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Abstract. This work introduces a new representation for Motion Capture data (MoCap) that is invariant under rigid
transformation and robust for classification and annotation of MoCap data. This representation relies on distance
matrices that fully characterize the class of identical postures up to the body position or orientation. This high
dimensional feature descriptor is tailored using PCA and incorporated into an action graph based classification
scheme. Classification experiments on publicly available data show the accuracy and robustness of the proposed
MoCap representation.
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Figure 1: Examples of skeleton postures and their respective distance matrices.

1 Introduction
Human motion has been an active research area due to

its many applications in computer vision, animation, bio-
metrics and sports. The standard technique for generating
natural-looking motion sequences is human 3D motion cap-
ture (MoCap), and a large amount of such data is now avail-
able. However, the acquisition and processing of such data is
still costly, which emphasizes the growing need for re-using
previously recorded data. This motivates the development
of automatic methods for comparison, classification and re-
trieval of Mocap.
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Although comparing two motion sequences is an easy
task for a person, automatic comparison is hard due to
enormous numerical differences between two similar motion
sequences. Spatial variations are mostly due to almost rigid
transformations among similar postures. Temporal variations
are due to non-linear differences in the dynamic of an action
when performed by different subjects or even by two dif-
ferent performances of the same subject. Thus, methods for
motion classification need a suitable spatial representations
for comparing postures and a scheme for temporal alignment
of sequences with the spatially identified posture.

Increasing the robustness of the spatial representation can
improve on both spatial and temporal comparisons, and this
is the main purpose of the present work.
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Related Work. Most of early literature on the recognition
of human motion focuses on 2D video sequences, while
the amount of work on 3D data is comparatively limited,
mainly due to the difficulty of 3D data acquisition. We refer
to the excellent survey of Weinland et al. [10] on action
representation, segmentation and recognition. They classify
spatial data into local, global and parametric representations.
Our work focuses on Motion Capture (MoCap) data, which
is a parametric representation widely used and with several
publicly available datasets [1, 11].

For application purposes, MoCap data is generally de-
scribed in a view-invariant manner. For content-based human
motion retrieval applications, Chiu et al.[2] proposed a pos-
ture descriptor where each skeletal segment is represented
by the local spherical coordinate relative to the root orient-
ation. Kovar and Gleicher [4] proposed a technique to over-
come the lack of robustness in spatial comparisons, in par-
ticular joint orientations and angular velocities. For pose-to-
pose distance calculations, Forbes and Fiume [3] proposed
a weighted PCA-based pose representation, reducing from
the list of quaternions corresponding to each joint’s angular
position. Geometric relations between body key points of a
pose was presented by Müller et al. [6] and further exten-
ded to so-called Motion Templates (MT) for classification
and retrieval [7] and for annotation [8]. In a MT, a motion
sequence defines a matrix where each column has boolean
features to spatially represent a posture and Dynamic Time
Warping (DTW) is used for temporal alignment among dif-
ferent sequences. A class of motion is then represented as
a weighted sum of pre-aligned individual sequences. Raptis
et al. [9] developed a real-time system for classifying dance
gestures using angular representation of the skeleton in a ref-
erence frame. The classifier relies on the strong assumption
that the input motion adheres to a known musical beat to as-
sert canonical time-base alignment.

Contributions. While most methods usually consider
some reference frame and compute features using different
measures, generally angles, we prove that distances among
joint positions, concatenated into our distance matrices, are
enough to completely represent a posture up to its global po-
sition and orientation. Equivalent postures are mapped to a
single point in distance matrices-space, and robustness is en-
sured since close-by points in the feature space correspond to
close-by poses. Therefore, spatial variations among similar
postures can be efficiently addressed in a clustering strategy
in the low dimensional feature space and temporal variations
are addressed using an action graph strategy [5].

2 Methodology
This section details the construction of the distance matrix

as invariant features, dimension reduction and the action
graph based classification method.

(a) Distance Matrix as Invariant Features

A MoCap skeleton posture S is an n-tuple of 3D points
S “ tp1, p2, . . . , pnu describing the body joints of a posture.
A motion M is a sequence of m skeletons ordered in time:
M “ tS1, S2, . . . , Smu (see Figure 2). Two given postures
with the same semantic may have very different sequence
of coordinates depending on the body position, orientation
and point of view. This turns the comparison of two given
postures a very difficult task. In order to address this issue,
we show that using joints distance matrix leads to an unam-
biguous representation for postures that is invariant to rigid
transformations, as well as to reflections.

