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Abstract. Optimal Morse matchings reveal essential structures of cell complexes which lead to powerful tools
to study discrete geometrical objects, in particular discrete 3-manifolds. However, such matchings are known to
be NP-hard to compute on 3-manifolds, through a reduction to the erasability problem. Here, we refine the study
of the complexity of problems related to discrete Morse theory in terms of parameterized complexity. On the one
hand we prove that the erasability problem is W[P]-complete on the natural parameter. On the other hand we
propose an algorithm for computing optimal Morse matchings on triangulations of 3-manifolds which is fixed-
parameter tractable in the treewidth of the bipartite graph representing the adjacency of the 1- and 2-simplices.
This algorithm also shows fixed parameter tractability for problems such as erasability and maximum alternating
cycle-free matching. We further show that these results are also true when the treewidth of the dual graph of the
triangulated 3-manifold is bounded. Finally, we discuss the topological significance of the chosen parameters and
investigate the respective treewidths of simplicial and generalized triangulations of 3-manifolds.
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Figure 1: Constructing an instance of ERASABILITY from an instance (S, R) of MINIMUM AXIOM SET, where S = {a, b, c,d, e, f, g, h,i}

and R = {({c,d, e},4), ({f, 9, h},9), ({b},¢), ({a,d}, 9)}-
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1 Introduction

Classical Morse theory [52] relates the topology of a manifold to the critical points of scalar functions defined on it, providing
efficient tools to understand essential structures on manifolds. Forman [35] recently extended this theory to arbitrary cell
complexes. In this discrete version of Morse theory, alternating cycle-free matchings in the Hasse diagram of the cell complex,
so-called Morse matchings, play the role of smooth functions on the manifold [35} 130]. For example, similarly to the smooth
case [54], a closed manifold admitting a Morse matching with only two unmatched (critical) elements is a sphere [35]]. The
construction of specific Morse matchings has proven to be a powerful tool to understand topological [35) 141} 42, 145 46],
combinatorial [30} 40, 44]] and geometrical [38} 48|15, 156 structures of discrete objects.

Morse matchings that minimize the number of critical elements are known as optimal matchings [45]. Together with their
number and type of critical elements, these are topological (more precisely homotopy) invariants of the cell complex, just
like in the case of the sphere described above. Hence, computing optimal matchings can be used as a purely combinatorial
technique in computational topology [4]. Moreover, optimal Morse matchings are useful in practical applications such as
volume encoding [47,59], or homology and persistence computation [48 37].

However, constructing optimal matchings is known to be NP-hard on general 2-complexes and on 3-manifolds [41] 42 45]].
This result follows from a reduction to this problem from the closely related erasability problem: how many faces must be
deleted from a 2-dimensional simplicial complex before it can be completely erased, where in each erasing step only external
triangles, i.e. triangles with an edge not lying in the boundary of any other triangle of the complex, can be removed [34]?
Despite this hardness result, large classes of inputs — for which worst case running times suggest the problem is intractable
— allow the construction of optimal Morse matchings in a reasonable amount of time using simple heuristics [46) 23]. Such
behavior suggests that, while the problem is hard to solve for some instances, it might be much easier to solve for instances
which occur in practice. As a consequence, this motivates us to ask what parameter of a problem instance is responsible for the
intrinsic hardness of the optimal matching problem.

In this article, we study the complexity of discrete Morse theory type problems in terms of parameterized complexity.
Following Downey and Fellows [32], an NP-complete problem is called fixed-parameter tractable (FPT) with respect to a
parameter k € N, if for every input with parameter less than or equal to %, the problem can be solved in O(f(k) - n°(")) time,
where f is an arbitrary function independent of the problem size n. For NP-complete but fixed-parameter tractable problems,
we can look for classes of inputs for which fast algorithms exist, and identify which aspects of the problem make it difficult
to solve. Note that the significance of an FPT result strongly depends on whether the parameter is (i) small for large classes
of interesting problem instances and (ii) easy to compute. In addition, the choice of parameter is further limited by classical
results in complexity theory. For instance, if the erasability problem for 3-manifolds were FPT in the Betti numbers of the input,
this would yield a polynomial time algorithm to decide collapsibility of homology spheres which is unlikely to exist, given the
hardness result for arbitrary 3-complexes due to [17].

In order to classify fixed-parameter intractable NP-complete problems, Downey and Fellows [32] propose a family of
complexity classes called the W -hierarchy:

FPTCW[]C W2 C---CW[P]C XP.

The base problems in each class of the W-hierarchy are versions of satisfiability problems with increasing logical depth as
parameter. Problems in W[P] are at most as hard to solve as P-CIRCUIT SAT [32], which asks: given a circuit C' of size p(n)
with k log n inputs, fixing k, does C' have a satisfying assignment? The rightmost complexity class X P of the W -hierarchy
contains all problems which can be solved in O(n*) time where k is the parameter of the problem.

Here, we use the notion of the W -hierarchy in a geometric setting. More precisely, we determine the hardness of Morse
type problems using the mathematically framework of the I¥-hierarchy. Our first main result shows that the erasability problem
is W[P]-complete (Theorems 3| and , where the parameter is the natural parameter — the number of cells that have to be
removed. In other words, we prove that the erasability problem is fixed-parameter intractable in this parameter, meaning that
there cannot exist an algorithm which runs in time O(f(k) - n®™)) on input with natural parameter < k, for any computable
functions f. From a discrete Morse theory point of view, this reflects the intuition that reaching optimality in Morse matchings
requires a global (at least topological) context. In this way, we also show that the I¥/-hierarchy as a purely complexity theoretical
tool can be used in a very natural way to answer questions in the field of computational topology. Although there are many
results about the computational complexity of topological problems [21} 29/ 34} 49, |60], to the authors’ knowledge, erasability
is the first purely geometric problem shown to be W[P]-complete.
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Our second main result refines the observation that simple heuristics allow us to compute optimal matchings efficiently. For
general 2-complexes (and 3-manifolds), the problem reduces directly to finding a maximum alternating cycle-free matching
on a spine, i.e., a bipartite graph representing the 1- and 2-cell adjacencies [22} 42| 47 (Lemma [I)). To solve this problem,
we propose an explicit algorithm for computing maximum alternating cycle-free matchings which is fixed-parameter tractable
in the treewidth of this bipartite graph (Theorem [6)), although we did not implement the algorithm yet. Furthermore, we show
that finding optimal Morse matchings on triangulated 3-manifolds is also fixed-parameter tractable in the treewidth of the dual
graph of the triangulation (Theorem [7).

