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Abstract. Inspired by the Weierstrass representation of smooth affine minimal surfaces with indefinite metric, we
propose a constructive process producing a large class of discrete surfaces that we call discrete affine minimal
surfaces. We show that they are critical points of an affine area functional defined on the space of quadrangular
discrete surfaces. The construction makes use of asymptotic coordinates and allows defining the discrete analogs
of some differential geometric objects, such as the normal and co normal vector fields, the cubic form and the
compatibility equations.
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Figure 1: A discrete indefinite affine minimal surface.

1 Introduction
In affine differential geometry, the notion of minimal

surfaces, i.e. the critical points of the affine area functional,
arises naturally and has received a broad attention in the
last decades. In particular, it has been proved in [6, 7] that
convex affine minimal surfaces actually maximize the af-
fine area, thus justifying the sometimes used terminology
maximal surfaces. On the other hand, [13] showed that this
is not true for non-convex surfaces. In the convex or non-
convex case, Weierstrass-type representations have been
derived, allowing the explicit construction of local paramet-
erizations of affine minimal surfaces from the co-normal
vector field. This representation makes use of isothermal
coordinates in the definite case and asymptotic coordinates
in the indefinite case.
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More recently, the expansion of computer graphics and
applications in mathematical physics have given a great im-
pulse to the issue of giving discrete equivalents of differ-
ential geometric objects ([2, 3]). In the particular case of
affine geometry some work has been done toward a theory
of discrete affine surfaces. In [1] a consistent definition of
discrete affine spheres is proposed, both for definite and in-
definite metrics and in [10] a similar construction is done in
the context of improper affine spheres.

In this work we introduce a discrete analog of the smooth
Weierstrass representation in the indefinite case, giving rise
to explicit parameterizations of quadrangular surfaces in
discrete asymptotic coordinates that we call discrete af-
fine minimal surfaces. Over these discrete affine minimal
surfaces, we can define the discrete affine metric, the dis-
crete affine normal vector field and a discrete analog of the
smooth cubic form, that we shall call discrete affine cubic
form. We show that, as occurs in the smooth case, the dis-
crete affine metric and the discrete affine cubic form must
satisfy compatibility equations. Moreover, these compatib-
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ility equations are a necessary and sufficient condition for
the existence of an affine minimal surface, given its metric
and cubic form.

We also introduce a natural affine area functional in the
set of quadrangular indefinite discrete surfaces and show
that the minimal surfaces that we have constructed are
critical points of this functional, thus justifying the choice
of our terminology.

In view of the above results, it is natural to ask wether it
is possible drop the minimality condition in this construc-
tion. This issue is related to the problem of finding a con-
venient definition of discrete affine mean curvature vector.
In another direction, it is tempting to look for an analogous
construction in the definite case. We plan to address these
questions in a forthcoming work.

The paper is organized as follows: in Section 2 we state
some classical notations and facts about asymptotic para-
meterizations of indefinite affine smooth surfaces in R3. In
Section 3, inspired by the continuous case, we implement
the construction process of discrete affine minimal surfaces.
Section 4 is devoted to the description of the variational
property of these surfaces (Theorem 5). In last section, we
introduce the discrete affine cubic form, derive the compat-
ibility equations and prove the corresponding theorem of
existence and uniqueness (Theorem 10).

2 Preliminaries

Notation. Along the paper, letters in subscripts denote par-
tial derivatives with respect to the corresponding variable,
and V1 · V2, [V1, V2, V3] and V1 × V2 denote respectively
the inner product, the determinant and the cross-product of
vectors V1, V2, V3 ∈ R3.

Consider a parameterized smooth surface q : U ⊂
R2 → R3, where U is an open subset of the plane and
denote by

L(u, v) = [qu, qv, quu]
M(u, v) = [qu, qv, quv]
N(u, v) = [qu, qv, qvv]

The surface is non-degenerate if LN −M2 6= 0, and, in
this case, the Berwald-Blaschke metric is defined by

ds2 =
1

|LN −M2|1/4
(
Ldu2 + 2Mdudv +Ndv2

)
IfLN−M2 > 0, the metric is definite while ifLN−M2 <
0, the metric is indefinite. In this paper, we shall restrict
ourselves to surfaces with indefinite metric.

We say that the coordinates (u, v) are asymptotic if
L = N = 0. In this case, the metric takes the form

ds2 = 2Fdudv, where F 2 = M . Also, we can write

quu =
1
F

(Fuqu +Aqv) (1)

qvv =
1
F

(Bqu + Fvqv), (2)

where A = A(u, v) and B = B(u, v) are the coefficients
of the affine cubic form Adu3 +Bdv3 (see [11]).

