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Abstract. Morse theory is a powerful tool for investigating the topology of smooth manifolds. It has been
widely used by the computational topology, computer graphics and geometric modeling communities to devise
topology based algorithms and data structures. Forman introduced a discrete version of this theory, which is purely
combinatorial.

This work aims to build, visualize and apply the basic elements of Forman’s discrete Morse theory. It intends
to use some of those concepts to visually study the topology of an object. As a basis, an algorithmic construction
of optimal Forman’s discrete gradient vector fields is provided. This construction is then used to topologically
analyze mesh compression schemes, such as Edgebreaker and Grow&Fold. In particular, this paper proves that the
complexity class of the strategy optimization of Grow&Fold is MAX–SNP hard.
Keywords: Discrete Mathematics. Hypergraphs. Data compaction and compression. Computer Graphics.
Computer–aided design. Morse Theory. Forman Theory. Vector Field Visualization. Computational Topology.

Figure 1: The energy of a discrete gradient vector field on a 3–manifold cell complex (projection on R3).

1 Introduction
Morse theory [16] is a fundamental tool for investigating

the topology of smooth manifolds. Many applications of
this theory to computer graphics have been devised [18, 8].
In the new field of computational topology [4, 2], Morse
theory has been used to design topology based algorithms
and data structures [13]. This work focuses on a similar tool
for discrete structures such as cell complexes (see Figure 1),
based on Forman’s extension of Morse theory [5, 6].

In this work, we aim to visually investigate topological
aspects of a geometric or abstract model. This paper also de-
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velops to mesh compression. To do so, we first introduce an
algorithm to construct an optimal discrete gradient vector
field on general, n–dimensional discrete structures, where
optimality entails having the minimum possible number of
critical elements. This algorithm illustrates the structure of a
discrete gradient vector field [10]. Second, we provide a con-
struction of such discrete gradient vector fields on triangu-
lated surfaces using compression strategy such as the Edge-
breaker [17]. Finally, we use Forman’s theory together with
this construction to analyze the Grow&Fold algorithm [19]
for solid mesh compression.

The paper is organized as follows. In section 2 Forman’s
discrete Morse theory, we introduce some basics of Forman’s
theory. In section 3 Hypergraphs and Hyperforests we define
some concepts of hypergraph theory, which are slightly dif-
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ferent from the classical ones [1]. In section 4 Algorithm,
we introduce our algorithm to build gradient fields, trying
to reach optimality. Reaching the optimum in the general
case is MAX–SNP hard [10], since it reduces to the ver-
tex cover problem. A MAX–SNP hard problem is an NP–
Hard problem for which any polynomial approximation can
be arbitrarily far from the optimal. However, our algorithm
builds optimal discrete gradient vector fields for the case of
2–manifolds [11], and almost always achieves the minimum
number of critical cells in quadratic time for the general case
(non–manifold and higher dimensions) [12]. We will illus-
trate some applications to topology visualization in the sec-
tion 5 Topology Visualization. Finally we apply this theoretical
framework to mesh compression in section 6 Applications to
mesh compression.

2 Forman’s discrete Morse theory
Classical Morse theory [16] is usually considered as a

bridge between geometry and topology. In particular, it justi-
fies the intuition that an object with a complex topology must
have a complex geometry. More formally, for any smooth
function defined on a smooth manifold, the number and the
nature of its critical points (i.e. the points where the gradient
vanishes) are strongly related to the topology of the mani-
fold. Usually, the smooth function is devised from the geom-
etry of the embedding of the manifold, as the vertical projec-
tion of Figure 2.

Robin Forman extended this theory to discrete structures,
namely cell complexes (see Section 2(a)). The resulting the-
ory is more powerful and rigorous than a simple discretiza-
tion. In particular, a cell complex with a discrete gradient
vector field V is simple homotopy equivalent to a complex
composed of only the critical cells of V . However, this the-
ory requires some further concepts that will be briefly in-
troduced in this section. For a complete presentation of For-
man’s theory, see [5, 6].

(a) Cell Complexes

A cell complex is, roughly speaking, a generalization of
the structures used to represent solid models: it is a consistent
collection of cells (vertices, edges, faces. . . ). A complete
introduction to cell complexes can be found in [15].

A cell α(p) of dimension p is a set homeomorphic to the
open p–ball {x ∈ Rp : ‖x‖ < 1}. When the dimension p of
the cell is obvious, we will denote α instead of α(p).