The treewidth of the dual graph is a common and useful parameter when working with triangulated 3-manifolds [29], as it
closely interacts with the topology of the underlying manifold. In order to give further information on the relevance of the fixed
parameter results, we will explore this connection in the last section of this article. This will be done by giving explicit examples
of large classes of 3-manifolds which admit triangulations of unbounded size with dual graphs of constant tree-width. Moreover,
we present experiments using the classification of simplicial and generalized triangulations of 3-manifolds to investigate the
“typical” treewidth of the respective graphs for small and relevant instances of Morse type problems. The experiments show that
the average treewidths of the respective graphs of simplicial triangulations of 3-manifolds are particularly small in the case of
generalized triangulations. Furthermore, experimental data suggest a much more restrictive connection between the treewidth
of the dual graph and the spine of triangulated 3-manifolds than the one stated in Theorem

2 Preliminaries

Triangulations

Throughout this paper we mostly consider simplicial complexes of dimensions 2 and 3, although most of our results hold
for more general combinatorial structures. All 2-dimensional simplicial complexes we consider are (i) pure, i.e., all maximal
simplices are triangles (2-simplices) and (ii) strongly connected, i.e., each pair of triangles is connected by a path of triangles
such that any two consecutive triangles are joined by an edge (1-simplex). The O-simplices of the complex are also called
vertices. All 3-dimensional simplicial complexes we consider are triangulations of closed 3-manifolds, that is, simplicial
complexes whose underlying topological space is a closed 3-manifold. In particular every 3-manifold can be represented in
this way [S1]]. We will refer to these objects as simplicial triangulations of 3-manifolds.

In §5| we briefly concentrate on a slightly more general notion of a generalized triangulation of a 3-manifold, which is a
collection of tetrahedra all of whose faces are affinely identified or “glued together” such that the underlying topological space
is a 3-manifold. Generalized triangulations use far fewer tetrahedra than simplicial complexes, which makes them important
in computational 3-manifold topology (where many algorithms run exponential time). Every simplicial triangulation is a
generalized triangulation, and the second barycentric subdivision of a generalized triangulation is a simplicial triangulation [S1],
hence both objects are closely related.

For the remainder of this article, we will often consider 2-dimensional simplicial complexes as part of a simplicial
triangulation of a 3-manifold.

Erasability of simplicial complexes

Let A be a 2-dimensional simplicial complex. A triangle ¢ € A is called external if ¢ has at least one edge which is not in the
boundary of any other triangle in A; otherwise ¢ is called internal. Given a 2-dimensional simplicial complex A and a triangle
t € A, the 2-dimensional simplicial complex obtained by removing (or erasing) t from A is denoted by A \ ¢. In addition,
if A’ is obtained from A by iteratively erasing triangles such that in each step the erased triangle is external in the respective
complex, we will write A ~» A’. We say that the complex A is erasable if A ~ §, where ¢ denotes a subcomplex of A with
no triangle. Finally, for every 2-dimensional simplicial complex A we define er(A) to be the smallest size of a subset A, of
triangles of A such that A \ Ag ~» J. The elements of A are called critical triangles and hence er(A) is sometimes also
referred to as the minimum number of critical triangles of A. Determining er(A) is known as the erasability problem [34].

Problem 1 (ERASABILITY).
INSTANCE A 2-dimensional simplicial complex A.
PARAMETER A non-negative integer k.

QUESTION  Iser(A) < k?
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Hasse diagram and spine

Note: we will refer to the vertices and edges of the Hasse diagram — and other graphs in this paper — as nodes and arcs to
avoid confusion with the vertices and edges of a triangulation.

Given a simplicial complex A, one defines its Hasse diagram H to be a directed graph in which the set of nodes of H is the
set of simplices of A, and an arc goes from 7 to ¢ if and only if ¢ is contained in 7 and dim(o) + 1 = dim(7). Let H; C H
be the bipartite subgraph spanned by all nodes of H corresponding to ¢- and ¢ + 1-dimensional simplices. In particular, H;
describes the adjacency between the 2-simplices and 1-simplices of A, and will be called the spine of the simplicial complex
A. The spine of a simplicial complex will be one of the main objects of study in this work.

Matchings

By a matching of a graph G = (N, A) we mean a subset of arcs M C A such that every node of N is contained in at most
one arc in M. Arcs in M are called matched arcs and the nodes of the matched arcs are called matched nodes. Nodes and arcs
which are not matched are referred to as unmatched. The induced M-subgraph is the subgraph of G spanned by all matched
nodes and the size of a matching M is the number of matched arcs. A matching M is called a maximum matching of a graph G
if there is no matching with a larger size than the size of M.

Morse matchings

Let H be the Hasse diagram of a simplicial complex A and M be a matching on H. Let H (M) be the directed graph obtained
from the Hasse diagram by reversing the direction of each arc of the matching M. If H(M) is a directed acyclic graph, i.e.,
H (M) does not contain directed cycles, then M is a Morse matching [30]. Furthermore, the number ¢; of unmatched nodes
representing i-simplices of A is called the number of critical i-dimensional simplices and the sum ¢(M) = ). ¢; is said to be
the total number of critical simplices.

The motivation to find optimal Morse matchings is given by the following fundamental theorem of discrete Morse theory
due to Forman which deals with simple homotopy reductions to C'W-complexes [3} [10].

Theorem 1 ([35]]). Let M be a Morse matching on a simplicial complex A. Then A is homotopy equivalent to a CW -complex
with exactly one d-cell for each critical d-simplex of M.

In other words, a Morse matching with the smallest number of critical simplices gives us the most compact and succinct
topological representation up to homotopy. For more information about the basic facts of Morse theory we refer the reader to
Forman’s original work [35]]. This motivates a fundamental problem in discrete Morse theory, optimal Morse matching, as a
decision problem in the following form.

Problem 2 (MORSE MATCHING).

INSTANCE A simplicial complex A.

PARAMETER A non-negative integer k.

QUESTION Is there a Morse matching M with ¢(M) < k?

Note that ERASABILITY can be restated as a version of MORSE MATCHING where only the number of unmatched 2-simplices
(that is, co(M)) is counted [43].

Complexity of Morse matchings

The complexity of computing optimal Morse matchings is linear on 1-complexes (graphs) [35] and 2-complexes that are
manifolds [43]]. Joswig and Pfetsch [42] prove that if you can solve ERASABILITY in the spine of a 2-simplicial complex in
polynomial time, then you can solve MORSE MATCHING in the entire complex in polynomial time. The proof technique easily
extends to 3-manifolds, leading to the following lemma which has been mentioned in previous works [47} 142, [22]].

Lemma 1. Let M be a Morse matching on a triangulated 3-manifold A. Then we can compute a Morse matching M’ in
polynomial time which has exactly one critical 0-simplex and one critical 3-simplex, such that ¢c(M') < e(M).

In other words, answering ERASABILITY on the spine is the only difficult part when solving MORSE MATCHING on a
3-manifold. In §4{ we show that if a spine has bounded treewidth, then we can solve ERASABILITY in linear time. Lemma
therefore generalizes this result to MORSE MATCHING on 3-manifolds.

The proof of Lemma [T]actually follows directly from Joswig and Pfetsch’s proof of the following lemma.

Lemma 2 ([42]). Let M be a Morse matching on a 2-simplicial complex A. Then we can compute a Morse matching M’ in
polynomial time which has exactly one critical 0-simplex, the same number of critical simplices of dimension greater than or
equal 2 as M, and c(M") < ¢(M).

The corresponding work was published in ACM Transactions on Mathematical Software..
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The proof builds a Morse matching from a spanning tree of the primal graph, i.e. the graph obtained considering only the
vertices and edges of A. For a 3-manifold A, the proof of the previous lemma can be applied exactly the same way on the dual
graph, i.e. the graph whose nodes represent tetrahedra of A, and whose arcs represent common triangles of A joined together
(cf. Definition E]) to obtain the following result.

