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Abstract. Optimal Morse matchings reveal essential structures of cell complexes which lead to powerful tools
to study discrete geometrical objects, in particular discrete 3-manifolds. However, such matchings are known to
be NP-hard to compute on 3-manifolds, through a reduction to the erasability problem. Here, we refine the study
of the complexity of problems related to discrete Morse theory in terms of parameterized complexity. On the one
hand we prove that the erasability problem is W [P ]-complete on the natural parameter. On the other hand we
propose an algorithm for computing optimal Morse matchings on triangulations of 3-manifolds which is fixed-
parameter tractable in the treewidth of the bipartite graph representing the adjacency of the 1- and 2-simplexes.
This algorithm also shows fixed parameter tractability for problems such as erasability and maximum alternating
cycle-free matching. We further show that these results are also true when the treewidth of the dual graph of the
triangulated 3-manifold is bounded. Finally, we investigate the respective treewidths of simplicial and generalized
triangulations of 3-manifolds.
Keywords: discrete Morse theory. alternating cycle-free matching. parameterized complexity. fixed parameter
tractability. W [P ]-completeness. treewidth. erasability. collapsibility. computational topology.

Figure 1: Example of a (U, s)-gadget with U = {a, b, c}, with sentence gadgets {a, b, c, s}.

1 Introduction
Classical Morse theory [42] relates the topology of a manifold to the critical points of scalar functions defined on it, providing

efficient tools to understand essential structures on manifolds. Forman [26] recently extended this theory to arbitrary cell
complexes. In this discrete version of Morse theory, alternating cycle-free matchings in the Hasse diagram of the cell complex,
so-called Morse matchings, play the role of smooth functions on the manifold [26, 21]. For example, similarly to the smooth
case [44], a closed manifold admitting a Morse matching with only two unmatched (critical) elements is a sphere [26]. The
construction of specific Morse matchings has proven to be a powerful tool to understand topological [26, 32, 33, 36, 37],
combinatorial [21, 31, 35] and geometrical [29, 39, 9, 46] structures of discrete objects.

Morse matchings that minimize the number of critical elements are known as optimal matchings [36]. Together with their
number and type of critical elements, these are topological (more precisely simple homotopy) invariants of the cell complex,
just like in the case of the sphere described above. Hence, computing optimal matchings can be used as a purely combinatorial
technique in computational topology [4]. Moreover, optimal Morse matchings are useful in practical applications such as
volume encoding [38, 49], or homology and persistence computation [39, 28].

However, constructing optimal matchings is known to be NP-hard on general 2-complexes and on 3-manifolds [32, 33, 36].
This result follows from a reduction to this problem from the closely related erasability problem: how many faces must be
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deleted from a 2-dimensional simplicial complex before it can be completely erased, where in each erasing step only external
triangles, i.e. triangles with an edge not lying in the boundary of any other triangle of the complex, can be removed [25]?
Despite this hardness result, large classes of inputs – for which worst case running times suggest the problem is intractable –
allow the construction of optimal Morse matchings in a reasonable amount of time using simple heuristics [37]. Such behavior
suggests that, while the problem is hard to solve for some instances, it might be much easier to solve for instances which occur
in practice. As a consequence, this motivates us to ask what parameter of a problem instance is responsible for the intrinsic
hardness of the optimal matching problem.

In this article, we study the complexity of Morse type problems in terms of parameterized complexity. Following Downey
and Fellows [23], an NP-complete problem is called fixed-parameter tractable (FPT) with respect to a parameter k ∈ N, if
for every input with parameter less or equal to k, the problem can be solved in O(f(k) · nO(1)) time, where f is an arbitrary
function independent of the problem size n. For NP-complete but fixed-parameter tractable problems, we can look for classes
of inputs for which fast algorithms exist, and identify which aspects of the problem make it difficult to solve. Note that the
significance of an FPT result strongly depends on whether the parameter is (i) small for large classes of interesting problem
instances and (ii) easy to compute.

In order to also classify fixed-parameter intractable NP-complete problems, Downey and Fellows [23] propose a family of
complexity classes called the W -hierarchy: FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP . The base problems in each class
of the W -hierarchy are versions of satisfiability problems with increasing logical depth as parameter. Class W [P ] contains
the satisfiability problems with unbounded logical depth. The rightmost complexity class XP of the W -hierarchy contains all
problems which can be solved in O(nk) time where k is the parameter of the problem.

Here, we use the notion of the W -hierarchy in a geometric setting. More precisely, we determine the hardness of Morse
type problems using the mathematically rigid framework of the W -hierarchy. Our first main result shows that the erasability
problem is W [P ]-complete (Theorems 3 and 4), where the parameter is the natural parameter – the number of cells that have
to be removed. In other words, we prove that the erasability problem is fixed-parameter intractable in this parameter. From a
discrete Morse theory point of view, this reflects the intuition that reaching optimality in Morse matchings requires a global (at
least topological) context. In this way, we also show that the W -hierarchy as a purely complexity theoretical tool can be used
in a very natural way to answer questions in the field of computational topology. Although there are many results about the
computational complexity of topological problems [14, 20, 25, 40, 50], to the authors’ knowledge, erasability is the first purely
geometric problem shown to be W [P ]-complete.

Our second main result refines the observation that simple heuristics allow us to compute optimal matchings efficiently. For
general 2-complexes (and 3-manifolds), the problem reduces directly to finding a maximal alternating cycle-free matching on
a spine, i.e., a bipartite graph representing the 1- and 2-cell adjacencies [15, 33, 38] (Lemma 1). To solve this problem, we
propose an explicit algorithm for computing maximal alternating cycle-free matchings which is fixed-parameter tractable in
the treewidth of this bipartite graph (Theorem 5). Furthermore, we show that finding optimal Morse matchings on triangulated
3-manifolds is also fixed-parameter tractable in the treewidth of the dual graph of the triangulation (Theorem 6), which is a
common parameter when working with triangulated 3-manifolds [20].

Finally, we use the classification of simplicial and generalized triangulations of 3-manifolds to investigate the “typical”
treewidth of the respective graphs for relevant instances of Morse type problems. In this way, we give further information on the
relevance of the fixed parameter results. The experiments show that the average treewidths of the respective graphs of simplicial
triangulations of 3-manifolds are particularly small in the case of generalized triangulations. Furthermore, experimental data
suggest a much more restrictive connection between the treewidth of the dual graph and the spine of triangulated 3-manifolds
than the one stated in Theorem 6.

2 Preliminaries
Triangulations

Throughout this paper we mostly consider simplicial complexes of dimensions 2 and 3, although most of our results hold
for more general combinatorial structures. All 2-dimensional simplicial complexes we consider are (i) pure, i.e., all maximal
simplexes are triangles (2-simplexes) and (ii) strongly connected, i.e., each pair of triangles is connected by a path of triangles
such that any two consecutive triangles are joined by an edge (1-simplex). All 3-dimensional simplicial complexes we consider
are triangulations of closed 3-manifolds, that is, simplicial complexes whose underlying topological space is a closed 3-
manifold. In particular every 3-manifold can be represented in this way [41]. We will refer to these objects as simplicial
triangulations of 3-manifolds.

In Section 5 we briefly concentrate on a slightly more general notion of a generalized triangulation of a 3-manifold, which is
a collection of tetrahedra all of whose faces are affinely identified or “glued together” such that the underlying topological space
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is a 3-manifold. Generalized triangulations use far fewer tetrahedra than simplicial complexes, which makes them important
in computational 3-manifold topology (where many algorithms are exponential time). Every simplicial triangulation is a
generalized triangulation, and the second barycentric subdivision of a generalized triangulation is a simplicial triangulation [41],
hence both objects are closely related.