A cell complex K is built by starting off with a discrete
collection of 0–cells (vertices) called K0, then attaching 1–
cells (edges) to K0 along their boundaries, obtaining K1,
then attaching 2–cells (faces) to K1 along their boundaries,
and so on, obtaining spaces Kn for each n.

A cell complex will be said to be finite when it is built
out of a finite number of cells. In this work, we will consider
only finite (and therefore regular) cell complexes.

A p–cell α(p) is called a sub–face of a q–cell β(q) (p < q)
if α ⊂ closure (β). If q = p + 1, we will use the notation
α(p) ≺ β(q), and say that α and β are incident. We call the

boundary of a p–cell the union of cells with lower dimension
incident to it.

(b) Smooth interpretation of discrete Morse theory

Figure 2: A smooth manifold (torus) with a Morse function
(f(x, y, z) = z) defined on it. There are 4 critical points: where
the tangent plane is horizontal (∇f = 0).

In this section, we will try to introduce discrete Morse the-
ory to the reader familiar with the classical notions of vector
fields and its critical points. Consider a smooth manifold M
of dimension n with a smooth function f defined on it, such
as the torus of Figure 2. A point x of f is critical if the gradi-
ent of f vanishes at x: ∇f (x) = 0. When second derivative
Hf (x) is non–degenerated, a critical point can be:

– a local minimum: Hf (x) has only positive eigenval-
ues (see Figure 3(a)).

– a local maximum: Hf (x) has only negative eigenval-
ues (see Figure 3(a)).

– a k–saddle: Hf (x) has k negative eigenvalues and
(n− k) positive ones (see Figure 3(b)).

A small region around a critical point will be deformed
by the flow of −∇f (in a similar way to the trajectory of
water drops on M under the force −∇f ). This deformation
depends of the nature of the critical point:

– around a local minimum, the region retracts to a single
point, i.e. a 0–cell (see Figure 3(c)).

– around a local maximum, the region will cover a small
region of M (a n–cell) (see Figure 3(c)).

– around a k–saddle, the region will retract in some
directions, and expand in the other ones, deforming to
a “k–curve”, i.e. a k–cell (see Figure 3(d)).

Those small deformed regions will be the cells of the dis-
cretization of M (see Section 2(f)).

However in computer graphics, the problem is often for-
mulated as the opposite one: given a discrete object, how to
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(a) Local minimum and maximum (b) Saddle (c) Retraction near the minimum,
expansion near the maximum

(d) The region around the saddle
tends to a curve

Figure 3: Deformations around different kinds of critical points.

define its smooth analog. In the case of Morse theory, a gra-
dient field indicates how small regions, i.e. cells, will merge
during the deformation induced by its flow. A discrete gra-
dient vector field can be seen as the indication of those local
merges. Successive merges cannot loop, and thus they form a
kind of tree, rooted at the critical cell. Our algorithm is based
on this observation, although the kind of tree is a quite com-
plex object in the general case (see section 3 Hypergraphs and
Hyperforests).

(c) Discrete gradient vector fields

Forman’s theory relies on admissible functions on a cell
complex, or equivalently their gradient vector field. Here, we
will introduce the theory from the second point of view. Nev-
ertheless, our construction of a vector field also builds the
corresponding discrete Morse function. We will define those
notions in the following paragraphs. The analogy of the dis-
crete vector field with the flow mentioned above is based on
the merges of small regions, i.e. cells, under the flow derived
from a smooth Morse. Those local merge operations can be
represented by pairings, which is the general definition of
discrete vector fields:
Definition 1 (Combinatorial vector field) A combinatorial
vector field V , defined on a cell complex K, is a disjoint
collection of pairs {α(p), β(p+1)} of incident cells: α(p) ≺
β(p+1).
For such pairs, V (α) = β and V (β) = 0. If a cell σ does
not belong to any pair, then V (σ) = 0.

We will represent this pairing by an arrow from α(p) to
β(p+1).

A closed V –path is an alternate sequence of p– and
(p+1)–cells α0, β0, . . . , α1, β1, αr+1 = α0, with r > 0,
satisfying:

V (α(p)
i ) = β

(p+1)
i and β

(p+1)
i Â α

(p)
i+1 6= α

(p)
i .

Definition 2 (Discrete gradient vector field) A combinato-
rial vector field V will be called a discrete gradient vector
field if it contains no closed V –path.