Lemma 3. Let M be a Morse matching on a closed triangulated 3-manifold A. Then we can compute a Morse matching M’
in polynomial time which has exactly one critical 3-simplex, the same number of critical simplices of dimension less than or

equal o 1, and c(M') < ¢(M).

Since the proof works independently on the primal and dual graph, Lemma[I]is a combination of these results. Here, we
simply reproduce the proof of Joswig and Pfetsch [42] verbatim applying it to 3-manifold complexes, using Poincaré’s duality.

First consider a Morse matching M for a connected 3-manifold A. Let (M) be obtained from the primal graph of A by
removing all arcs (edges of A) matched with triangles and let v*(M) be derived from the dual graph of A by removing all
arcs corresponding to triangles matched with tetrahedra of A. Note that (M) contains all vertices (0-simplices) and v* (M)
contains all tetrahedra of A as nodes.

Lemma 4. The graphs (M) and v* (M) are connected.

Proof. Suppose that y(M) is disconnected. Let NV be the set of nodes in a connected component of (M), and let C be the set
of cut edges, that is, edges of A with one vertex in N and one vertex in its complement. Since A is connected, C' is not empty.
By definition of (M), each edge in C is matched to a unique 2-simplex.

Consider the directed subgraph D of the Hasse diagram consisting of the edges in C' and their matching 2-simplices. The
standard direction of arcs in the Hasse diagram (from the higher to the lower dimensional simplices) is reversed for each
matching pair of M, i.e., D is a subgraph of H(M). We construct a directed path in D as follows. Start with any node of D
corresponding to a cut edge e; and consider the node of D determined by the unique 2-simplex 7; matched with e;. Then 7
contains at least one other cut edge eo, otherwise e; cannot be a cut edge. Now iteratively go to eo, then to its unique matching
2-simplex 75, choose another cut edge es, and so on. We observe that we obtain a directed path ey, 71, €3, 79, -- in D, i.e., the
arcs are directed in the correct direction. Since we have a finite graph at some point the path must arrive at a node of D which
we have visited already. Hence, D (and therefore also H (M )) contains a directed cycle, which is a contradiction since M is a
Morse matching.

To prove that v*(M) is connected, we repeat the proof above on the dual graph. O

Lemmalll Since (M) and v*(M) are connected, they both have spanning trees, and we will use them to build the Morse
matching. First pick an arbitrary node r; and any spanning tree of (M) and match every other node (vertex of A) of the
spanning tree to the arc (edge of A) that points towards ;. Then pick an arbitrary tetrahedron (node in the dual graph) ro and
any spanning tree of v*(M) and match every other node of the spanning tree to the arc (triangle of A) that points towards
r9. This yields a maximum Morse matching on (M) and v*(M). It is easy to see that replacing the part of M on (M) and
~*(M) with this matching yields a Morse matching. This Morse matching has only one critical vertex (the root r1) and one
critical tetrahedron (the root 72). Note that every Morse matching in a triangulated 3-manifold contains at least one critical
vertex and at least one critical tetrahedron; this can be seen from Theorem Furthermore, the total number of critical simplices
can only decrease, since we computed an optimal Morse matching on (M) and v*(M). O

3 W[P]-Completeness of the ERASABILITY problem

In order to prove that ERASABILITY is W[P]-complete in the natural parameter, we first have to take a closer look at what
has to be considered when proving hardness results with respect to a particular parameter.

Definition 1 (Parameterized reduction). A parameterized problem L reduces to a parameterized problem L', denoted by
L <ppr L, if we can transform an instance (x,k) of L into an instance (z', g(k)) of L' in time f(k)|z|°®") (where f
and g are arbitrary functions, and |x| means the size of x), such that (z, k) is a yes-instance of L if and only if (z', g(k)) is a
yes-instance of L.

As an example, Egecioglu and Gonzalez [34] reduce SET COVER to ERASABILITY to show that ERASABILITY is NP-
complete. Since their reduction approach turns out to be a parameterized reduction, these results can be restated in the language
of parameterized complexity as follows.

Corollary 1. SET COVER <ppr ERASABILITY, therefore ERASABILITY is W[2]-hard.

This shows that, if the parameter k is simultaneously bounded in both problems, ERASABILITY is at least as hard as SET
COVER. Egecioglu and Gonzalez [34]] conjectured that ERASABILITY is harder than SET COVER. In this section we will
prove this conjecture and determine exactly how much harder ERASABILITY is than SET COVER, which is W[2]-complete.
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Namely, we will show that ERASABILITY is W[P]-complete in the natural parameter k. This will be done by i) using a W[P]-
complete problem as an oracle to solve an arbitrary instance of ERASABILITY (Theorem[3] which shows that ERASABILITY is
in W[P]), and ii) reducing an arbitrary instance of a suitable problem which is known to be W [P]-complete to an instance of
ERASABILITY (Theorem which shows that ERASABILITY is W[P]-hard). Moreover, since our proof involves only a local
replacement that does not use the natural parameter &, ERASABILITY is parametrically inapproximable, as well [[7,[12] (see [6}
Chapter 31] for more about parameterized approximations).

There are only a few problems described in the literature which are known to be W[P]-complete [33], p. 473]. Amongst these
problems, the following is suitable for our purposes.

Problem 3 (MINIMUM AXIOM SET).

INSTANCE A finite set S of sentences, and an implication relation R consisting of pairs (U, s) where U C S and s € S.
PARAMETER A positive integer k.

QUESTION  Is there a set Sy C S (called an axiom set) with |Sy| < k and a positive integer n, for which S,, = S, where we

define S;, 1 < i < n, to consist of exactly those s € S for which either s € S;_; or there exists a set U C .S;_; such that
(U,s) € R?

Theorem 2 ([32]]). MINIMUM AXIOM SET is W[P]-complete.

In this paper, we show that, preserving the natural parameter k&, MINIMUM AXIOM SET is both at least and at most as hard
as ERASABILITY.

Theorem 3. ERASABILITY <ppr MINIMUM AXIOM SET, therefore ERASABILITY is in W[P).

Proof. We show membership of ERASABILITY in W[P] by reducing a given instance (A, k) of ERASABILITY to an instance
(S, R, k) of MINIMUM AXIOM SET.

W. 1. 0. g. we can assume that the 2-dimensional simplicial complex A has no external edges (if A has external edges we
first remove these edges until no external edge exists and reduce the remaining problem instance to an instance of MINIMUM
AXIOM SET). We now identify the set of triangles of A with the set of sentences .S in a one-to-one correspondence. For every
edge e € A we denote the set of all triangles containing e by stara(e) C A, we write for the corresponding set of sentences
Se C S, and we define the set of implication relations R by the relations

(Se \ {s}, )

for each triangle s € S, for all edges e € A. Note that A has no external edges and thus S, \ {s} # 0 for all e.