For the remainder of this article, we will often consider 2-dimensional simplicial complexes as part of a simplicial
triangulation of a 3-manifold.

Erasability of simplicial complexes

Let ∆ be a 2-dimensional simplicial complex. A triangle t ∈ ∆ is called external if t has at least one edge which is not in the
boundary of any other triangle in ∆; otherwise t is called internal. Given a 2-dimensional simplicial complex ∆ and a triangle
t ∈ ∆, the 2-dimensional simplicial complex obtained by removing (or erasing) t from ∆ is denoted by ∆ \ t. In addition,
if ∆′ is obtained from ∆ by iteratively erasing triangles such that in each step the erased triangle is external in the respective
complex, we will write ∆  ∆′. We say that the complex ∆ is erasable if ∆  ∅, where in this context ∅ denotes a complex
with no triangle. Finally, for every 2-dimensional simplicial complex ∆ we define er(∆) to be the size of the smallest subset
∆0 of triangles of ∆ such that ∆ \∆0  ∅. The elements of ∆0 are called critical triangles and hence er(∆) is sometimes also
referred to as the minimum number of critical triangles of ∆. Determining er(∆) is known as the erasability problem [25].

Problem 1 (ERASABILITY).
INSTANCE A 2-dimensional simplicial complex ∆.
PARAMETER A non-negative integer k.
QUESTION Is er(∆) ≤ k?

Hasse diagram and spine

Given a simplicial complex ∆, one defines its Hasse diagram H to be a directed graph in which the set of nodes of H is the
set of simplexes of ∆, and an arc goes from τ to σ if and only if σ is contained in τ and dim(σ) + 1 = dim(τ). Let Hi ⊆ H
be the bipartite subgraph spanned by all nodes of H corresponding to i- and i + 1-dimensional simplexes. In particular, H1

describes the adjacency between the 2-simplexes and 1-simplexes of ∆, and will be called the spine of the simplicial complex
∆. The spine of a simplicial complex will be one of the main objects of study in this work.

Matchings

By a matching of a graph G = (N,A) we mean a subset of arcs M ⊂ A such that every node of N is contained in at most
one arc in M . Arcs in M are called matched arcs and the nodes of the matched arcs are called matched nodes. Nodes and arcs
which are not matched are referred to as unmatched. By the size of a matching M we mean the number of matched arcs. A
matching M is called a maximum matching of a graph G if there is no matching with a larger size than the size of M .

Morse matchings

LetH be the Hasse diagram of a simplicial complex ∆ andM be a matching onH . LetH(M) be the directed graph obtained
from the Hasse diagram by reversing the direction of each arc of the matching M . If H(M) is a directed acyclic graph, i.e.,
H(M) does not contain directed cycles, then M is a Morse matching [21]. Furthermore, the number ci of unmatched vertices
representing i-simplexes of ∆ is called the number of critical i-dimensional simplexes and the sum c(M) =

∑
i ci is said to be

the total number of critical simplexes.
The motivation to find optimal Morse matchings is given by the following fundamental theorem of discrete Morse theory

due to Forman which deals with simple homotopy [3].
Theorem 1 ([26]). Let M be a Morse matching on a simplicial complex ∆. Then ∆ is simple homotopy equivalent to a
CW -complex with exactly one d-cell for each critical d-simplex of M .

In other words, a Morse matching with the smallest number of critical simplexes gives us the most compact and succinct
topological representation up to homotopy. For more information about the basic facts of Morse theory we refer the reader to
Forman’s original work [26]. This motivates a fundamental problem in discrete Morse theory, optimal Morse matching, as a
decision problem in the following form.

Problem 2 (MORSE MATCHING).
INSTANCE A simplicial complex ∆.
PARAMETER A non-negative integer k.
QUESTION Is there a Morse matching M with c(M) ≤ k?

Note that ERASABILITY can be restated as a version of MORSE MATCHING where only the number of unmatched 2-simplexes
(that is, c2(M)) is counted [36].
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Complexity of Morse matchings

The complexity of computing optimal Morse matchings is linear on 1-complexes (graphs) [26] and 2-complexes that are
manifolds [36]. Joswig and Pfetsch [33] prove that if you can solve ERASABILITY in the spine of a 2-simplicial complex in
polynomial time, then you can solve MORSE MATCHING in the entire complex in polynomial time. The proof technique easily
extends to 3-manifolds, leading to the following lemma which has been mentioned in previous works [38, 15]. We include the
proof in the Appendix A for completeness.

Lemma 1. Let M be a Morse matching on a triangulated 3-manifold ∆. Then we can compute a Morse matching M ′ in
polynomial time which has exactly one critical 0-simplex and one critical 3-simplex, such that c(M ′) ≤ c(M).

In other words, answering ERASABILITY on the spine is the only difficult part when solving MORSE MATCHING on a 3-
manifold. In Section 4 we show that if a spine has bounded treewidth, then we can solve ERASABILITY in linear time. Lemma
1 therefore generalizes this result to MORSE MATCHING on 3-manifolds.

3 W [P ]-Completeness of the erasability problem
In order to prove that ERASABILITY is W [P ]-complete in the natural parameter, we first have to take a closer look at what

has to be considered when proving hardness results with respect to a particular parameter.
Definition 1 (Parameterized reduction). A parameterized problem L reduces to a parameterized problem L′, denoted by
L ≤FPT L′, if we can transform an instance (x, k) of L into an instance (x′, g(k)) of L′ in time f(k)|x|O(1) (where f
and g are arbitrary functions), such that (x, k) is a yes-instance of L if and only if (x′, g(k)) is a yes-instance of L′.

As an example, Eğecioğlu and Gonzalez [25] reduce SET COVER to ERASABILITY to show that ERASABILITY is NP-
complete. Since their reduction approach turns out to be a parameterized reduction, these results can be restated in the language
of parameterized complexity as follows.
Corollary 1. SET COVER ≤FPT ERASABILITY, therefore ERASABILITY is W [2]-hard.

This shows that, if the parameter k is simultaneously bounded in both problems, ERASABILITY is at least as hard as
SET COVER. In this section we will determine exactly how much harder ERASABILITY is than SET COVER, which is W [2]-
complete. Namely, we will show that ERASABILITY is W [P ]-complete in the natural parameter k. This will be done by i)
using a W [P ]-complete problem as an oracle to solve an arbitrary instance of ERASABILITY (Theorem 3, which shows that
ERASABILITY is in W [P ]), and ii) reducing an arbitrary instance of a suitable problem which is known to be W [P ]-complete
to an instance of ERASABILITY (Theorem 4, which shows that ERASABILITY is W [P ]-hard).

Figure 2: Example of a sentence gadget with m = 2 relations (U, s) and n = 3 relations (U, u) with additional tubes.

There are only a few problems described in the literature which are known to beW [P ]-complete [24, p. 473]. Amongst these
problems, the following is suitable for our purposes.