The vector field ξ(u, v) =
quv
F

is called the affine
normal vector field. We have

ξu = −Hqu +
Av
F 2

qv (3)

ξv =
Bu
F 2

qu −Hqv, (4)

where H is the affine mean curvature. Equations (1), (2),
(3) and (4) are the structural equations of the surface. For a
given surface, the quadratic form Fdudv, the cubic form
Adu3 + Bdv3 and the affine mean curvature H should
satisfy the following compatibility equations:

Hu =
ABu
F 3
− 1
F

(
Av
F

)v, (5)

Hv =
BAv
F 3
− 1
F

(
Bu
F

)u. (6)

Conversely, given F,A,B and H satisfying equations (5)
and (6), there exists a parameterization q(u, v) of a surface
with quadratic form 2Fdudv, cubic formAdu3+Bdv3 and
affine mean curvatureH . For details of the above equations,
see [5].

The vector field ν(u, v) = qu×qv

F is called the co-normal
vector field. It satisfies Lelieuvre’s equations

qu = ν × νu (7)
qv = −ν × νv. (8)

It also satisfies the equation ∆ν = −2Hν , where ∆ de-
notes the Laplacian with respect to the Berwald-Blaschke
metric (e.g., see [11]). It turns out that in asymptotic co-
ordinates, ∆ν = νuv .

A surface is said to be affine minimal if its affine mean
curvature H vanishes or equivalently if its co-normal vec-
tor field satisfies the equation νuv = 0. The interest of the
co-normal definition lies in the fact that the resolution of
this last equation is straightforward: νuv = 0 if and only
if ν(u, v) takes the form ν(u, v) = ν1(u) + ν2(v), where
ν1 and ν2 are two real functions of one variable. Starting
from the co-normal vector field and using Lelieuvre’s equa-
tions (7) and (8), one gets an immersion q which turns to
be a parameterization in asymptotic coordinates of an af-
fine minimal surfaces. This is a simple way to construct ex-
amples of smooth affine minimal surfaces (e.g., see [12]).

The corresponding work was published in Differential Geometry and its Applications.

file:dga.math.muni.cz


3 Discrete affine minimal surfaces with indefinite metric

3 Definitions, properties and examples
In this section, inspired by the properties of affine min-

imal surfaces and asymptotic coordinates discussed above,
we describe a construction process of a class of discrete sur-
faces with properties analogous to the smooth case. We start
with a vector field of the form ν(u, v) = ν1(u) + ν2(v),
where ν1 and ν2 are two real functions of one discrete vari-
able. In particular ν is the restriction to a subset of Z2 of
a smooth co-normal vector field of some smooth minimal
surface. To obtain the affine immersion, we make a discrete
integration of the discrete analogs of Lelieuvre’s equations
(7) and (8).
Notation. For a discrete real or vector function f : D ⊂ Z2,
we denote the discrete partial derivatives with respect to u
or v by

f1(u+ 1
2 , v) = f(u+ 1, v)− f(u, v)

f2(u, v + 1
2 ) = f(u, v + 1)− f(u, v).

The second order partial derivatives are defined by

f11(u, v) = f(u+1, v)− 2f(u, v) + f(u−1, v)
f22(u, v) = f(u,v+1)− 2f(u, v) + f(u,v−1)

f12(u+ 1
2 , v+ 1

2 ) = f(u+1,v+1) + f(u, v)
−f(u+1, v)− f(u,v+1).

(a) Starting with co-normals

Consider a map ν : D ⊂ Z2 → R3, called the discrete
co-normal map, satisfying

ν12(u+ 1
2 , v + 1

2 ) = 0, (u, v) ∈ D. (9)
We shall also assume that

F (u+ 1
2 ,v+ 1

2 ) = ν(u, v) · (ν(u,v+1)× ν(u+1, v)) > 0.

Discrete co-normal maps can be obtained from smooth
maps ν : U ⊂ R2 → R3 satisfying νuv = 0 by restricting
the domain to a subset D ⊂ Z2.

Figure 2: The planar cross, the co-normal vector at the
vertex and the normal vectors at the faces.

(b) The affine immersion

We define the affine immersion by the discrete analog of
Lelieuvres formulas ([4, Section 2.4]):

q1(u+ 1
2 , v) = ν(u, v)× ν(u+ 1, v) (10)

q2(u, v + 1
2 ) = −ν(u, v)× ν(u, v + 1). (11)

Theorem 1 There exists an immersion q(u, v) such that
q1(u + 1

2 , v) and q2(u, v + 1
2 ) are as above. Moreover, it

satisfies the following properties:

1. The co-normal at (u, v) can be obtained by any of the
following formulas:

ν(u, v) =
1

F (u+ 1
2 ,v+ 1

2 )
(q1(u+ 1

2 , v)× q2(u,v+ 1
2 ))

ν(u, v) =
1

F (u− 1
2 ,v+ 1

2 )
(q1(u− 1

2 , v)× q2(u,v+ 1
2 ))

ν(u, v) =
1

F (u− 1
2 ,v−

1
2 )

(q1(u− 1
2 , v)× q2(u,v− 1

2 ))

ν(u, v) =
1

F (u+ 1
2 ,v−

1
2 )

(q1(u+ 1
2 , v)× q2(u,v− 1

2 )).