Figure 2: Example of a sequence of skeletons from the motion
“JumpingJack”.

Let H denote the set of all possible postures. We define
an equivalence relation R over H , saying that two postures
pS, S1q P H2 are equivalent if there exists a rigid transform-
ation T of R3 such that T pSq “ S1. The quotient H{R is a
set of posture classes, i.e., each S P H{R contains postures
equivalent by rigid transformations. Those classes refer to
a posture independently of the global position and orienta-
tion. Hence, once we obtain a single descriptor for all the
elements of a class S P H{R, we have a posture descriptor
that is invariant to rigid transformations.

For a posture S, we define its n ˆ n matrix dpSq “
“

}pj ´ pi}
‰

i,j
of distances among all joints. Figure 1 shows

an example of three skeleton postures and corresponding
distance matrices. In order to cope with differences in sub-
ject’s appearance, we adopt a normalization step based on
mean skeleton segment before computing distance matrices.
Since rigid transformations preserve distances, d is a pos-
ture descriptor that is invariant to rigid transformation: if two
postures S, S1 are equivalent, they have the same matrix of
distances: dpSq “ dpS1q. The main question is the converse,
i.e. whether those distance matrices characterize postures.

Indeed, a useful property of distance matrices is that, in
the same way triangles with equal edge lengths are congru-
ent, postures with equal distance matrices are equivalent, that
is, a class of equivalent postures is completely described by
its distance matrix.
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Figure 3: Low dimensional features colored according to the 3
motion classes.

Theorem 1. Distance matrices fully characterize a class of
equivalent postures, that is, @S, S1 P H, dpSq “ dpS1q ñ
D T rigid , T pSq “ S1 .

This theorem can be geometrically understood with
the following two steps construction. First, T is defined
as the rigid transformation mapping tp1, p2, p3, p4u to
tp11, p

1
2, p

1
3, p

1
4u. Then, for each i ą 4, point T ppiq is the

(non-empty) intersection of the 4 spheres of centers p11, p12,
p13, and p14, and radii }p1pi}, }p2pi}, }p3pi}, and }p4pi}.
However, to cope with the degenerate case, we provide a
more straightforward demonstration.

Proof. Given two postures S “ tp1, p2, . . . , pnu and S “
tp11, p

1
2, . . . , p

1
nu with the same distance matrix, define two

sequences of pn ´ 1q vectors: vi “ pi ´ p0 and v1i “
p1i ´ p10. Since triangle p0, pi, pj is congruent to triangle
p10, p

1
i, p

1
j , their internal angles are pairwise equals. In par-

ticular: @i, j, vi ¨ vj “ v1i ¨ v
1
j (even if i “ j), i.e., the Gram

matrix of tviu equals the Gram matrix of tv1iu. Therefore,
there exist (eventually more than one) linear rigid motion R,
that maps the sequence of vectors: @i, Rpviq “ Rppi´p0q “
v1i “ p1i´p

1
0. Defining the rigid transformation T as the com-

position of R with the translation of vector p10 ´ Rpp0q, we
get T ppiq “ Rppiq ` pp

1
0 ´ Rpp0qq “ Rppi ´ p0q ` p10 “

pp1i ´ p
1
0q ` p

1
0 “ p1i.

Observe that two close-by postures are associated to
close-by distance matrices, which is not the case for angle-
based descriptors (due to the discontinuity around 2π). This
turns the distance matrix descriptor more suitable for dimen-
sion reduction techniques. Moreover, a random symmetric,
positive and diagonal-free matrix, is in general not a distance
matrix, adding robustness to numerical error and thresholds
to our descriptor.

The results above allow us, without loss of generality, to
refer to a motion as a sequence of distance matrices: From
now on, each posture will be referred to as a point d P Rnˆn,
discarding its global position or orientation. A role motion
then describes a continuous curve in Rnˆn.

Figure 4: Low dimensional features colored according to the 5
actors.

(b) Dimension Reduction

Distance matrices are symmetric with null diagonal ele-
ments. As stated in the proof of Theorem 1, distance matrices
are actually characterized with only 4 lines, showing a strong
correlation between its elements. This suggests that dimen-
sion reduction will be effective for devising low dimensional
features descriptors for posture class.