Problem 3 (MINIMUM AXIOM SET).
INSTANCE A finite set S of sentences, and an implication relation R consisting of pairs (U, s) where U ⊆ S and s ∈ S.
PARAMETER A positive integer k.
QUESTION Is there a set S0 ⊆ S (called an axiom set) with |S0| ≤ k and a positive integer n, for which Sn = S, where we

define Si, 1 ≤ i ≤ n, to consist of exactly those s ∈ S for which either s ∈ Si−1 or there exists a set U ⊆ Si−1 such that
(U, s) ∈ R?
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Theorem 2 ([23]). MINIMUM AXIOM SET is W [P ]-complete.

In this paper, we show that, preserving the natural parameter k, MINIMUM AXIOM SET is both at least and at most as hard
as ERASABILITY.
Theorem 3. ERASABILITY ≤FPT MINIMUM AXIOM SET, therefore ERASABILITY is in W [P ].

Theorem 3 shows that ERASABILITY is at most as hard as the hardest problems in W [P ]. See Appendix B for a detailed
proof of Theorem 3. In order to show that it is in fact amongst the hardest problems in this class we first need to build some
gadgets.
Definition 2 (Gadgets for the hardness proof of ERASABILITY). Let (S,R, k) be an instance of MINIMUM AXIOM SET.

Let s ∈ S be a sentence. By an s-gadget or sentence gadget we mean a triangulated 2-dimensional sphere with 2n + m
punctures as shown in Figure 2, where m is the number of relations (U, s) ∈ R and n is the number of relations (U, u) ∈ R
such that s ∈ U .

Let (U, s) ∈ R be a relation. A (U, s)-gadget or implication gadget is a collection of |U | + 1 sentence gadgets for each
sentence of U ∪ {s} together with 2|U | nested tubes as shown in Figure 1 such that (i) two tubes are attached to two punctures
of the u-gadget for each u ∈ U and (ii) all 2|U | boundary components at the other side of the tubes are identified at a single
puncture of the s-gadget.

Then, by construction the following holds for the (U, s)-gadget.

Lemma 2. A (U, s)-gadget can be erased if and only if all sentence gadgets corresponding to sentences in U are already
erased.

Proof. Clearly, if all sentence gadgets corresponding to sentences in U are erased, the whole gadget can be erased tube by tube.
If, on the other hand, one of the sentence gadgets still exists, this gadget together with the two tubes connected to it build a
complex without external triangles which thus cannot be erased.

Figure 3: Constructing an instance of ERASABILITY from an instance (S,R) of MINIMUM AXIOM SET, where S = {a, b, c, d, e, f, g, h, i}
and R = {({c, d, e}, i), ({f, g, h}, i), ({b}, c), ({a, d}, g)}.

With these tools in mind we can now prove the main theorem of this section.
Theorem 4. MINIMUM AXIOM SET ≤FPT ERASABILITY, even when the instance of ERASABILITY is a strongly connected
pure 2-dimensional simplicial complex ∆ which is embeddable in R3. Therefore ERASABILITY is W [P ]-hard.

The simplicial complex ∆ (Figure 3) constructed to prove W [P ]-hardness of ERASABILITY is in fact embeddable into R3.
This means that, even in the relatively well behaved class of embeddable 2-dimensional simplicial complexes, ERASABILITY
when bounding the number of critical simplexes is still likely to be inherently difficult. See Appendix C for a detailed proof
of Theorem 4. The W [P ]-completeness result implies that if ERASABILITY turns out to be fixed parameter tractable, then
W [P ] = FPT , i.e., every problem in W [P ] including the ones lower in the hierarchy would turn out to be fixed parameter
tractable, an unlikely and unexpected collapse in parameterized complexity. Also, it would imply that the n-variable SAT
problem can be solved in time 2o(n), that is, better than in a brute force search [13]. With respect to this result, if we want to
prove fixed parameter tractability of ERASABILITY, the parameter must be different from the natural parameter.
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Figure 4: Example of a nice tree decomposition (left) of the spine of a non-manifold 2-dimensional simplicial complex (right).

4 Fixed parameter tractability in the treewidth
In this section, we prove that there is still hope to find an efficient algorithm to solve MORSE MATCHING. We give positive

results for the field of discrete Morse theory by proving that ERASABILITY and MORSE MATCHING are fixed parameter
tractable in the treewidth of the spine of the input simplicial complex, and also in the dual graph of the problem instance in case
it is a simplicial triangulation of a 3-manifold.

(a) Treewidth
Definition 3 (Treewidth). A tree decomposition of a graph G is a tree T together with a collection of bags {Xi}, where i is a
node of T . Each bag Xi is a subset of nodes of G, and we require that (i) every node of G is contained in at least one bag Xi

(node coverage); (ii) for each arc of G, some bag Xi contains both its endpoints (arc coverage); and for all bags Xi, Xj and
Xk of T , if Xj lies on the unique simple path from Xi to Xk in T , then Xi ∩Xk ⊆ Xj (coherence).

The width of a tree decomposition is defined as max |Xi| − 1, and the treewidth of G is the minimum width over all tree
decompositions. We will denote the treewidth of G by tw(G).

For bounded treewidth, computing a tree decomposition of a graph G = (V,E) of width ≤ k has running time
O(f(k)|V |) [17] due to an algorithm by Bodlaender. Regarding the size of f(k): using the improved algorithm by Perković and
Reed [8], at most O(k2) recursive calls of Bodlaender’s improved linear time fixed-parameter tractable algorithm for bounded
treewidth [1] are needed. This latter algorithm in turn is said to have a constant factor f(k) which is “at most singly exponential
in k”. Details on the running times of tree decomposition algorithms is available in the literature [2, 34].

Definition 4 (Nice tree decomposition). A tree decomposition (Xi | i ∈ I, T ) is called a nice tree decomposition if the following
conditions are satisfied:

1. There is a fixed bag Xr with |Xr| = 1 acting as the root of T (in this case Xr is called the root bag).

2. If bag Xj has no children, then |Xj | = 1 (in this case Xj is called a leaf bag).

3. Every bag of the tree T has at most two children.

4. If a bag Xi has two children Xj and Xk, then Xi = Xj = Xk (in this case Xi is called a join bag).

5. If a bag i has one child j, then either

(a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi (in this case Xi is called an introduce bag), or

(b) |Xj | = |Xi|+ 1 and Xi ⊂ Xj (in this case Xi is called a forget bag).

A given tree decomposition can be transformed into a nice tree decomposition (Figure 4) in linear time:

Lemma 3 ([34]). Given a tree decomposition of a graph G of width w and O(n) bags, where n is the number of nodes of G,
we can find a nice tree decomposition of G that also has width w and O(n) bags in time O(n).
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(b) Alternating cycle-free matchings

Given a graph G = (N,A) and a matching M ⊂ A on G, an alternating path is a sequence of pairwise adjacent arcs such
that each matched arc in the sequence is followed by an unmatched arc and conversely. An alternating cycle of M is a closed
alternating path. Matchings which do not have any such alternating cycle are called alternating cycle-free matchings. From the
definition of Morse matching, we can state ERASABILITY in the language of alternating cycle-free matchings as follows:

Problem 4 (ALTERNATING CYCLE-FREE MATCHING).
INSTANCE A bipartite graph G = (N1 ∪N2, A).
PARAMETER A nonnegative integer k.
QUESTION Does G has an alternating cycle-free matching M with at most k unmatched nodes in N1?

Specifically, if G = H1 is the spine for some simplicial complex ∆, then ERASABILITY is equivalent to the ALTERNATING
CYCLE-FREE MATCHING problem.