(d) A simple example

In the example of Figure 4, the discrete gradient vector
field V is represented by arrows, from a cell of the complex
to its image by V : from an edge to a face, and from a vertex to
an edge. There is, among others, an opened V –path starting
at the bottom–right vertex, and ending at the topmost one,
and another one starting at the bottom green edge, and ending
at the top horizontal red edge.

The corresponding Hasse diagram (Figure 5) represents
every cell by one node. The faces (2–cells) are aligned on
top rank, the edges (1–cells) on the middle one and the
vertices (0–cells) on the bottom rank. A link between two
nodes symbolizes that the corresponding cells are incident.
We linked by an orange line paired cells.

(e) Critical cells and optimality

Morse proved that the topology of a manifold is related to
its critical elements. Forman gave an analogous result, with
the following definition for the critical cells.

Definition 3 (Critical cells) A cell α is critical if it is not
paired with any other cell, i.e.:

V (α) = 0 and α /∈ Im (V )

On Figure 4 and Figure 5, critical cells are drawn in red:
there is one critical vertex (topmost one) and one critical
edge (top horizontal edge).

Definition 4 (Optimality) A discrete gradient vector field is
optimal if it has the minimum possible number of critical
cells.

The number of critical cells is not a topological invariant,
since it depends on the discrete gradient vector field defined.
For example, an empty discrete vector field (i.e. no cells are
paired) would have all its cells critical. However, the minimal
possible number of critical cells is a topological invariant
for n–manifolds, n < 4 [12]. Reaching the optimum in
the general case is MAX–SNP hard [10]. However, our
algorithm builds optimal gradient vector field for the case of
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Figure 4: A cell complex with its discrete gradient field.

2-cells:

1-cells:

0-cells:

Figure 5: The Hasse diagram of Figure 4.

2–manifolds [11] and almost always results in the minimum
number of critical cells in quadratic time for the general
case [12].

(f) Homotopy properties

Forman proved that a cell complex with a discrete gra-
dient vector field V is simple homotopy equivalent [3] to a
complex built with exactly one cell for each critical element
of V . This corresponds to cutting a differentiable manifold
at different heights, as in classical Morse theory [16], or to
the deformation described in Section 2(b).

(a) Original complex (b) Triangle/edge re-
traction

(c) Quad/edge retrac-
tion

(d) Critical edge re-
moval

(e) Vertex/edge retrac-
tion

(f) Last steps until the
critical vertex

Figure 6: The collapse scheme of the example of Figure 4.

In the example of Figure 4, there is one critical vertex and
one critical edge: the corresponding complex has the homo-
topy type of a circle. This simple homotopy equivalence is
built out of a sequence of collapses, where each step col-
lapses a pair of cells {α, V (α)}, as illustrated on Figure 6.
The ordering of the collapses form a particular kind of tree
that will be introduced in the next section.

3 Hypergraphs and Hyperforests
In the triangulation of a solid, an edge is generally inci-

dent to more than two faces. Therefore, the dual graph whose
nodes are the triangles of the triangulation, and whose links
join triangles that share an edge would not be a simple graph:
such links can have more than two end nodes. We will thus

need to generalize the notion of graphs to hypergraphs. A
complete introduction to hypergraphs can be found in [1].

(a) Oriented hypergraphs
Definition 5 (Hypergraph) A hypergraph is a pair (N, L).
N is the set of nodes. Each element of the family L is a family
of nodes, and is called hyperlinks.

The elements of L are families, which means that a hyper-
link can be incident more than once to a node. They can also
be empty. We will classify hyperlinks into the regular hy-
perlinks (or shortly, links), which join two distinct nodes as
in ordinary graphs, the loops which are incident to only one
node, and the non–regular hyperlinks, which either are mul-
tiply incident to one node or join three or more nodes.

We will give a hypergraph an orientation by distinguish-
ing one node of each hyperlink as its source.

Definition 6 (Regular components) The regular compo-
nents of a hypergraph (N, L) are the connected components
of the graph (N,R), where R is the set of the regular
hyperlinks of L.

(b) Hyperforests
Definition 7 (Hypercircuit) An oriented hypercircuit in a
hypergraph is a sequence of distinct nodes n0, n1, . . . , nr+1

such that nr+1 = n0 and, for all 0 ≤ i ≤ r, ni is the source
of a hyperlink leading to ni+1.