In a next step, we show that for all axiom sets Sy C S of size k we have A \ Ay ~ §, & 1-dimensional subcomplex of
A, for the associated subset of triangles Ay C A of size k. To see that this is true, note that for the augmenting sequence
SoCS1 C...CS,=5o0fS, their corresponding subsets of triangles Ag C A; C ... C A, =Aandi € {1,...,n} fixed,
all sentences s € .S; \ S;_1 have to occur in a relation (S, \ {s}, s) for some edge e with S, \ {s} C S;_;. For the triangle
t € A corresponding to s this means that, stara (e) \t C A;_1. Thus, if we assume that all triangles in A;_; are already erased,
t must be external and thus can be erased as well. The statement now follows by the fact that for ¢ = 1, all triangles in Aq are
already erased in A \ Ag and hence A \ Ag ~ .

Conversely, let Ay C A be of size k such that A \ Ag ~ 4. Since A has no external triangles but A \ Ag ~ ¢, there must
be external triangles t € A \ Ag and hence for s € S being the sentence corresponding to the triangle ¢ there is a relation
(Se \ {s},s) with S \ {s} C Sp, where S is the set of sentences corresponding to the set of triangles Ag. We then define S,
to be the union of Sy with all sentences s of the type described above and iterating this step results in a sequence of subsets
So CS; C...C S, =S for some n what proves the result. O

In order to show that it is in fact amongst the hardest problems in this class we first need to build some gadgets.

Definition 2 (Gadgets for the hardness proof of ERASABILITY). Let (S, R, k) be an instance of MINIMUM AXIOM SET.

Let s € S be a sentence. By an s-gadget or sentence gadget we mean a triangulated 2-dimensional sphere with 2n + m
punctures as shown in Figure 2| where m is the number of relations (U, s) € R and n is the number of relations (U, s) € R
such that s € U.

Let (U,s) € R be a relation. A (U, s)-gadget or implication gadget is a collection of |U| + 1 sentence gadgets for each
sentence of U U {s} together with 2|U| nested tubes as shown in Figuresuch that (i) two tubes are attached to two punctures
of the u-gadget for each w € U and (ii) all 2|U| boundary components at the other side of the tubes are identified at a single
puncture of the s-gadget.

The corresponding work was published in ACM Transactions on Mathematical Software..
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n(x2)

Figure 2: Example of a sentence gadget with m = 2 relations (U, s) and n = 3 relations (U, u) with additional tubes.

Figure 3: Example of a (U, s)-gadget with U = {a, b, c}, with sentence gadgets {a, b, c, s}.

Then, by construction the following holds for the (U, s)-gadget.

Lemma 5. A (U, s)-gadget can be erased if and only if all sentence gadgets corresponding to sentences in U are already
erased.

Proof. Clearly, if all sentence gadgets corresponding to sentences in U are erased, the whole gadget can be erased tube by tube.
If, on the other hand, one of the sentence gadgets still exists, this gadget together with the two tubes connected to it build a
complex without external triangles which thus cannot be erased. O

With these tools in mind we can now prove the main theorem of this section.

Theorem 4. MINIMUM AXIOM SET <pp7r ERASABILITY, ERASABILITY is W[P|-hard even when the instance of ERASA-

BILITY is a strongly connected pure 2-dimensional simplicial complex A which is embeddable in R3. Therefore ERASABILITY
is W[P]-hard.

The simplicial complex A (Figure constructed to prove W [P]-hardness of ERASABILITY is in fact embeddable into R®.
This means that, even in the relatively well-behaved class of embeddable 2-dimensional simplicial complexes, ERASABILITY
when bounding the number of critical simplices is still likely to be inherently difficult.

Proof. To show W[P]-hardness of ERASABILITY, we will reduce an arbitrary instance (.S, R, k) from MINIMUM AXIOM SET
to an instance (A, k) of ERASABILITY. In order to do so, we will use a sentence gadget for each element of S and an implication
gadget for each relation R (cf. Definition [2) to construct a 2-dimensional simplicial complex A with a polynomial number of
triangles in the input size.

By construction, we can glue all sentence and implication gadgets together in order to obtain a simplicial complex A without
any exterior triangles. Note that the only place where A is not a surface is at the former m boundary components of the sentence
gadgets corresponding to the right hand sides of the relations in R.

For any axiom set Sp C S of size k, let Ay be a set of k triangles, one from each sentence gadget corresponding to a
sentence in Sy. It follows by Lemma that A\ Ag can be erased to a complex where all the sentence gadgets s corresponding
to relations (U, s), U C Sp, have external triangles. Since Sy is an axiom set, iterating this process erases the whole complex
A.

Conversely, let A be a set of k triangles such that A\ Ay ~ 4. First, note that erasing a triangle of any tube of an implication
gadget always allows us to remove the sentence gadget at the right end of this tube. Hence, w. 1. 0. g. we can assume that all k&
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triangles in A are triangles of some sentence gadget in A. Now, if any sentence gadget contains more than one triangle of Ag
we delete all additional triangles obtaining a set A{) of &’ triangles, ¥’ < k, such that A \ A{j ~~ § and thus the corresponding
set of sentences is an axiom set of size k' < k.

The result now follows by the observation that A can be realized by at most a quadratic number of triangles in the input size
of (S, R, k). O

The W [P]-completeness result implies that if ERASABILITY turns out to be fixed parameter tractable, then W [P] = F'PT,
i.e., every problem in W[P] including the ones lower in the hierarchy would turn out to be fixed parameter tractable, an unlikely
and unexpected collapse in parameterized complexity. Also, it would imply that the n-variable SAT problem could be solved
in time 2°(") that is, better than a brute force search [20]]. With respect to this result, if we want to prove fixed parameter
tractability of ERASABILITY, the parameter must be different from the natural parameter.

4 Fixed parameter tractability in the treewidth

In this section, we prove that there is still hope to find an efficient algorithm to solve MORSE MATCHING. We give positive
results for the field of discrete Morse theory by proving that ERASABILITY and MORSE MATCHING are fixed parameter
tractable in the treewidth of the spine of the input simplicial complex, and also in the dual graph of the problem instance in case
it is a simplicial triangulation of a 3-manifold.

3,6,12 6, 12
3,12 6
3,7, 12 5.6
3,7,12 3,5 6
3,7 10, 12 5,6 3,5
3,4,7 10 6 3
3,4 10, 11 2,6 1,3
3 11 2 1

® [ecaf e Introduce o Forget @ Join

Figure 4: Example of a nice tree decomposition (left) of the spine of a non-manifold 2-dimensional simplicial complex (right).
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(a) Treewidth

Definition 3 (Treewidth). A tree decomposition of a graph G is a tree T whose nodes {X; |1 € I} are called bags. Each bag
X is a subset of nodes of G, and we require that:

[leftmargin=2cm]
node coverage: every node of G is contained in at least one bag X;;
arc coverage: for each arc of G, some bag X; contains both its endpoints;
coherence: for all bags X;, X; and Xy, of T, if X; lies on the unique simple path from X; to Xy inT, then X; N X}, C X.

The width of a tree decomposition is defined as max | X;| — 1, and the treewidth of G is the minimum width over all tree
decompositions. We will denote the treewidth of G by tw(G).