(c) FPT algorithm for ALTERNATING CYCLE-FREE MATCHING

Courcelle’s theorem [22] can be used to show that ALTERNATING CYCLE-FREE MATCHING is fixed parameter tractable
(see Appendix D). However, this is a purely theoretical result, since the stated complexity contains towers of exponents in the
parameter function. This is the reason why, for the remainder of this section, we focus on the construction of a linear time
algorithm to solve ALTERNATING CYCLE-FREE MATCHING for inputs of bounded treewidth with a significantly faster running
time.
Theorem 5. Let G = (N1 ∪N2, A) be a simple bipartite graph with a given nice tree decomposition (Xi | i ∈ I, T ). Then the
size of a maximum alternating cycle-free matching of G can be computed in O(4w

2+w · w3 · log(w) · n) time, where n = |N |
and w denotes the width of the tree decomposition.
Algorithm overview.

Our algorithm constructs alternating cycle-free matchings of G along the nice tree decomposition (Xi | i ∈ I, T ) of G, from
the leaves up to the root, visiting each bag exactly once. In the following we will denote by Fi, the set of nodes which are already
processed and forgotten by the time Xi is reached; we call this the set of forgotten nodes. At each bag Xi of the decomposition,
we construct a setM(i) representing all valid alternating cycle-free matchings in the graph induced by the nodes in Xi ∪ Fi.

The leaf bags contain a single node of G, and the only matching is thus empty. At each introduce bag Xi = Xj ∪ {x},
each matching M ofM(j) can be extended to several matchings as follows. The newly introduced node x can be either left
unmatched, or matched with one of its neighbors as long as it generates a valid and cycle-free matching with M . At each join
bag Xi = Xj = Xk,M(i) is build from the valid combinations of pairs of matchings fromM(j) andM(k). The final list of
valid matchings is then evaluated at the root bag r.

However, this final listM(r) contains an exponential number of matchings. Fortunately, the nice tree decomposition allows
us to group together, at each step, all matchings M that coincide on the nodes of Xi. Indeed, the algorithm takes the same
decisions for all the matchings of the group. We can thus store and process a much smaller listM(j) of matchings containing
only one representative M̃ of each group. In each group, we choose one with the smallest number of unmatched nodes so far.
This grouping takes place at the forget and join bags. This makes the algorithm exponential in the bag size, not the input size.
The algorithm is described step-by-step in Appendix E and illustrated in Figures 5, 6, 7 and 8.

Matching data structure

The structure storing an alternating cycle-free matchingM in a setM(i) must be suitable for checking the matching validity
whenever a matching is extended at an introduce bag or a join bag. It must store which nodes are already matched in M to
avoid matching a node of G twice (matching condition). We use a binary vector v(M), where the x-th coordinate is 1 if node
x ∈ Xi is matched and 0 otherwise. Checking the matching condition and updating when nodes are matched has thus a constant
execution time O(1).

Also, the structure must store which nodes are connected by an alternating path inM to avoid closing a cycle when extending
or combining M (cycle-free condition). When matching two nodes x and y, an alternating cycle is created if there exists an
alternating path from a neighbor of x to a neighbor of y. To test this, we use a union-find structure [11] uf(M), storing for
each matched node x the index of a matched node c(x) connected to x by an alternating path in M . For a subset of matched
nodes which are all connected to each other, the component index c is chosen to be the node with the lowest index. For each
unmatched node, we store the ordered list of component indexes of neighbor matched nodes. The cycle-free condition check
reduces to find calls on the adjacent lists, and the update of the structure when increasing the matching size reduces to union
calls, both executing in near-constant time. All the matchings are stored in a hash structure to allow faster search for duplicates.
Finally, we can return not only the maximal cycle-free matching size, but an actual maximal cycle-free matching by storing,
along with each representative matching, a binary vector of size |Xi ∪ Fi| with all the matched nodes so far.
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n # triangulations minw maxw w̄ minw maxw w̄ (dual)
1 4 (3) 1 2 1.50 (1.67) 0 0 0.00
2 17 (12) 1 3 2.47 (2.42) 1 1 1.00
3 81 (63) 1 3 2.51 (2.49) 1 2 1.60 (1.52)
4 577 (433) 1 5(4) 2.77 (2.73) 1 3 1.91 (1.87)
5 5184 (3961) 1 6(5) 2.95 1 4 2.16 (2.18)
6 57753 (43584) 1 6 3.16 (3.19) 1 4 2.31 (2.35)
7 722765 (538409) 1 7 3.35 (3.40) 1 4 2.45 (2.50)

Table 1: Treewidths of the spine (left) and of the dual graphs (right) of closed generalized triangulations up to 7 tetrahedra. The values in
brackets are for 1-vertex triangulations.

Grouping.

Traversing the nice tree decomposition in a bottom-up fashion, each node appears in a set of bags that form a subtree of the
tree decomposition (coherence requirement). This means that, whenever a node is forgotten, it is never introduced again in the
bottom-up traversal.

A naı̈ve version of the algorithm described above would build the complete list of valid alternating cycle-free matchings:
the setM(i) would contain all valid matchings in the graph induced by the nodes in Xi ∪ Fi. In particular, for each matching
M ∈ M(i) the algorithm would store the binary vector v(M) and the union-find structure uf(M) on Xi ∪ Fi. However, it is
sufficient to store the essential information about each M by restricting the union-find structure uf(M) and the binary vector
v(M) only to the nodes in the bag Xi (for any matched node x ∈ Xi, node c(x) of the union-find structure is then chosen
inside Xi). More precisely, we define an equivalence relation ∼i on the matchings ofM(i) such that M ∼i M

′ if and only if
v(M) = v(M ′) and uf(M) = uf(M ′) on the nodes of Xi. Since two equivalent matchings only differ on the forgotten nodes
Fi, the validation of the matching and cycle-free conditions of any extension of M or M ′ (or any combination with a third
equivalent matching M ′′) will be equal from now on.

Since we are interested in the alternating cycle-free matching with the minimum number of unmatched nodes, for each
equivalence class we will choose a matching M̃ with the minimum number m(M̃) of unmatched forgotten nodes as class
representative. This numberm(M̃) is stored together with (v,uf) for each equivalence class of M̃(i) =M(i)/∼i. In addition,
we can compute the alternating cycle-free matching of maximum size by storing the complete binary vector v along withm(M̃)
(since the matching is cycle-free, this is sufficient to recover the set of arcs defining the matching).

Execution time complexity

To measure the running time we need to bound the number of equivalence classes of M̃(i). Let wi be the number of nodes
in Xi. The number of equivalence classes of M̃(i) is then bounded above by the number of possible pairs (v,uf) on wi nodes.
The union-find stores for each node x, either a component node c(x) ∈ Xi or a list of at most wi component nodes, leading to
at worst 2wi different lists per node, giving 2w

2
i possible combinations of lists. Also there are 2wi possible binary vectors v of

length wi, therefore there are at worst 2w
2
i 2wi elements in M̃(i) (this enumeration includes invalid matchings and incoherences

between v and uf ).
The time complexity is dominated by the execution at the join bag where pairs of equivalences classes from M̃(j) and M̃(k)

have to be combined. Therefore we must square the number of equivalence classes in each set: the complexity for a join bag
is O(4w

2+w · w3 · log(w)) (see the Appendix E for details). Since there are O(n) bags in a nice tree decomposition, the total
execution time is in O(4w

2+w · w3 · log(w) · n). Finally, as already stated in Section 4(a), for bounded treewidth computing
a tree decomposition and a nice tree decomposition is linear. So the whole process from the bipartite graph to the resulting
maximal alternating cycle-free matching is fixed-parameter tractable in the treewidth. Note that neither the decomposition nor
the algorithm use the fact that the graph is bipartite.