Definition 8 (Hyperforest) We will say that an oriented hy-
pergraph is a hyperforest if each node is the source of at most
one hyperlink, and if it does not contain any hypercircuit.

For example, Figure 7 a hyperforest extracted from the
triangle/edge hypergraph of a double cube.

Proposition 9 Let HF be a hyperforest, and R one of its
regular components.

(i) R is a tree.

(ii) There is at most one node in R which is the source of
either a loop or a non–regular hyperlink.

The demonstration of this proposition can be found in [12].
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Figure 7: A double cube made with 12 squared–faces, 23 edges and 14 vertices. Its dual hypergraph has 12 nodes and 23 links, and admits
a hyperforest with 10 hyperlinks.

4 Algorithm
This section introduces an algorithm to define a discrete

gradient vector field for a given cell complex.
The algorithm is optimal for surfaces [11], in the sense

that it minimizes the number of critical cells. But the general
case (non–manifold, higher dimension) has been proved to
be MAX–SNP hard.

For the sake of clarity, the description of the algorithm
will begin by the simplest part, although it is the last one of
the process.

(a) Outline

Let us consider a finite cell complex K of dimension n.
The algorithm consists in the following two steps:

1. We first select some (n-1)–cells of K guaranteeing
that the hypergraph whose nodes are all the n–cells
of K and whose hyperlinks represent those selected
(n-1)–cells will be a hyperforest. We then define the
vector field for the selected cells by orienting this
hyperforest (see Section 4(c)).
The unselected (n-1)–cells of K together with the p–
cells, for p < n − 1, form again a complex Kn−1, of
dimension at most (n-1). We repeat this selection on
Kn−1 until the unselected cells form a complex K1

of dimension 1, i.e. a graph.

2. We finally build the vector field on that graph K1 by
orienting it. This step is the simplest one, and will be
introduced first in Section 4(b).

The algorithm optimality relies on the hyperlink selec-
tion, which is explained in section 4(d) Selecting cells of the
hypergraph. The complexity of this selection is quadratic in
the worst case. The other parts of the algorithm have a linear
complexity.

Working again on the example of Figure 4, we see on Fig-
ure 8 and Figure 9 the two steps of the algorithm. During the
first step, the vector field is defined on a dual tree containing
all faces. The unpaired vertices and edges form another cell
complex, actually a graph. During the second and last step,
the vector field is defined on this graph.

Figure 8: First step: selecting
faces and edges to form a hy-
perforest.

Figure 9: Last step: process-
ing the remaining vertex/edge
graph.

(b) Last step: construction on graphs

We know from the topology of a graph that any graph
is homotopy equivalent to a node with loops. To match the
homotopy property of Section 2(f), we have to pair every
node except one, leaving unpaired one edge per loop.

To do so, we build a spanning tree [9] of each connected
component of the graph. All the links which are not in the
tree will remain unpaired, and will thus be critical. We then
choose a root node r for the tree, which will also be left
unpaired. We pair every link of the spanning tree to its
incident node further to the root. We have thus paired all the
nodes and links of the spanning tree, except the root r.

Figure 10: Last step: the graph remaining after processing a ho-
mological sphere.

As the tree contains no cycle, the resulting vector field is
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admissible as a discrete gradient vector field. On Figure 10,
we can visualize the vector field on a graph resulting of the
process of a model of Poincaré’s homological sphere [7].
There are two cycles in this graph. In each cycle there is
an edge that remained unpaired and, consequently, critical.
The root node of the graph also remained unpaired, and thus
critical.

(c) First steps: construction on hyperforests

The spanning tree of the last step had its nodes represent-
ing the vertices of K and its links representing some edges
of K. The following is an extension of the last procedure to
hyperforest. We will now consider a hyperforest (N,L) ex-
tracted from K. Its nodes will represent the p–cells of K. A
hyperlink representing a (p-1)–cell σ of K will join the nodes
corresponding to the p–cells incident to σ. On the contrary
of the previous case, the vector field will pair a node to a
hyperlink.

The next section presents a procedure to select the hy-
perlinks in such a way that (N, L) will be a hyperforest.
This selection, and the induced orientation introduce below,
are based on the equivalent of a critical cell for a hyperfor-
est [12]:

Definition 10 (Critical component) A regular
component of a hyperforest will be called critical if none
of its nodes is the source of either a loop or a non–regular
hyperlink.

