the discrete gradient vector
field: beginning with the critical vertex, following to the
incident edge and their paired vertices, then continuing with
a boundary edge to the faces and their incident edges.

The colors of the figure mark this route, following in-
creasing the Hue component of the HSV decomposition: in
green are the first visited faces, the route continue on with
the blue and then purple faces, until the red ones.

Considering a classical Morse gradient field and follow-
ing it in the same way, we would see cells of the same height
drawn with the same color. The ordering of color (by the hue)
gives the ordering of the heights. The color of the figures can
be interpreted as a height function.

Figure 14: The gradient vector field on edges/vertices of Klein
bottle model.

The discrete gradient vector field is also a powerful tool to
understand the structure of a model. As above, edges drawn
with the same color are at the same height. For example
on Figure 14 (model from the Math&Media Lab., created
by Sinésio Pesco), we dawned the edges of a Klein bottle
model to see the auto-intersection. Looking at the green
edges for example, we see clearly a Möbius strip spiraling
along the bottle. The discrete gradient vector field gives a
more intuitive sense of the non-orientability of the Klein
bottle.

(b) Visualizing the structure of an abstract complex

Many topological objects appear without a geometric
model, or with a model in higher dimensions. Those struc-
tures are quite difficult to understand without visualization.
Forman’s theory points out a topologically consistent way of
choosing significant cells. Those cells can be outlined in a
Hasse diagram, as done on Figure 15 and Figure 16.

3-cells:

2-cells:

1-cells:

0-cells:

Figure 16: A ring made of 8 cubes and its Hasse diagram.

The Hasse diagram represents every cell by one node.
Red nodes represent critical cells. Non-regular hyperlinks
of the hypertrees are drawn in green. The cells of same
dimension are displayed on the same row. The rows are
ordered decreasingly on the dimension.

A link between two nodes symbolizes that the corre-
sponding cells are incident one to the other. We linked by
a red line paired cells. Blue lines represent the incidences we
selected for the hypertrees and the final graph, as we did in
the algorithm (see section 4(d) Selecting cells of the dual hyper-
tree).

(c) Topologically controlling a deformation

Morse theory studies the topology of an object by its crit-
ical points. Another way to analyze it is provided by the han-
dlebody theory [26, 22]. This theory constructs an object by
successively attaching handles to a disc. The addition of a
critical point corresponds to a handle attachment. Forman
provides a similar result as introduces in section 2(e) Homo-
topy properties. This allows to describe a complex as glueing
a few number of cells (the critical ones) without any geomet-
rical test.

For example Figure 17 represents a decomposition of a
torus with 25600 cells in 4 critical cells: 1 face, 2 edges
and 1 vertex. This result can be interpreted as follow. The
first cell removed is the critical face, leading to a punctured
torus (a red face in the meridian on Figure 17(a)). Then,
the torus deformation along decreasing height (color) until it
reaches one of the two critical edges, leading to Figure 17(b).
Repeating the deformation until the second critical edge is
reached, we get Figure 17(c), which is a disk. We continue
retracting until having reduced all the faces (Figure 17(d)),
and continue reducing the remaining tree until reaching the
critical vertex.
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2-cells:

1-cells:

0-cells:

01 23

0 1 234 5

0 1

Figure 15: A non-PL torus and its Hasse diagram.

6 Future Works
We intended by this work to illustrate Forman’s theory,

and to use some of its concepts to visually analyze the
topology of an object. We presented an explicit construction
of a discrete gradient vector field. With this fundamental
tool, we provided various ways of using it to visually extract
topological information of a given combinatorial structure.

An important application of this work to computer graph-
ics would be in the field of geometric compression. The al-
gorithm Grow&Fold of A. Szymczak and J. Rossignac [28]
could be justified and enhanced by our algorithm to mini-
mize the number of so-called “glue faces” in order to achieve
a better encoding. This work has been done optimally for the
case of surfaces with handles in [24].

We plan to continue this work in three directions. Firstly,
we intend to apply the auditory method designed by Axen
and Edelsbrunner in [2], together with Forman’s tools we
provided. This would give a more sensitive way of studying
higher-dimensional cell complexes. Secondly, we will try to
develop graphical tools to capture as much as possible the
topology 3-manifolds, where very hard mathematical prob-
lems remain unsolved. Finally, we look forward to produce
a topologically consistent morphing based on mapping di-
rectly the discrete gradient field between two objects of the
same homotopy type.
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9 Visualizing Forman’s discrete vector field

(a) The gradient vector field. (b) First step: opening the torus
along its meridian.

(c) Second step: opening the torus
along its equator.

(d) Further steps continue on
edges and vertices.

Figure 17: A decomposition of a torus.
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