(d) Correctness of the Algorithm

We must check that the algorithm, without the grouping, considers every possible alternating cycle-free matching in G and
that the grouping occurring at the forget and join bags does not discard the maximal matching.

The node coverage and arc coverage properties of nice tree decompositions (Definition 3) ensure that each node is processed
and each arc is considered for inclusion in the matching at one introduce node. Since the introduce node discards only matchings
that violate either the matching or the cycle condition, and these violations cannot be legalized by further extensions or
combinations of the matchings, all possible valid matchings are considered.

Now, consider two matchings M and M ′ that are grouped together and represented by M̃ at a forget or join bag Xi. In the
further course of the algorithm, the representative M̃ is then extended or combined with other matchings to form new valid

The corresponding work was published in proceedings of SoCG 2013..



9 Parameterized complexity of discrete Morse theory

matchings M̃ ′. The coherence property of Definition 3 assures that no neighbor of a newly introduced node can be a forgotten
node, so the extension or combination only modifies matchingsM and M̃ on nodes ofXi, which are represented in the structure
of M̃ ′. Hence, the valid matchings M̃ ′ actually represent all the valid extensions and combinations of M and M̃ . The grouping
thus generates all valid and relevant representatives of matchings in order to find a maximal alternating cycle-free matching.
Moreover, in case M and M ′ are equivalent and both with the lowest number of forgotten unmatched nodes, choosing M or
M ′ as representative leads to the exact same extensions and combinations.

Finally, let Mm be the alternating cycle-free matching of maximum size of G. In each bag the corresponding matching must
be one of the matchings with the lowest number of unmatched nodes within its equivalence class M̃m ∈ M̃(i). Otherwise, a
matching in the same class M̃m, extended and combined as Mm in the sequel of the algorithm would give rise to a matching
with fewer unmatched nodes. Therefore, the choice of the representative at the forget and join bags never discards the future
alternating cycle-free matching of maximum size.

(e) Treewidth of the dual graph

Up to this point, we have been dealing primarily with simplicial complexes and their spines. We now turn our attention to
simplicial triangulations of 3-manifolds and a more natural parameter associated to them.
Definition 5 (Dual graph). The dual graph of a simplicial triangulation of a 3-manifold T , denoted Γ(T ), is the graph whose
nodes represent tetrahedra of T , and whose arcs represent pairs of tetrahedron faces that are joined together.

We show that, if the treewidth of the dual graph is bounded, so is the treewidth of the spine, as stated by the following
theorem (proved in Appendix F).
Theorem 6. Let G be the spine of a simplicial triangulation of a 3-manifold T . If tw(Γ(T )) ≤ k, then tw(G) ≤ 10k + 9.

5 Experimental Results
In Section 3 we have seen that the problem of finding optimal Morse matchings is hard to solve in general. In Section 4 on

the other hand we proved that in the case of a small treewidth of the spine of a 2-dimensional complex or, equivalently, in the
case of a bounded treewidth of the dual graph of a simplicial triangulation of a 3-manifold, finding an optimal Morse matching
becomes easier. Up to a certain scaling factor, the results stated in Section 4 hold for generalized triangulations as well (also,
note that the notion of a spine or the dual graph can be extended in a straightforward way to generalized triangulations).

Given this situation, a natural question to ask is the following: What is a typical value for the treewidth of the respective
graphs of (i) small generic generalized triangulations of 3-manifolds, and (ii) small generic simplicial triangulations of 3-
manifolds and (iii) special 2-dimensional simplicial complexes with interesting properties regarding Morse matchings and
shellings?

In a series of computer experiments we computed the treewidth of the relevant graphs (i.e., the spine and the dual graph)
of all closed generalized triangulations of 3-manifolds up to 7 tetrahedra [19], and all simplicial triangulations of 3-manifolds
up to 10 vertices [7]. and of some examples of small 2-dimensional simplicial complexes with interesting properties regarding
discrete Morse theory [16, 30, 43, 10, 12]. The computer experiments were done using LibTW [5] to compute the treewidth /
upper bounds for the treewidth, with the help of the GAP package simpcomp [47, 48] and the 3-manifold software Regina
[18, 45]. We report the minimal, maximal and average treewidths of all triangulations with the same number of tetrahedra in
Table 1 and of all simplicial triangulations with the same number of vertices in Table 2.

Regarding the treewidth of generalized triangulations of 3-manifolds, we observe that there is a large difference between
the average treewidth and the maximal treewidth for both the dual graph and the spine. In particular, the average treewidth
appears to be relatively small. Moreover, there is only a slight difference between the data for general closed triangulations and
1-vertex triangulations. This fact is somehow in accordance with our intuition since the number of 0-dimensional simplexes
should neither directly affect the spine nor the dual graph of a generalized triangulation.

On the other hand, the gap between the maximum treewidth and the average treewidth in the case of simplicial triangulations
of 3-manifolds is relatively small compared to the data for generalized triangulations. In addition, the treewidth of the spines
of some particularly interesting 2-dimensional simplicial complexes (reported in the full version of this paper) is significantly
smaller than the (upper bound of the) treewidth of simplicial triangulations of 3-manifolds. At this point it is important to note
that, while the data concerning the spines for simplicial complexes only consists of upper bounds, experiments applying the
algorithm for the upper bound to smaller graphs and then computing their real treewidths suggest that these upper bounds (in
average) are reasonably close to the exact treewidth.

Further analysis shows that the average treewidth of the spines for both generalized and simplicial triangulations of 3-
manifolds is mostly less than twice the treewidth of the dual graph, and hence much below the theoretical upper bound given
by Theorem 6. Also, the ratio between these two numbers appears to be more or less stable for all values shown in Tables 1 and
2. This can be seen as experimental evidence that for triangulated 3-manifolds the treewidth of the dual graph is responsible for
the inherent difficulty to solve ERASABILITY and related problems.
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n # triangulations minw maxw w̄ minw maxw w̄ (dual)
5 1 6 6 6.00 4 4 4.00
6 2 ≤ 7 ≤ 8 ≤ 7.50 4 5 4.50
7 5 ≤ 8 ≤ 11 ≤ 9.40 4 6 5.00
8 39 ≤ 8 ≤ 14 ≤ 11.23 4 7 5.74
9 1297 ≤ 8 ≤ 18 ≤ 13.55 4 9 7.01
10 249015 ≤ 8 ≤ 22 ≤ 16.33 ≤ 4 ≤ 13 ≤ 8.99

Table 2: Upper bounds and exact values for the treewidths of the spine (left) and of the dual graph (right) of simplicial triangulations of
3-manifolds up to 10 vertices.

Despite the small values of n in our tables, there are theoretical reasons to believe that the patterns of small treewidth will
continue for larger n. For instance, the conjectured minimal triangulations of Seifert fibered spaces over the sphere have dual
graphs with O(1) treewidth for arbitrary n. Moreover, following recent results of Gabai et al. [6] there are reasons to believe
that large infinite classes of topological 3-manifolds admit triangulations whose treewidths are below provable upper bounds.
Investigating these upper bounds is work in progress.
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A Proof of Lemma 1
The proof of Lemma 1 actually follows directly from Joswig and Pfetsch’s proof of the following lemma.