We will proceed regular component per regular compo-
nent. As (N, L) does not have any hypercircuit, there is at
least one regular component R0 which is critical or incident
to a loop. We will then process R0 and, for i > 0, the regular
components Ri connected to Ri−1 by a non–regular hyper-
link.

If Ri is a critical component, its root r will be an arbitrary
node. Otherwise, its root r will be the source of the loop or
non–regular hyperlink incident to Ri. This root r is uniquely
defined by proposition 9. As Ri is an ordinary tree, we will
pair each of its links with its incident node closer to the root.

If the component is critical, r will remain unpaired, and
thus critical. Otherwise, we pair r with its incident loop or
non–regular hyperlink.

As the hyperforest does not contain any hypercircuit, the
resulting pairing will correspond to an admissible discrete
gradient vector field.

For example on Figure 11, the tree is processed from the
leaves to the root, which is critical (in red).

(d) Selecting cells of the hypergraph

As the problem of selecting (n-1)–cells to form an opti-
mal discrete gradient vector field is MAX–SNP hard, we had
to use some heuristics: our selection algorithm uses a greedy
method. This simple approach gives almost always optimal
results [12]. As for the construction of a spanning tree, we
maintain a union/find structure [20] that assigns to each cell
its component number.

Figure 11: First step: a spanning tree tetrahedron/triangle ex-
tracted from a homological sphere.

We aim to construct a hyperforest, with all the cells of di-
mension n, and one hyperlink per selected cell of dimension
(n-1).

Figure 12: Detail of a hyperlink insertion in the hyperforest ap-
pearing with a solid torus model.

Adding the hyperlink of the left side of Figure 12 allows
us to pair it with the node on the left. More generally, there
will be less critical (unpaired) nodes if we can add more
hyperlinks to the hyperforest. Therefore, in order to reach
optimality, we will try to select the maximum number of
hyperlinks. Our selection algorithm proceeds in 3 steps:

1. (spanning tree of the regular components.) First, for
each regular hyperlink, we test whether it joins one or
two components. In the latter case, we select it for the
hyperforest and update the union/find structure. At the
end of this step, the connected components of the tree
are the regular components of the final hyperforest.

2. (loop addition.) Then we process every loop of the hy-
pergraph. We add to the hyperforest at most one loop
per regular component (according to proposition 9).

3. (non–regular hyperlink heuristic.) Finally, we process
the non–regular hyperlinks. For each non–regular hy-
perlink lk left, we test if it is incident to a critical com-
ponent. We require the selected critical components to
share only one node of lk. In that case, we add lk to the
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hyperforest, removing the critical status of the compo-
nent.

As long as there are critical components, we have to test
each non–regular hyperlink until we can add it or discard
it because it is multiply incident to each incident critical
component. This is the bottleneck point where the algorithm
is, in the worst case, quadratic in the number of non–regular
hyperlink encountered.

5 Topology Visualization

(a) Visualizing the gradient field of a geometric model

Forman’s discrete gradient vector field can be directly
visualized on a geometrical object, by coloring each cell α
according to its energy, which can be seen as the integral
of the gradient field. This energy, which Forman defines
as the discrete Morse function, corresponds to the ordering
mentioned in Section 2(f), and to the time for the flow to
reach the cell α, starting at a critical point. It is computed
as the depth of α in the hyperforest. This energy can be
visualized with a color scale, as on Figure 1, where we
visualize the projection of a 3–manifold embedded in R4,
which is obtained by the Cartesian product of a Möbius strip
with a circle.

Figure 13: The energy of a discrete gradient vector field on the
edges/vertices of a Klein bottle model.

For example on Figure 13, we drew the edges of a Klein
bottle model with self–intersection. Edges drawn with the
same color have the same energy. Looking at the green edges
for example, we see clearly a Möbius strip spiraling along the
bottle. This discrete gradient vector field gives an intuitive
sense of the non–orientability of the Klein bottle.

(b) Coherent quad patch decomposition

We can build a discrete gradient vector field imposing
some geometrical constraints. The cell selection described
in section 4(d) Selecting cells of the hypergraph is a greedy
procedure. Thus, the cells can be selected with a geometrical
cost in order to create minimal spanning trees. For example,
considering the mean curvature as the cost function, the
connected components of the hyperforest will tend to be
globally as flat as possible.