We refer to the n ˆ n elements of a distance matrix d
as a feature vector f P Rn2

. Considering a training set
of motion sequences tM1,M2, . . . ,Mlu to be used in the
classification process, we concatenate all the feature vectors
fi from all postures in all motion sequences into a matrix
X “ pf1, f2, ..., fN q. We then use Principal Component
Analysis (PCA) on X to obtain a lower dimensional feature
vector for each posture. For each feature vector fi, we project
it into the subspace spanned by the first k principal compon-
ents. The reduced invariant descriptor is the resulting vector
ei P Rk. Applying PCA allows for both dimension reduction
and noise suppression, since small variations are discarded
with the components greater than k.

In practice, only few principal components are enough to
represent postures in a discriminative way. Figure 3 shows
an example of low dimensional features from three differ-
ent motions, from the HDM dataset, projected onto k “ 3
principal components. Points in red are from 13 perform-
ances of JumpingJack, points in green are from 13 perform-
ances of ElbowToKnee and, points in blue are from 15 per-
formances of SitDownKneelTieShoes. Notice that there is a
common start posture shared by the three different motion
classes. Our experiments show that including more principal
components increases computational costs without signific-
ant gain in accuracy.

All motions in Figure 3 were performed by five different
actors. In order to illustrate the similarity of curves of a
motion when performed by different actors, Figure 4 shows
points from the motion JumpingJack with different colors for
each actor.

Preprint MAT. 07/12, communicated on April 7th, 2012 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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Figure 5: Confusion matrix with the results for the action classes.

(c) Action Graph

To build our classification scheme with time alignment,
we use a grammar based approach, where an observation
and a transition model are learned to describe the dynamic
of motions in an Action Graph [5].

An Action Graph uses a set of salient postures shared
among all motion classes to explicitly model the dynamics
of human motion. To construct the action graph, we use
an unsupervised phase to cluster feature vectors in a set of
salient postures. The salient postures will be used as nodes
for the graph and each action modeled as a path in the graph.

Our motion recognition system is composed of a
set A of h trained motion classes, a set with t sa-
lient postures V “ tv1, v2, . . . , vtu, a set Σpeq “

tppe|v1q, ppe|v2q, . . . , ppe|vtqu with observation model
of a feature vector e with respect to salient postures
vi, i “ 1, . . . , t and a set of h graphs representing the
transition probability between salient postures.

Given a test motion sequenceM , we obtain a sequence of
feature vectors epMq “ te1, e2, . . . , eru, and compute the
probability ppepMq|aq of occurrence of M with respect to
each trained motion class a P A. The resulting class ā is the
one that maximizes this probability. The decoding process
to compute ā uses a dynamic programing scheme to save
computational time [5].

3 Experiments
In this section we provide experiments with public data

to validate our features for motion classification. Our exper-
iments were performed using a Core i5 CPU running at 2.4
GHz and 4 GB RAM. The action graph were implemented
in C/C++ and compiled with gcc for Ubuntu Linux. Publicly
available MoCap data from HDM05 database [11] were used
in our experiments.

We consider 10 different motion classes, performed by
five different subjects. A total of 156 motion sequences were
used in a 10-fold cross-validation. Our recognition system
runs at 32fps. Table 1 reports on the 10 motion classes used
in this experiment, and the confusion matrix is shown in
Figure 5.

Action Class (ns) (nf) (%) (std)
ClapAboveHead 14 6102 85.71 4.33
SitDownChair 14 4502 87.89 3.10
SitDownFloor 15 5679 100.00 0.00
PunchRFront 14 6450 90.01 2.21
KickLFront 11 5102 88.11 2.71
JumpingJack 13 5589 88.89 1.78
ElbowToKnee 13 5711 94.13 1.52
Squat 12 7619 89.09 2.33
StandUpKnee 13 2371 93.33 1.10
SitDownKnee 13 9010 91.44 2.55

Table 1: Motion classes used in our experiments: (ns) number
of sequences, (nf) number of frames, (%) mean accuracy, (std)
standard deviation.

4 Conclusions
We presented a distance matrix based feature for repres-

enting MoCap data and demonstrated that such representa-
tion leads to unambiguous descriptor for postures that is in-
variant to rigid transformation. By using a dimension reduc-
tion scheme and an action graph based classifier, we showed
that such representation is suitable for classifying motion se-
quences. Future works will focus on identifying sub-matrices
associated with specific motion classes in order to allow for
classification with occlusion of joints not related to an action
class.
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