Lemma 4 ([33]). Let M be a Morse matching on a 2-simplicial complex ∆. Then we can compute a Morse matching M ′ in
polynomial time which has exactly one critical 0-simplex, the same number of critical simplexes of dimension greater or equal
2 as M , and c(M ′) ≤ c(M).

The proof builds a Morse matching from a spanning tree of the primal graph, i.e. the graph obtained considering only the
vertices and edges of ∆. For a 3-manifold ∆, the proof of the previous lemma can be applied exactly the same way on the dual
graph of ∆ to obtain the following result.

Lemma 5. Let M be a Morse matching on a closed triangulated 3-manifold ∆. Then we can compute a Morse matching M ′

in polynomial time which has exactly one critical 3-simplex, the same number of critical simplexes of dimension less or equal
1, and c(M ′) ≤ c(M).

Since the proof works independently on the primal and dual graph, Lemma 1 is a combination of these results. Here, we
simply reproduce the proof of Joswig and Pfetsch [33] verbatim applying it to 3-manifold complexes, using Poincaré’s duality.

First consider a Morse matching M for a connected 3-manifold ∆. Let γ(M) be the graph obtained from the graph of ∆ by
removing all edges (1-simplexes) matched with 2-simplexes and let γ∗(M) be the dual graph (dual graph) of ∆ by removing all
the triangles (2-simplexes) matched with edges (1-simplexes). Note that γ(M) and γ∗(M) contains all vertices and tetrahedra
of ∆, respectively.

Lemma 6. The graph γ(M) and dual graph γ∗(M) are connected.

Proof. Suppose that γ(M) is disconnected. Let N be the set of nodes in a connected component of γ(M), and let C and C∗

be the set of cut edges, that is, edges of ∆ with one vertex in N and one vertex in its complement. Since ∆ is connected, C is
not empty. By definition of γ(M), each edge in C is matched to a unique 2-simplex.

Consider the directed subgraph D of the Hasse diagram consisting of the edges in C and their matching 2-simplexes. The
standard direction of arcs in the Hasse diagram (from the higher to the lower dimensional simplexes) is reversed for each
matching pair of M , i.e., D is a subgraph of H(M). We construct a directed path in D as follows. Start with any node of D
corresponding to a cut edge e1. Go to the node of D determined by the unique 2-simplex τ1 to which e1 is matched to. Then τ1
contains at least one other cut edge e2, otherwise e1 cannot be a cut edge. Now iteratively go to e2, then to its unique matching
2-simplex τ2, choose another cut edge e3, and so on. We observe that we obtain a directed path e1, τ1, e2, τ2, · · · in D, i.e., the
arcs are directed in the correct direction. Since we have a finite graph at some point the path must arrive at a node of D which
we have visited already. Hence, D (and therefore also H(M)) contains a directed cycle, which is a contradiction since M is a
Morse matching.

To prove that γ∗(M) is disconnected, we repeat the proof above on the dual graph.

Lemma 1 ([38, 33, 15]). Let M be a Morse matching on a triangulated orientable 3-manifold ∆. Then we can compute a
Morse matching M ′ in polynomial time which has exactly one critical 0-simplex and at most one critical 3-simplex, such that
c(M ′) ≤ c(M).

Proof. Since γ(M) and γ∗(M) are connected, they both have spanning trees, and we will use them to build the Morse
matching. First pick an arbitrary node r1 and any spanning tree of γ(M) and direct all arcs away from r1. Then pick an
arbitrary tetrahedron(node in the dual graph) r2 and any spanning tree of γ∗(M) and direct all triangles(arcs in dual graph)
away from r2. This yields a maximum Morse matching on γ(M) and γ∗(M). It is easy to see that replacing the part of M on
γ(M) and γ∗(M) with this matching yields a Morse matching. This Morse matching has only one critical vertex (the root r1)
and one critical tetrahedron (the root r2). Note that every Morse matching in a triangulated 3-manifold contains at least one
critical vertex and at least one critical tetrahedron; this can be seen from Theorem 1. Furthermore, the total number of critical
simplexes can only decrease, since we computed an optimal Morse matching on γ(M) and γ∗(M).
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B Proof of Theorem 3
Theorem 3. ERASABILITY ≤FPT MINIMUM AXIOM SET. ERASABILITY is in W [P ].

Proof. We show membership of ERASABILITY in W [P ] by reducing a given instance (∆, k) of ERASABILITY to an instance
(S,R, k) of MINIMUM AXIOM SET.

W. l. o. g. we can assume that the 2-dimensional simplicial complex ∆ has no external edges (if ∆ has external edges we
first remove these edges until no external edge exists and reduce the remaining problem instance to an instance of MINIMUM
AXIOM SET). We now identify the set of triangles of ∆ with the set of sentences S in a one-to-one correspondence. For every
edge e ∈ ∆ we denote the set of all triangles containing e by star∆(e) ⊂ ∆, we write for the corresponding set of sentences
Se ⊂ S, and we define the set of implication relations R by the relations

(Se \ {s}, s)

for each triangle s ∈ Se for all edges e ∈ ∆. Note that ∆ has no external edges and thus Se \ {s} 6= ∅ for all e.

In a next step, we show that for all axiom sets S0 ⊂ S of size k we have ∆ \∆0  ∅ for the associated subset of triangles
∆0 ⊂ ∆ of size k. To see that this is true, note that for the augmenting sequence S0 ⊂ S1 ⊂ . . . ⊂ Sn = S of S, their
corresponding subsets of triangles ∆0 ⊂ ∆1 ⊂ . . . ⊂ ∆n = ∆ and i ∈ {1, . . . , n} fixed, all sentences s ∈ Si \ Si−1 have to
occur in a relation (Se \ {s}, s) for some edge e with Se \ {s} ⊂ Si−1. For the triangle t ∈ ∆ corresponding to s this means
that, star∆(e) \ t ⊂ ∆i−1. Thus, if we assume that all triangles in ∆i−1 are already erased, t must be external and thus can be
erased as well. The statement now follows by the fact that for i = 1, all triangles in ∆0 are already erased in ∆ \∆0 and hence
∆ \∆0  ∅.

Conversely, let ∆0 ⊂ ∆ be of size k such that ∆ \∆0  ∅. Since ∆ has no external triangles but ∆ \∆0  ∅, there must
be external triangles t ∈ ∆ \ ∆0 and hence for s ∈ S being the sentence corresponding to the triangle t there is a relation
(Se \ {s}, s) with Se \ {s} ⊂ S0, where S0 is the set of sentences corresponding to the set of triangles ∆0. We then define S1

to be the union of S0 with all sentences s of the type described above and iterating this step results in a sequence of subsets
S0 ⊂ S1 ⊂ . . . ⊂ Sn = S for some n what proves the result.
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C Proof of Theorem 4
Theorem 4. MINIMUM AXIOM SET ≤FPT ERASABILITY. ERASABILITY is W [P ]-hard even when the instance is a strongly
connected pure 2-dimensional simplicial complex ∆ which is embeddable in R3.

Proof. To show W [P ]-hardness of ERASABILITY, we will reduce an arbitrary instance (S,R, k) from MINIMUM AXIOM SET
to an instance (∆, k) of ERASABILITY. In order to do so, we will use a sentence gadget for each element of S and an implication
gadget for each relation R (cf. Definition 2) to construct a 2-dimensional simplicial complex ∆ with a polynomial number of
triangles in the input size.