(a) Quad decomposition of a figure
eight knot, using a projection

(b) Quad decomposition of a
bone model, using mean cur-
vature

Figure 14: Quad patch decomposition of surfaces.

Moreover, we can pre–define the critical cells, and main-
tain them critical during the hyperforest creation: when
adding a link or hyperlink, we can prevent union operations
between components both containing a pre–defined critical
cell. Combining those two techniques, we obtain a Smale–
like decomposition. For surfaces, this decomposition is guar-
anteed to span exactly four critical cells. For example, using
the curvature to pre–define the critical cells and to compute
the geometrical cost, we can compute a globally flat decom-
position of a surface with quads (see Figure 14). This re-
quires an extra O (n · log n) execution time.

(c) Visualizing the structure of an abstract complex

Many topological objects appear without a geometric
model, or with a model in higher dimensions. Those struc-
tures are quite difficult to understand without visualization.
Forman’s theory points out a topologically consistent way of
choosing significant cells. Those cells can be outlined in a
Hasse diagram

The Hasse diagram represents every cell by one node.
On Figure 15, red nodes represent critical cells. Non–regular
hyperlinks of the hyperforests are drawn in green. The cells
of same dimension are displayed on the same row. The rows
are ordered decreasingly with respect to the dimension.
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T. Lewiner, H. Lopes and G. Tavares 8

2-cells:

1-cells:

0-cells:

01 23

0 1 234 5

0 1

Figure 15: A non–PL torus and its Hasse diagram.

A link between two nodes symbolizes that the corre-
sponding cells are incident one to the other. We linked by
a red line paired cells. Blue lines represent the incidences we
selected for the hyperforests and the final graph, as we did
in the algorithm (see section 4(d) Selecting cells of the hyper-
graph).

6 Applications to mesh compression
Among the different strategies to compress the connectiv-

ity of meshes, many of the successful approaches are based
on G. Taubin and J. Rossignac’s topological surgery [21].
The basic idea is to compress the mesh using a tree, and then
to encode this tree together with additional elements that will
be necessary to reconstruct the mesh. Actually those meth-
ods inspired the algorithm we used to build discrete gradient
vector fields. Those techniques have excellent performance
and also have three main advantages. First, they allow the use
of good geometry predictors, since the tree is built in a sys-
tematic manner, which allows efficient geometry compres-
sion. Second, they permit to efficiently reconstruct the topo-
logical adjacencies and incidences of the mesh. Third, they
address a cell directly by the order of the tree construction.
We will here use our construction of discrete gradient vector
field to analyze, with Forman’s theory, two of those compres-
sion algorithms: Edgebreaker [17] and Grow&Fold [19].

(a) Edgebreaker

The Edgebreaker, introduced by Rossignac [17], is a com-
pression scheme which encodes triangular surfaces with less
than 2 bits per triangle.

Edgebreaker compression scheme. Topologically speak-
ing, it traverses spirally the dual graph of the surface, gen-
erating a dual spanning tree. At each step, a decision is made
to move from a triangle Y to an adjacent one X . To perform
this decision, all visited triangles and their incident vertices
are marked. Five situations are distinguished depending on
the mark of the adjacent triangles and of the top vertex v.
Those cases are denoted by the letters C,L,E,R and S. On
Figure 16, the arrows starting from the triangle X (in yel-

low) indicate the direction to the next triangle. Previously
visited triangles are filled in gray.

Figure 16: The Edgebreaker encoding.

Compression of topological features. The simplified com-
pression algorithm for a connected, oriented surface M with
genus g and without boundary presented in [14] is a recursive
procedure that generates a dual spanning tree. The recursion
starts when reaching a triangle of type S and compresses the
branch adjacent to the right edge of that triange. When the
corresponding E triangle is reached, the branch traversal is
complete and the routine returns from the recursion to pur-
sue the left branch. At this point, two situations are distin-
guished. If the left triangle has not been visited during the
right branch traversal (case of “normal” S), we move to the
left neighbor and continue our encoding of the left branch.
Otherwise (case of a “handle” S, denoted by S∗), the left
edge of the S∗ triangle is encoded apart from the symbol
string and the routine returns. Encountering an E that does
not match an S terminates the compression process.

Illustration. To illustrate the algorithm, consider the sur-
face given by the model for a triangulated torus as shown in
Figure 17. Identifying the edges on the opposite sides of the
rectangle, one can build a simplicial complex in R3 whose
polyhedron is homeomorphic to the torus.