For bounded treewidth, computing a tree decomposition of a graph G = (V, E) of width < k has running time O(f(k)|V])
due to an algorithm by Bodlaender [25]]. Regarding the size of f(k): using the improved algorithm by Perkovi¢ and Reed [[14], at
most O(k?) recursive calls of Bodlaender’s improved linear time fixed-parameter tractable algorithm for bounded treewidth [T]]
are needed. This latter algorithm in turn is said to have a constant factor f(k) which is “at most singly-exponential in k”. Details
on the running times of tree decomposition algorithms are available in the literature [2} 43].

Definition 4 (Nice tree decomposition). A tree decomposition ({X;|i € I},T) is called a nice tree decomposition if the
following conditions are satisfied:

1. There is a fixed bag X, with | X,.| = 1 acting as the root of T (in this case X, is called the root bag).
2. If bag X; has no children, then | X;| = 1 (in this case X is called a leaf bag).

3. Every bag of the tree T has at most two children.

4. If a bag X; has two children X; and Xy, then X; = X; = X}, (in this case X; is called a join bag).
5. If abag X; has one child X ;, then either

(a) | X;| =|X;|+1and X; C X; (in this case X, is called an introduce bag), or
(b) |X;| =1|Xi| + 1and X; C X; (in this case X; is called a forget bag).

A given tree decomposition can be transformed into a nice tree decomposition (Figure ) in linear time:

Lemma 6 ([43])). Given a tree decomposition of a graph G of width w and O(n) bags, where n is the number of nodes of G,
we can find a nice tree decomposition of G that also has width w and O(n) bags in time O(n).

(b) Alternating cycle-free matchings

Given a graph G = (N, A) and a matching M C A on G, an alternating path is a sequence of pairwise adjacent arcs such
that each matched arc in the sequence is followed by an unmatched arc and conversely. An alternating cycle of M is a closed
alternating path. Matchings which do not have any such alternating cycle are called alternating cycle-free matchings. From the
definition of Morse matching, we can state ERASABILITY in the language of alternating cycle-free matchings as follows:

Problem 4 (ALTERNATING CYCLE-FREE MATCHING).
INSTANCE A bipartite graph G = (N7 U N3, A).
PARAMETER A nonnegative integer k.

QUESTION  Does G have an alternating cycle-free matching M with at most k£ unmatched nodes in N;?

Specifically, if G = H; is the spine for some simplicial complex A, then ERASABILITY is equivalent to the ALTERNATING
CYCLE-FREE MATCHING problem.
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(c) FPT algorithm for the alternating cycle-free matching problem

Courcelle’s theorem [31] can be used to show that ALTERNATING CYCLE-FREE MATCHING is fixed parameter tractable.
Indeed, Courcelle’s celebrated theorem [31]] states that all graph properties that can be defined in Monadic Second-Order Logic
(MSOL) can be decided in linear time when the graph has bounded treewidth. Here, we want to use Courcelle’s theorem to
show that problems in discrete Morse theory are fixed parameter tractable in the treewidth of some graph associated to the
problem. However, it is not obvious how to directly state ERASABILITY and MORSE MATCHING in MSOL. Instead, we will
apply Courcelle’s theorem to ALTERNATING CYCLE-FREE MATCHING.

Theorem 5. Let w > 1. Given a bipartite graph with tw(G) < w, ALTERNATING CYCLE-FREE MATCHING can be solved in
linear time.

Proof. Let G = (N1 U Ny, A) be a bipartite graph and let N = N; U N5 be the set of nodes of G. We will write an MSOL
formulation of ALTERNATING CYCLE-FREE MATCHING based on the fact that A/ C N is an alternating cycle-free matching if
and only if M is a matching and every induced M -subgraph contains a node of degree 1 [36]:

max M :Vz € N[—3Ja1,as € M (a1 # a2 Ainc(z,a1) Ainc(x, az))]
AVM' C M(3a € M',3z € N[inc(z,a) A (Vz1 € N,
(=Ja; € M'(z # 2’ Aadj(x,x1) Nine(xy,a1))))]),

where inc(z, a) is the incidence predicate between node = and arc a and adj(x, 2’) is the adjacency predicate between node x
and node z’. The above statement can be translated to plain English as follows: “Find the largest matching M of G, where each
node is incident to at most one arc, such that in every subset M’ of the matching M there exists a matched node x in M’ such
that its only neighbor matched in M’ is the other endpoint of the unique matched arc incident to x. O

However, this is a purely theoretical result, since the stated complexity contains towers of exponents in the parameter
function. This is the reason why, for the remainder of this section, we focus on the construction of a linear time algorithm
to solve ALTERNATING CYCLE-FREE MATCHING for inputs of bounded treewidth with a significantly faster running time.

Theorem 6. Let G = (N7 U Na, A) be a simple bipartite graph with a given nice tree decomposition ({X; |i € I},T). Then
the size of a maximum alternating cycle-free matching of G can be computed in 0(4“’2‘*‘“’ w3 -log(w) - n) time, where n = |N|
and w denotes the width of the tree decomposition.

Algorithm overview

Our algorithm constructs alternating cycle-free matchings of G along the nice tree decomposition ({X; |i € I},T) of G,
from the leaves up to the root, visiting each bag exactly once. In the following we will denote by Fj, the set of nodes which
are already processed and forgotten by the time X; is reached; we call this the set of forgotten nodes. At each bag X; of the
decomposition, we construct a set M (i) representing all valid alternating cycle-free matchings in the graph induced by the
nodes in X; U F;.

The leaf bags contain a single node of G, and the only matching is thus empty. At each introduce bag X; = X; U {z},
each matching M of M (j) can be extended to several matchings as follows. The newly introduced node x can be either left
unmatched, or matched with one of its neighbors as long as it generates a valid and cycle-free matching with M. At each join
bag X; = X; = X}, M(i) is built from the valid combinations of pairs of matchings from M (j) and M (k). The final list of
valid matchings is then evaluated at the root bag r.

However, this final list M (r) contains an exponential number of matchings. Fortunately, the nice tree decomposition allows
us to group together, at each step, all matchings M that coincide on the nodes of X;. Indeed, the algorithm takes the same
decisions for all the matchings of the group. We can thus store and process a much smaller list M (j) of matchings containing
only one representative M of each group. In each group, we choose one with the smallest number of unmatched nodes so far.
This grouping takes place at the forget and join bags. This makes the algorithm exponential in the bag size, not the input size.

The corresponding work was published in ACM Transactions on Mathematical Software..
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Matching data structure

The structure storing an alternating cycle-free matching M in a set M (%) must be suitable for checking the matching validity
whenever a matching is extended at an introduce bag or a join bag. It must store which nodes are already matched in M to
avoid matching a node of G twice (matching condition). We use a binary vector v(M), where the z-th coordinate is 1 if node
x € X, is matched and 0 otherwise. Checking the matching condition and updating when nodes are matched has thus a constant
execution time O(1).