By construction, we can glue all sentence and implication gadgets together in order to obtain a simplicial complex ∆ without
any exterior triangles. Note that the only place where ∆ is not a surface is at the formerm boundary components of the sentence
gadgets corresponding to the right hand sides of the relations in R.

For any axiom set S0 ⊂ S of size k, let ∆0 be a set of k triangles, one from each sentence gadget corresponding to a
sentence in S0. It follows by Lemma 2, that ∆ \∆0 can be erased to a complex where all the sentence gadgets s corresponding
to relations (U, s), U ⊂ S0, have external triangles. Since S0 is an axiom set, iterating this process erases the whole complex
∆.

Conversely, let ∆0 be a set of k triangles such that ∆\∆0  ∅. First, note that erasing a triangle of any tube of an implication
gadget always allows us to remove the sentence gadget at the right end of this tube. Hence, w. l. o. g. we can assume that all k
triangles in ∆0 are triangles of some sentence gadget in ∆. Now, if any sentence gadget contains more than one triangle of ∆0

we delete all additional triangles obtaining a set ∆′0 of k′ triangles, k′ ≤ k, such that ∆ \∆′0  ∅ and thus the corresponding
set of sentences is an axiom set of size k′ ≤ k.

The result now follows by the observation that ∆ can be realized by at most a quadratic number of triangles in the input size
of (S,R, k).
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D Fixed parameter tractability of ALTERNATING CYCLE-FREE MATCHING from Courcelle’s the-
orem

Courcelle’s celebrated theorem [22] states that all graph properties that can be defined in Monadic Second-Order Logic
(MSOL) can be decided in linear time when the graph has bounded treewidth. Here, we want to use Courcelle’s theorem to
show that problems in discrete Morse theory are fixed parameter tractable in the treewidth of some graph associated to the
problem. However, it is not obvious how to directly state ERASABILITY and MORSE MATCHING in MSOL. Instead, we will
apply Courcelle’s theorem to ALTERNATING CYCLE-FREE MATCHING which by the comment made in Section 4(b) is a graph
theoretical problem equivalent to ERASABILITY.

Theorem 7. Let w ≥ 1. Given a bipartite graph with tw(G) ≤ w, ALTERNATING CYCLE-FREE MATCHING can be solved in
linear time.

Proof. We will write a MSOL formulation of ALTERNATING CYCLE-FREE MATCHING based on the fact that M is an
alternating cycle-free matching if and only if M is a matching and every induced M -subgraph contains a node of degree 1
[27]:

maxM : ∀x ∈ N [¬∃a1, a2 ∈M(a1 6= a2 ∧ inc(x, a1) ∧ inc(x, a2))]

∧ ∀M ′ ⊆M(∃a ∈M ′,∃x ∈ N [inc(x, a) ∧ (∀x1 ∈ N(¬∃a1 ∈M ′(x 6= x′ ∧ adj(x, x1) ∧ inc(x1, a1))))])

where inc(x, a) is the incidence predicate between node x and arc a and adj(x, x′) is the adjacency predicate between node x
and node x′. The above statement can be translated to plain English as follows: “Find the largest matching M of G, where each
node is incident to at most one arc, such that in every subset M ′ of the matching M there exists a matched node x in M ′ such
that its only neighbor matched in M ′ is the other endpoint of the unique matched arc incident to x.

The corresponding work was published in proceedings of SoCG 2013..
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E Algorithm for ALTERNATING CYCLE-FREE MATCHING: step by step
The algorithm visits the bags of the nice tree decomposition bottom-up from the leaves to the root evaluating the

corresponding mappings in each step according to the following rules (Figure 8).

Leaf bag

The set of matchings M̃(i) of a leaf bag Xi = {x} is trivial with a unique empty matching M̃ represented by v(M̃) = [0],
and uf(M̃)(x) defined by as an empty list, associated with m(M̃) = 0.

Introduce bag

Let Xi = Xj ∪ {x} be an introduce bag with child bag Xj . The set of valid matchings M̃(i) is built from M̃(j) by
introducing x in each matching M̃ ∈ M̃(j), generating several possible matchings M̃ ′. We can always introduce x as an
unmatched node, then M̃ is extended on x by setting v(M̃ ′)|x = 0 and updating uf(M̃ ′) with the ordered list of components
for each matched neighbor of x. In addition, for each unmatched neighbor y ∈ Xj , we can introduce x as a matched node in the
following way. We match both x and y in M̃ and set v(M̃ ′)|x = 1 and v(M̃ ′)|y = 1. If the intersection of the list of neighbor
components of x and y is empty, then the matching of x and y does not create cycle. In this case M̃ ′ is a valid extension of M̃ .
The update of the union-find structure must then reflect the extensions of all alternating paths through arc {x, y}. We perform
in uf(M̃ ′) a union operation for x and all its matched neighbors (including y), and for y and all its matched neighbors. We also
add the merged component index c(x) to the list of neighbor components of each unmatched neighbor of x and y. Then we
include all valid extensions M̃ ′ to M̃(i), reducing v(M̃ ′) by calling find for each node and neighbor component list entry, and
we set m(M̃) = m(M̃ ′) for all extensions M̃ ′ of M̃ .
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Figure 5: Detail of the decisions at an introduce bag.

Running time.
There are at most 2w

2
i +wi extended matchings M̃ ′ for bag Xi (including all invalid ones), where wi = |Xi| = |Xj |+ 1 (a new

possible matching can be generated only once). Each new matching is validated by a direct lookup at v(M̃ ′) and ordered list
comparison, leading to a linear time wi. The update of each structure requires constant time for each matched neighbor of x
and almost linear time O(wi) plus the sorted insertion O(wi · log(wi)) for each unmatched neighbor, and there are at most wi

neighbors in the bag. Thus, the total running time of an introduce bag is in O(2w
2
i +wi · w2

i · log(wi)).

Forget bag

LetXi = Xj \{x} be a forget bag with child bagXj 3 x. While the set of all possible matchings onXi∪Fi does not change
(M(j) = M(i)), the equivalence relation ∼i possibly identifies more matchings than ∼j . For each matching M̃ ∈ M̃(j), a
new matching M ′ is obtained by deleting coordinate x of v(M̃). If c(x) = x, uf(M̃) needs to be updated. To do so, the set of
nodes Xi is traversed twice, once to look for node y 6= x of minimal index such that c(y) = c(x) (eventually, y is empty), and a
second time to replace x by y each time x is used as a component index. If x was unmatched in M̃ (i.e., v(M̃)|x = 0), then we
set m(M ′) = m(M̃) + 1, otherwise we set m(M ′) = m(M̃). Once the setM(′) of all the generated M ′ is computed,M(i)
is obtained as the quotient ofM(j)′ by ∼i, the equivalence relation on Xi. More precisely, each pair (M ′,M ′′) ∈ M(j)′2 is
tested for equality on both v and uf . If they are equal, one with the lowest m is defined to be the new representative inM(i).
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Running time.
Each new matching M ′ is obtained from a single element ofM(j) in worst-case time O(w2

i · log(wi)). Equivalent matchings
are detected on-the-fly when filling the hash structure of M(i), and each equivalence test is linear in w2

i . The complexity is
thus in O(2w

2
j+wj · w2

j · log(wj)).
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Figure 7: Detail of the decisions at a join bag.