Figure 17(left) illustrates the Edgebreaker’s traversal of
a torus. At the end of the algorithm, the code obtained for
this surface is CCCCRCSCRSSRLSEEE. In this example,
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http://www.computer.org/tvcg/
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.18
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Figure 17: Edgebreaker on a simple torus model: the traversal and the corresponding discrete gradient vector field.

there are four triangles labeled with S. In the string sequence,
the last two S are normal, since their right and left branches
are traversed in the compression algorithm. On the other
hand, the left branches of the two first S triangles (in red)
have not been traversed, since their left triangle have been
visited during their right branch traversal. They need to be
transmitted apart for the decompression to follow the traver-
sal. Moreover, it has been proved in [14] that the number of
S∗ triangles is 2g.

The corresponding gradient vector field. We can now de-
fine a discrete gradient vector field V on a connected surface
with genus g and without boundary by using the dual tree and
the vertex/edge tree generated by the Edgebreaker. First, we
select the initial triangle to be the root of the dual spanning
tree, and one of its vertices to be the root of the vertex/edge
tree. Then, we build the gradient vector field on those trees
following the steps presented in the Section 4(b). Finally, the
selected triangle and vertex are the critical cells of dimen-
sions 2 and 0 of V . The edges that are not on those two trees
remain unpaired. They correspond to the left edges of the 2g
S∗ triangles. As a consequence, they will be the critical 1–
cells of V . At the end, we have constructed a gradient vector
field using the Edgebreaker that has one critical 0–cell, 2g
critical 1–cells, and one critical 2–cell. The authors proved
in [11] that a discrete gradient vector field defined on M with
this number of critical cells is optimal. This construction can
be done separately on the different connected components
of the surface, and extends naturally to surfaces with bound-
aryby choosing the first triangle as an infinite cell connecting
all the boundary loops. The discrete gradient vector field of
Figure 17(left) is illustrated on Figure 17(right).

Conclusion. In this section, we saw that the Edgebreaker
compression scheme builds an optimal discrete gradient vec-
tor field. The critical cells are detected by the Edgebreaker as
topological singularities (such as genus) and encoded sepa-
rately. Actually, this results extend to any compression algo-
rithm based on topological surgery. This gives a simple way

to extend those algorithms to handle surfaces with genus,
boundary, non–manifold edges. . . In the next section, we will
extend this result to topologically analyze the Grow&Fold
tetrahedral mesh compression algorithm.

(b) Grow and Fold

The Grow&Fold algorithm of A. Szymczak and J.
Rossignac [19] is an extension of Edgebreaker to tetrahedral
meshes. It allows a representation of a tetrahedral mesh with
7 bits per tetrahedron, and some additional bits for “topolog-
ical locks” in the tree: the glue triangles.

Figure 18: A ring made of tetrahedrons and its dual graph.

From a topological point of view, the Grow&Fold algo-
rithm creates and encodes a tetrahedron/triangle spanning
tree out of the dual graph of the 3–manifold (see Figure 18
and Figure 19). During this traversal, the triangles are classi-
fied in 3 categories:

– door triangles: links of the dual spanning tree.

– external triangles: triangles on the boundary of the
mesh.

– cut triangles: the remaining ones.

During the decompression, after having rebuilt the span-
ning tree, each cut triangle is duplicated: there is a copy of
it on each of its two incident tetrahedrons. The compression
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Figure 19: The tetrahedron tree and the cut triangles.

algorithm could encode this identification by sending pairs
of corners opposite to this cut triangle, but this would be too
expensive. Most of those identifications can be encoded by
folding operations, when the two tetrahedrons share a free
edge: an edge which is shared by the two copies of a cut
triangle during the decompression. A folding code is sent
when the free edge it touched by the spanning tree. When
the cut triangles form a loop, some identifications have to be
encoded directly, by sending pairs of opposite tetrahedrons.
The corresponding triangle will be called a glue triangle.

(c) The corresponding discrete gradient vector field

We have shown the natural connection between dis-
crete gradient vector fields and the Edgebreaker compres-
sion scheme. We will prove here that the folding scheme is
equivalent to a discrete gradient vector field, in which each
glue triangle corresponds to a critical cell. This will prove
that minimizing the number of glue triangles (which are the
most expensive to encode) is MAX–SNP hard in the general
case. We will build a discrete gradient vector field based on
Grow&Fold’s strategy.