Also, the structure must store which nodes are connected by an alternating path in M to avoid closing a cycle when extending
or combining M (cycle-free condition). When matching two nodes x and ¥, an alternating cycle is created if there exists an
alternating path from a neighbor of z to a neighbor of y. To test this, we use a union-find structure [18] uf (M), storing for
each matched node x the index of a matched node c¢(x) connected to x by an alternating path in M. For a subset of matched
nodes which are all connected to each other, the component index c is chosen to be the node with the lowest index. For each
unmatched node, we store the ordered list of component indices of matched neighbor nodes. The cycle-free condition check
reduces to find calls on the adjacent lists, and the update of the structure when increasing the matching size reduces to union
calls, both executing in near-constant time (We actually have to add a near constant factor of the Ackermann function. However,
this will be dominated by the complexity of sorting v). All the matchings are stored in a hash structure to allow faster search for
duplicates. Finally, we can return not only the maximum cycle-free matching size, but an actual maximum cycle-free matching
by storing, along with each representative matching, a binary vector of size | X; U F;| with all the matched nodes so far.

Grouping

Traversing the nice tree decomposition in a bottom-up fashion, each node appears in a set of bags that form a subtree of the
tree decomposition (coherence requirement). This means that, whenever a node is forgotten, it is never introduced again in the
bottom-up traversal.

A naive version of the algorithm described above would build the complete list of valid alternating cycle-free matchings:
the set M (i) would contain all valid matchings in the graph induced by the nodes in X; U F;. In particular, for each matching
M € M(i) the algorithm would store the binary vector v(A/) and the union-find structure uf (M) on X; U F;. However, it is
sufficient to store the essential information about each M by restricting the union-find structure uf (/) and the binary vector
v(M) only to the nodes in the bag X; (for any matched node x € X;, node c(z) of the union-find structure is then chosen
inside X;). More precisely, we define an equivalence relation ~; on the matchings of M (%) such that M ~; M’ if and only if
v(M) = v(M') and uf (M) = uf (M) on the nodes of X;. Since two equivalent matchings only differ on the forgotten nodes
F;, the validation of the matching and cycle-free conditions of any extension of M or M’ (or any combination with a third
equivalent matching M) will be equal from now on.

Since we are interested in the alternating cycle-free matching with the minimum number of unmatched nodes, for each
equivalence class we will choose a matching M with the minimum number m(M ) of unmatched forgotten nodes as class
representative. This number m (M) is stored together with (v, uf) for each equivalence class of M (i) = M (i)/~;. In addition,
we can compute the alternating cycle-free matching of maximum size by storing the complete binary vector v along with m( M )
(since the matching is cycle-free, this is sufficient to recover the set of arcs defining the matching).

Execution time complexity

To measure the running time we need to bound the number of equivalence classes of M(z) Let w; be the number of nodes
in X;. The number of equivalence classes of M (2) is then bounded above by the number of possible pairs (v, uf) on w; nodes.
The union-find stores for each node , either a component node ¢(x) € X; or a list of at most w; component nodes, leading to
at worst 2 different lists per node, g1V1ng 2w’ possible combinations of lists. Also there are 2" possible binary vectors v of
length w;, therefore there are at worst 2w 2Wi elements in M( ) (this enumeration includes invalid matchings and incoherent
pairs (v, uf)).

The time complexity is dominated by the execution at the join bag where pairs of equivalences classes from M (7) and M (k)
have to be combined. Therefore we must square the number of equivalence classes in each set: the complexity for a join bag is
O(4w2+“’ -w3 - log(w)) (please refer to the next section for details). Since there are O(n) bags in a nice tree decomposition, the
total execution time is in O(4w2+w w3 -log(w) - n). Finally, as already stated in for bounded treewidth computing a tree
decomposition and a nice tree decomposition is linear. Therefore the whole process from the tree decomposition to the resulting
maximum alternating cycle-free matching is fixed-parameter tractable in the treewidth. Note that neither the decomposition nor
the algorithm use the fact that the graph is bipartite.
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(d) Algorithm for ALTERNATING CYCLE-FREE MATCHING: step by step

The algorithm visits the bags of the nice tree decomposition bottom-up from the leaves to the root evaluating the
corresponding mappings in each step according to the following rules (Figure 8).

Leaf bag

The set of matchings M (i) of a leaf bag X; = {z} is trivial with a unique empty matching M represented by v(M) = [0]

and uf(M)(x) defined as an empty list, associated with m (M) = 0.

[l

Introduce bag

Let X; = X; U {x} be an introduce bag with child bag X;. The set of valid matchings M (i) is built from M(j) by
introducing 2 in each matching M e M( Jj)» generating several possible matchings~]\~4 ’. We can always introduce z as an
unmatched node, then M is extended on x by setting v(M')|, = 0 and updating uf()/") with the ordered list of components
for each matched neighbor of x. In addition, for each unmatched neighbor y € X;, we can introduce x as a matched node in the
following way. We match both 2 and y in M and set V(M’)|w = 1and V(M/)‘y

components of x and y is empty, then the matching of = and y does not create cycle. In this case M’ is a valid extension of M.
The update of the union-find structure must then reflect the extensions of all alternating paths through arc {z, y}. We perform
in uf(M ") a union operation for x and all its matched neighbors (including ¥), and for y and all its matched neighbors. We also
add the merged component index c(x) to the list of neighbor components of each unmatched neighbor of = and y. Then we
include all valid extensions M’ to M(z), reducing Y(M ") by calling find for each node and neighbor component list entry, and

we set m(M) = m(M’) for all extensions M’ of M.

= 1. If the intersection of the list of neighbor

Figure 5: Detail of the decisions at an introduce bag (the nomenclature is illustrated in Figure @

Running time There are at most 2w;+wi extended matchings M’ for bag X; (including all invalid ones), where w; = | X;| =
|X;|+1 (anew possible matching can be generated only once). Each new matching is validated by a direct lookup at v(M’) and
ordered list comparison, leading to a linear time O(w;). The update of each structure requires constant time for each matched
neighbor of  and almost linear time O(w;) plus the sorted insertion O(w; - log(w;)) for each unmatched neighbor, and there
are at most w; neighbors in the bag. Thus, the total running time of an introduce bag is in O(2 i . w? - log(w;)).

Forget bag

Let X; = X;\{z} be a forget bag with child bag X; > . While the set of all possible matchings on X; UF; does not change
(M(j) = M(i)), the equivalence relation ~; possibly identifies more matchings than ~ ;. For each matching M € M(j), a
new matching M’ is obtained by deleting coordinate z of v(M). If ¢(x) = z, uf(M) needs to be updated. To do so, the set of
nodes X; is traversed twice, once to look for node y # x of minimal index such that ¢(y) = ¢(x) (possibly, y does not exist), and
a second time to replace = by y each time x is used as a component index. If  was unmatched in M (e., V(M )|z = 0), then we
set m(M') = m(M) + 1, otherwise we set m(M’) = m(M). Once the set M(5)’ of all the generated M’ is computed, M (i)
is obtained as the quotient of M ()’ by ~;, the equivalence relation on X;. More precisely, each pair (M’, M") € M(j)"? is
tested for equality on both v and uf. If they are equal, one with the lowest m is defined to be the new representative in M (7).

The corresponding work was published in ACM Transactions on Mathematical Software..
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Running time Each new matching M’ is obtained from a single element of M(j) in worst-case time O(w? - log(w;)).
Equivalent matchings are detected on-the-fly when filling the hash structure of M (i), and each equivalence test is linear in w?.