Join bag

Let Xi = Xj = Xk be a join bag with child bags Xj and Xk. The matchings of M(i) are generated by combining all
the pairs of matchings (M,M ′) ∈ M(j) ×M(k). A combination is valid if and only if it satisfies both the matching and
cycle-free conditions. The matching condition says that a node cannot be matched in both M and M ′, which is checked by
a logical AND operation (v(M) AND v(M ′)). The cycle-free condition is checked with the union-find structures M and
M ′: the combination is valid if no node of the component of a matched node in uf(M) is neighbor of the same component
in uf(M ′) and vice versa, each test requiring O(w2

i ) per component. If a combination is valid, its structure M ′′ is defined by
v(M ′′) = v(M) OR v(M ′). The union-find structure is initialized fromuf(M), and updated as the introduce bag for each
matched nodes of M ′. Finally, m(M ′′) = m(M) + m(M ′). As in the forget bag, two combinations may result in equivalent
matchings, and we must compare them pairwise and choose the representative with the lowest number of unmatched forgotten
bags. Note that the sets of forgotten nodes of Xj and forgotten nodes of Xk have to be disjoint by the coherence of Definition
3 and hence no forgotten node can be matched twice in this setting. Furthermore, all possible combinations of matched and
unmatched nodes are enumerated inM(j) andM(k) and hence no possible matching is overseen.

Running time.
Each pair of matchings is validated and updated in time O(wi ·w2

i · log(wi)). The comparison and the choice of representative

The corresponding work was published in proceedings of SoCG 2013..



19 Parameterized complexity of discrete Morse theory

is done on-the-fly when filling the hash structure ofM(i). There are at worst (2w
2
i +wi)2 pairs. Thus, the complexity of the join

bag dominates all other running times. Therefore, the complexity of the algorithm is in O(4w
2
i +wi · w3

i · log(wi)).

Root bag

Let Xr = {x} be the root of T .M(r) consists of at most two matchings v(M̃) = [0] or v(M̃ ′) = [1], where uf(M̃) is an
empty list and uf(M̃ ′) defined by c(x) = x. It follows that the minimum number of unmatched nodes for any alternating cycle-
free matching of G is given by m = min{m(M̃) + 1,m(M̃ ′)}, and the maximum size of an alternating cycle-free matching is
given by (n−m)/2 where n = |N | denotes the number of nodes of G.

Total Running Time

The total time complexity of the algorithm is bounded above by the running time of the join bag. Since there is a linear
number of bags, and since for every bag Xi we have |Xi| ≤ tw(G) + 1 = w + 1, the total time complexity of the algorithm
described above is

O(4w
2+w · w3 · log(w) · n).
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Figure 8: Algorithm execution on a small bipartite cycle (top left) with its nice tree decomposition (center). At each bag, a set of matchings
M̃(i) is generated according to the bag type. M̃(i) is represented on the side of each bag, with the nomenclature illustrated at the top of the
figure.
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F Proof of Theorem 6
Theorem 6. Let G = (N1 ∪ N2, A) be the spine of a simplicial triangulation of a 3-manifold T . If tw(Γ(T )) ≤ k, then
tw(G) ≤ 10k + 9.

Proof. Let T be a tree decomposition of the dual graph, where each bag Xi contains less or equal k + 1 tetrahedra. We show
how to construct a tree decomposition T ′ of the spine of T , modeled on the same underlying tree as T , in which each bag X ′i
contains less or equal 10(k + 1) edges and triangles.

For each bag Xi of T , we simply define the bag X ′i to contain all edges and triangles of all tetrahedra in Xi. It remains to
verify the three properties of a tree decomposition (Definition 3).

Node coverage

It is clear that every edge or triangle in the spine belongs to some bag X ′i , since every edge or triangle is contained in some
tetrahedron δ, which belongs to some bag Xi.

Arc coverage

Consider some arc in the spine. This must join a triangle t to an edge e that contains it. Let δ be some tetrahedron containing
t; then δ contains both t and e, and so if Xi is a bag containing δ then the corresponding bag X ′i contains the chosen arc in the
spine (joining t with e).

Coherence

Here we treat edges and triangles separately.
Let t be some triangle in the simplicial complex. We must show that the bags containing t correspond to a connected subgraph

of the underlying tree. If t is a boundary triangle, then t belongs to a unique tetrahedron δ, and the bags X ′i that contain t
correspond precisely to the bags Xi that contain δ. Since the tree decomposition T satisfies the connectivity property, these
bags correspond to a connected subgraph of the underlying tree. If t is an internal triangle, then t belongs to two tetrahedra δ1
and δ2, and the bags X ′i that contain t correspond to the bags Xi that contain either δ1 or δ2. By the connectivity property of the
original tree, the bags containing δ1 describe a connected subgraph of the tree, and so do the bags containing δ2. Furthermore,
there is an arc in the dual graph from δ1 to δ2, and so some bag Xi contains both δ1 and δ2. Thus the union of these two
connected subgraphs is another connected subgraph, and we have established the connectivity property for t.

Now let e be some edge of the simplicial complex. Again, we must show that the bags containing e correspond to a connected
subgraph of the underlying tree. This is simply an extension of the previous argument. Suppose that e belongs to the tetrahedra
δ1, . . . , δm (ordered cyclically around e). Then for each δj , the bags Xi that contain δj describe a connected subgraph of the
underlying tree, and the bagsX ′j containing e describe the union of these subgraphs, which we need to show is again connected.
This follows because there is a sequence of arcs in the dual graph (δ1, δ2), (δ2, δ3) and so on; from the tree decomposition T it
follows that the subgraph for δ1 meets the subgraph for δ2, the subgraph for δ2 meets the subgraph for δ3, and so on. Therefore
the union of these subgraphs is itself connected.

Preprint MAT. 18/2012, communicated on December 4th, 2012 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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G Treewidths of some 2-complexes of interest for discrete Morse theory.
The following table gathers treewidths of the spine of some 2-dimensional simplicial complexes of particular interest for

discrete Morse theory, together with information on their shellability (sh.), extended shellability (ext. s.), vertex decomposability
(vtx. dec.), and f -vector (the i-th entry of the f -vector of a simplicial complex denotes the number of i-dimensional simplexes
in the complex) [30].

complex shell. ext. s. constr. vtx. dec. f -vector treewidth
Dunce hat, Zeeman [12] No (8, 24, 17) ≤ 6
Björner [16, Exerc. 7.37] No (6, 15, 11) 5
Hachimori’s example I [30] Yes No (7, 19, 13) ≤ 5
Hachimori’s example II [30] No Yes (12, 37, 26) ≤ 5
Hachimori’s example III [30] No Yes (13, 39, 27) ≤ 5
Hachimori’s example IV [30] No Yes (10, 31, 22) ≤ 5
Simon’s example I [10] No (7, 20, 14) ≤ 4
Simon’s example II [10] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example I [43] Yes No (6, 14, 9) 3
Moriyama & Takeuchi’s example II [43] Yes No (6, 14, 9) 3
Moriyama & Takeuchi’s example III [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example IV [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example V [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example VI [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example VII [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example VIII [43] Yes No (6, 15, 11) 5
Moriyama & Takeuchi’s example IX [43] Yes No (6, 15, 11) 5
Moriyama & Takeuchi’s example X [43] Yes No (7, 17, 11) 4
Moriyama & Takeuchi’s example XI [43] Yes No (7, 18, 12) ≤ 4
Moriyama & Takeuchi’s example XII [43] Yes No (6, 15, 10) 4
Moriyama & Takeuchi’s example XIII [43] Yes No (6, 15, 10) 3

The corresponding work was published in proceedings of SoCG 2013..
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