Tetrahedron/triangle hyperforest. The tetrahe-
dron/triangle spanning tree of Grow&Fold is used as is
for the hyperforest of the first step of our construction
algorithm. It contains all the 3–cells (all the tetrahedrons),
and some 2–cells (the door triangles) without creating any
hypercircuit. This hyperforest is completed by one external
triangle per connected component, in the same way we
added loops at step 2 of the selection algorithm.

Triangle/edge hyperforest. The folding scheme corre-
sponds to the second step of our algorithm: it defines a
part of the triangle/edge hyperforest. Each folding operation
matches a (free) edge with the incident triangle being folded.
For each of these matchings, we add a hyperlink represent-
ing the free edge to the hyperforest. As each of those fold-
ing operations identifies two copies of the cut triangle dur-

ing decompression, the matching defined above cannot cre-
ate any hypercircuit. The triangles that remain unmatched are
the external and the glue triangles. We match those external
triangles with some of the boundary edges through a trian-
gle/edge spanning tree of the boundary. Since each folding
sequence contains at most one free edge on the boundary,
the resulting triangle/edge hypergraph is a hyperforest (see
Figure 12).

Figure 20: One of the two triangles in orange must be a glue
triangle (closer view of the model of Figure 19).

Vertex/edge forest. The last step of our algorithm con-
structs a spanning forest of the vertices. Depending on the
topology of the initial object, it can happen that some edges
would create cycles in this forest, and will thus remain criti-
cal.

(d) On Grow and Fold’s optimization

Glue triangles. In the above construction, the glue trian-
gles remained critical. For example, on Figure 20, the two
triangles in orange have one common edge and the other

The corresponding work was published in Transactions on Visualization and Computer Graphics, volume 10, number 5, pp. 499–508. IEEE Press, 2004.
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edges are on the boundary. In this folding scheme, such cut
triangle has to be a glue triangle, since none of its edges is
free. This corresponds to the topological singularity of the
model: an annulus (see Figure 18). Minimizing the number
of glue triangles will therefore require to minimize the num-
ber of critical cells. We already know that this optimization
is a MAX–SNP hard problem in the general case.

Independence from the spanning tree. The tetrahe-
dron/triangle spanning tree T of Grow&Fold could be
modified, in order to minimize the number of glue trian-
gles, as proposed in [19]: “an efficient algorithm which, by
changing the tetrahedron tree, decreases the number of glue
triangles”. However, the number of glue triangles does not
depend on T : for any tetrahedron/triangle spanning tree T , T
defines a sequence of collapses. Therefore, K \{root(T )} is
homotopy equivalent to K \ T . Since the minimum number
of critical cells is an invariant for 3–manifolds [10], the
minimal numbers of critical cells of K \ T is independent
from T , and is equal to the minimal numbers of critical cells
of K \ {root(T )}. Therefore, the minimum number of glue
triangles, which corresponds to critical cells of a particular
discrete gradient vector field, does not depend on T .

Conclusion. We have proved that the Grow&Fold’s com-
pression actually constructs a discrete gradient vector field.
The costly elements, i.e. the glue triangles, correspond to
critical cells of the discrete gradient vector field. We deduced
that minimizing the number of glue triangles is MAX–SNP
hard. Moreover, reaching this minimum cannot be achieved
by only modifying the tetrahedron/triangle spanning tree in
the general case. However, in practical cases, the greedy al-
gorithm used in [19] is comparable to our methods (with dif-
ferent heuristics) and gives pretty good results.

7 Future Works

We intended by this work to illustrate Forman’s theory,
and to use some of its concepts to visually analyze the topol-
ogy of an object. We presented an explicit construction of
discrete gradient vector fields, whose result is almost always
optimal. With this fundamental tool, we provided various
ways of using it to visually extract topological information
of a given combinatorial structure. We finally used this the-
ory to complete the analysis of Grow&Fold tetrahedral mesh
compression algorithm.

We plan to continue this work in three directions. First, we
will try to determine the conditions under which the greedy
strategy of our algorithm and of Grow&Fold reaches the op-
timum. Second, we will try to develop graphical tools to cap-
ture as much as possible the topology of 3–manifolds, where
very hard mathematical problems remain unsolved. Finally,
we look forward to produce a topologically consistent mor-
phing based on mapping directly the discrete gradient field
between two objects of the same homotopy type.
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