The complexity is thus in 0(2“’?*'“’7' - w3 - log(wy)).

Figure 6: Detail of the decisions at a forget bag.

Join bag

Let X; = X; = X be a join bag with child bags X; and X}. The matchings of M () are generated by combining all
the pairs of matchings (M, M’) € M(j) x M(k). A combination is valid if and only if it satisfies both the matching and
cycle-free conditions. The matching condition says that a node cannot be matched in both M and M’, which is checked by
a logical AN D operation (v(M) AND v(M’)). The cycle-free condition is checked with the union-find structures M and
M’: the combination is valid if no node of the component of a matched node in uf (M) is neighbor of the same component
in uf(M’) and vice versa, each test requiring O(w?) per component. If a combination is valid, its structure M” is defined by
v(M") = v(M) OR v(M’). The union-find structure is initialized from uf (M), and updated as the introduce bag for each
matched node of M’. Finally, m(M") = m(M) + m(M’). As in the forget bag, two combinations may result in equivalent
matchings, and we must compare them pairwise and choose the representative with the lowest number of unmatched forgotten
bags. Note that the sets of forgotten nodes of X; and forgotten nodes of X, have to be disjoint by the coherence of Definition
[3] and hence no forgotten node can be counted twice in this setting. Furthermore, all possible combinations of matched and
unmatched nodes are enumerated in M(j) and M (k) and hence no possible matching is overlooked.

Figure 7: Detail of the decisions at a join bag.

Running time Each pair of matchings is validated and updated in time O(w; - w? - log(w;)). The comparison and the
choice of representative is done on-the-fly when filling the hash structure of M (7). There are at worst (21”? +Twi)2 pairs.
Thus, the complexity of the join bag dominates all other running times. Therefore, the complexity of the algorithm is in
O(4wi+wi .3 . log(w;)) per bag.
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Figure 8: Algorithm execution on a small bipartite cycle (top left) with its nice tree decomposition (center). At each bag, a set of matchings
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Root bag

Let X, = {x} be the root of T'. M(r) consists of at most two matchings v(M) = [0] or v(M') = [1], where uf(}M) is an
empty list and uf(1/’) defined by ¢(z) = . It follows that the minimum number of unmatched nodes for any alternating cycle-
free matching of G is given by m = min{m(M) + 1, m(M’)}, and the maximum size of an alternating cycle-free matching is
given by (n —m)/2 where n = | N| denotes the number of nodes of G.

Total Running Time The total time complexity of the algorithm is bounded above by the running time of the join bag. Since
there is a linear number of bags, and since for every bag X; we have | X;| < tw(G) + 1 = w + 1, the total time complexity of
the algorithm described above is

0(4“’2'“” ~w? - log(w) - n).

(e) Correctness of the Algorithm

We must check that the algorithm, without the grouping, considers every possible alternating cycle-free matching in G and
that the grouping occurring at the forget and join bags does not discard the maximum matching.

The node coverage and arc coverage properties of nice tree decompositions (Definition [3) ensure that each node is processed
and each arc is considered for inclusion in the matching at one introduce node. Since the introduce node discards only matchings
that violate either the matching or the cycle condition, and these violations cannot be legalized by further extensions or
combinations of the matchings, all possible valid matchings are considered.

Now, consider two matchings M and M’ that are grouped together and represented by M ata forget or join bag X;. Further
along in the algorithm, the representative M is then extended or combined with other matchings to form new valid matchings
M. The coherence property of Definition [3 I assures that no neighbor of a newly introduced node can be a forgotten node, so
the extension or combination only modifies matchings M and M on nodes of X;, which are represented in the structure of
M’. Hence, the valid matchings M’ actually represent all the valid extensions and combinations of M and M. The grouping
thus generates all valid and relevant representatives of matchings in order to find a maximum alternating cycle-free matching.
Moreover, in case M and M’ are equivalent and both with the lowest number of forgotten unmatched nodes, choosing M or
M’ as representative leads to the exact same extensions and combinations.

Finally, let M, be the alternating cycle-free matching of maximum size of G. In each bag the corresponding matching must
be one of the matchings with the lowest number of unmatched nodes within its equivalence class M,, € M(i). Otherwise, a
matching in the same class M,,,, extended and combined as M,,, in the sequel of the algorithm would give rise to a matching
with fewer unmatched nodes. Therefore, the choice of the representative at the forget and join bags never discards a future
alternating cycle-free matching of maximum size.

(f) Treewidth of the dual graph

Up to this point, we have been dealing primarily with simplicial complexes and their spines. We now turn our attention to
simplicial triangulations of 3-manifolds and a more natural parameter associated to them.

Definition 5 (Dual graph). The dual graph of a simplicial triangulation of a 3-manifold T, denoted T'(T ), is the graph whose
nodes represent tetrahedra of T, and whose arcs represent pairs of tetrahedron faces that are joined together.

We show that, if the treewidth of the dual graph is bounded, so is the treewidth of the spine, as stated by the following
theorem.

Theorem 7. Let G be the spine of a simplicial triangulation of a 3-manifold T. If tw(T'(T)) < k, then tw(G) < 10k + 9.

Proof. Let T be a tree decomposition of the dual graph, where each bag X; contains less than or equal £ + 1 tetrahedra. We
show how to construct a tree decomposition T” of the spine of 7, modeled on the same underlying tree as T, in which each bag
X[ contains less than or equal to 10(k + 1) edges and triangles.

For each bag X; of T, we simply define the bag X/ to contain all edges and triangles of all tetrahedra in X;. It remains to
verify the three properties of a tree decomposition (Definition [3]).

Node coverage 1t is clear that every edge or triangle in the spine belongs to some bag X/, since every edge or triangle is
contained in some tetrahedron d, which belongs to some bag X;.

Arc coverage Consider some arc in the spine. This must join a triangle ¢ to an edge e that contains it. Let 6 be some tetrahedron
containing ¢; then ¢ contains both ¢ and e, and so if X; is a bag containing ¢ then the corresponding bag X/ contains the chosen
arc in the spine (joining ¢ with e).
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spine dual graphs

n | # triangulations min | max average min | max average

1 4 (3) 1 2 1.50 (1.67) 0 0 0.00

2 17 (12) 1 3 247 (2.42) 1 1 1.00

3 81 (63) 1 3 251  (2.49) 1 2 1.60 (1.52)
4 577 (433) 1 5(4) | 2.77  (2.73) 1 3 1.91  (1.87)
5 5184 (3961) 1 6(5) | 2.95 (2.95) 1 4 2.16  (2.18)
6 57753  (43584) 1 6 3.16 (3.19) 1 4 231 (2.35)
7| 722765 (538409) 1 7 3.35  (3.40) 1 4 2.45  (2.50)

Table 1: Treewidths of the spine (left) and of the dual graphs (right) of closed generalized triangulations up to 7 tetrahedra. The values in
brackets are for 1-vertex triangulations.

Coherence Here we treat edges and triangles separately.

Let ¢ be some triangle in the simplicial complex. We must show that the bags containing ¢ correspond to a connected subgraph
of the underlying tree. If ¢ is a boundary triangle, then ¢ belongs to a unique tetrahedron d, and the bags X/ that contain ¢
correspond precisely to the bags X; that contain §. Since the tree decomposition 7" satisfies the connectivity property, these
bags correspond to a connected subgraph of the underlying tree. If ¢ is an internal triangle, then ¢ belongs to two tetrahedra &;
and 02, and the bags X/ that contain ¢ correspond to the bags X; that contain either §; or 0. By the connectivity property of the
original tree, the bags containing d; describe a connected subgraph of the tree, and so do the bags containing d>. Furthermore,
there is an arc in the dual graph from d; to d2, and therefore some bag X; contains both §; and Jo. Thus the union of these two
connected subgraphs is another connected subgraph, and we have established the connectivity property for t.

Now let e be some edge of the simplicial complex. Again, we must show that the bags containing e correspond to a connected
subgraph of the underlying tree. This is simply an extension of the previous argument. Suppose that e belongs to the tetrahedra
01,...,0m (ordered cyclically around e). Then for each ¢;, the bags X; that contain §; describe a connected subgraph of the
underlying tree, and the bags X} containing e describe the union of these subgraphs, which we need to show is again connected.
This follows because there is a sequence of arcs in the dual graph (d1, d2), (d2,03) and so on; from the tree decomposition 7'
it follows that the subgraph for d; is connected, the subgraph for d5 is connected, the subgraph for d3, and so on. Therefore the
union of these subgraphs is itself connected. O

S Empirical Observations

In §3| we have seen that the problem of finding optimal Morse matchings is hard to solve in general. On the other hand, in
we proved that in the case of a small treewidth of the spine of a 2-dimensional complex or, equivalently, in the case of a
bounded treewidth of the dual graph of a simplicial triangulation of a 3-manifold, finding an optimal Morse matching becomes
easier. Up to a certain scaling factor, the results stated in §4]hold for generalized triangulations as well (also, note that the notion
of a spine or the dual graph can be extended in a straightforward way to generalized triangulations).

Given this situation, natural questions to ask are the following: (i) Which 3-manifolds can be triangulated with a dual
graph with small treewidth, i.e., which 3-manifolds admit triangulations where our fixed parameter tractable algorithm can be
practical? What is a fypical value for the treewidth of the respective graphs of (ii) small generic generalized triangulations of
3-manifolds, and (iii) small generic simplicial triangulations of 3-manifolds?

To answer (i) we will focus on generalized triangulations and note, that any such triangulation can be transformed into a
simplicial triangulation by a 2-fold barycentric subdivision, keeping the treewidth of the dual graph within a constant of the
treewidth of the dual graph of the original triangulation.

It is a well-known fact in 3-manifold topology that any Dehn filling along a 2-triangle torus boundary can be triangulated
by so-called layered solid tori [9] which have dual graphs of tree-width one. This means that any core manifold with torus
boundary components, e.g., any knot- or link-complement, can be closed by adding arbitrary layered solid tori. In particular,
each such core manifold translates into a class of infinitely many distinct 3-manifolds with triangulations of unbounded size all
of which have dual graphs of uniformly bounded treewidth.

For instance, all members of the large class of Seifert fibred spaces [13] — which contains many standard geometric 3-
manifolds — admit triangulations consisting of a small region containing the base orbifold together with families of exceptional
fibres realised by layered solid tori. In particular, in the relatively large subclass of Seifert fibred spaces with base orbifold S2,
these standard triangulations all have dual graphs of treewidth two.

But also non-geometric classes of 3-manifolds can be identified to have triangulations with dual graphs of very small
treewidth. As an example, for the very general class of so-called graph manifolds (26, 150], there exist triangulations which

The corresponding work was published in ACM Transactions on Mathematical Software..
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spine dual graphs

n | # triangulations || min max average min max average

) 1 6 6 6.00 4 4 4.00
6 2 < 71 < 8| <750 4 ) 4.50
7 5 < 81 < 11| < 940 4 6 5.00
8 9| 8|1 L 141 <L 11.23 4 7 5.74
9 1297 || < 8| < 18| £ 13.55 4 9 7.01
10 249015 || < 8| < 22| < 1633 || < 4| < 131 L 899

Table 2: Upper bounds and exact values for the treewidths of the spine (left) and of the dual graph (right) of simplicial triangulations of
3-manifolds up to 10 vertices.

essentially have dual graphs of treewidth within a constant factor of the treewidth of the underlying graph. Note that the
complexity of graph manifolds is rapidly increasing as the graph grows larger since any node of the graph corresponds to an
arbitrary Seifert fibred space. In addition, following recent results of [§]] there are reasons to believe that even larger infinite
classes of topological 3-manifolds admit triangulations whose treewidths are below provable upper bounds. Investigating these
upper bounds is work in progress.

In order to answer (ii) and (iii) we conducted a series of computer experiments computing the treewidth of the relevant
graphs (i.e., the spine and the dual graph) of all closed generalized triangulations of 3-manifolds up to 7 tetrahedra [28], and
all simplicial triangulations of 3-manifolds up to 10 vertices [L1]]. The computer experiments were done using LibTW [5] to
compute the treewidth / upper bounds for the treewidth, with the help of the GAP package simpcomp [57, 58] and the 3-
manifold software Regina [27,55]]. We report the minimal, maximal and average treewidths of all triangulations with the same
number of tetrahedra in Table|l|and of all simplicial triangulations with the same number of vertices in Table [2| Furthermore,
in Table[3| we list the tree-width of the spines of a number of small 2-dimensional simplicial complexes with various properties
identified by Hachimori, and Takeuchi [39,153]].

Regarding the treewidth of generalized triangulations of 3-manifolds, we observe that there is a large difference between
the average treewidth and the maximal treewidth for both the dual graph and the spine. In particular, the average treewidth
appears to be relatively small. Moreover, there is only a slight difference between the data for general closed triangulations and
1-vertex triangulations. This fact is somehow in accordance with our intuition since the number of 0-dimensional simplices
should neither directly affect the spine nor the dual graph of a generalized triangulation.

On the other hand, the gap between the maximum treewidth and the average treewidth in the case of simplicial triangulations
of 3-manifolds is relatively small compared to the data for generalized triangulations. At this point it is important to note
that, while the data concerning the spines for simplicial complexes only consists of upper bounds, experiments applying the
algorithm for the upper bound to smaller graphs and then computing their real treewidths suggest that these upper bounds (on
average) are reasonably close to the exact treewidth.

Further analysis shows that the average treewidth of the spines for both generalized and simplicial triangulations of 3-
manifolds is mostly less than twice the treewidth of the dual graph, and hence much below the theoretical upper bound given
by Theorem([7] Also, the ratio between these two numbers appears to be more or less stable for all values shown in Tables [T]and
[2] This can be seen as experimental evidence that for triangulated 3-manifolds the treewidth of the dual graph is responsible for
the inherent difficulty to solve ERASABILITY and related problems.

Despite the small values of n in our tables, the observations made above regarding Question (i) lead us to believe that the
patterns of small treewidth will continue for larger n and thus add relevance to the fixed parameter tractability results presented
in this article and the treewidth as a useful parameter for topological problems.
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