2. The parameterization is asymptotic:[
q1(u± 1

2 , v), q2(u, v ± 1
2 ), q11(u, v)

]
= 0[

q1(u± 1
2 , v), q2(u, v ± 1

2 ), q22(u, v)
]

= 0,

and

F 2(u+ 1
2 ,v+ 1

2 ) =

=
[
q1(u+ 1

2 , v), q2(u,v+ 1
2 ), q12(u+ 1

2 ,v+ 1
2 )
]

=
[
q1(u+ 1

2 , v), q2(u+1,v+ 1
2 ), q12(u+ 1

2 ,v+ 1
2 )
]

=
[
q1(u+ 1

2 ,v+1), q2(u,v+ 1
2 ), q12(u+ 1

2 ,v+ 1
2 )
]

=
[
q1(u+ 1

2 ,v+1), q2(u+1,v+ 1
2 ), q12(u+ 1

2 ,v+ 1
2 )
]

Proof : For the existence of q, we must show that the
finite difference equations (10) and (11) are integrable, i.e.,
q12 − q21 = 0. By definition,

q12(u+ 1
2 ,v+ 1

2 ) =
ν(u,v+1)× ν(u+1,v+1)− ν(u, v)× ν(u+1, v)

q21(u+ 1
2 ,v+ 1

2 ) =
− ν(u+1, v)× ν(u+1,v+1) + ν(u, v)× ν(u,v+1).

Hence
q12−q21 = (ν(u+1, v)+ν(u,v+1))×(ν(u+1,v+1)+ν(u, v)),

which vanishes from property (9).
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We now prove only one of the equations of item 1, since
the proofs of the others are similar:

q1(u+ 1
2 , v)× q2(u,v+ 1

2 )
= −(ν(u, v)× ν(u+1, v))× (ν(u, v)× ν(u,v+1))
= − [ν(u, v), ν(u+1, v)), ν(u,v+1)] ν(u, v)
= F (u+ 1

2 ,v+ 1
2 )ν(u, v).

For the proof of item 2, we prove one formula of the
first group and one formula of the second group, the others
being similar:

L(u+ 1
2 ,v+ 1

2 )
= F (u+ 1

2 ,v+ 1
2 )ν(u, v) · (−q1(u− 1

2 , v))
= F (u+ 1

2 ,v+ 1
2 )ν(u, v) · (ν(u, v)× ν(u−1, v)) = 0.

And M(u+ 1
2 ,v+ 1

2 )
= F (u+ 1

2 ,v+ 1
2 )ν(u, v) · (q2(u+1,v+ 1

2 ))
= F (u+ 1

2 ,v+ 1
2 )ν(u, v) · (ν(u+1,v+1)× ν(u+1, v))

= F 2(u+ 1
2 ,v+ 1

2 ),

thus completing the proof of the proposition. �
The affine immersion q : D ⊂ Z2 → R3 defined by

formulas (10) and (11) is called a discrete affine minimal
map and its image a discrete affine minimal surface . Along
this paper, when there is no risk of confusion, we shall
refer to a discrete affine minimal map simply as a minimal
surface.

A direct consequence of the above theorem is that q1(u+
1
2 , v), q1(u − 1

2 , v), q2(u, v + 1
2 ) and q2(u, v − 1

2 ) are
orthogonal to ν(u, v). We shall refer to this property by
saying that crosses are planar (see Figure 2). Nets with
planar crosses are called asymptotic nets ([4, Section 2.4]).
It is worthwhile to observe that the signs of (q(u + 1, v +
1)− q(u, v)) · ν(u, v), (q(u− 1, v+ 1)− q(u, v)) · ν(u, v),
(q(u− 1, v− 1)− q(u, v)) · ν(u, v) and (q(u+ 1, v− 1)−
q(u, v)) ·ν(u, v) are alternating, and thus every point of the
surface is a saddle point.

(c) The affine normal map

The affine normal map ξ(u+ 1
2 , v + 1

2 ) is defined to be

ξ(u+ 1
2 , v + 1

2 ) =
q12(u+ 1

2 , v + 1
2 )

F (u+ 1
2 , v + 1

2 )

Proposition 2 The affine normal enjoys the following
properties :

1.
ν(u, v) · ξ(u+ 1

2 ,v+ 1
2 ) = 1

ν(u+1, v) · ξ(u+ 1
2 ,v+ 1

2 ) = 1
ν(u,v+1) · ξ(u+ 1

2 ,v+ 1
2 ) = 1

ν(u+1,v+1) · ξ(u+ 1
2 ,v+ 1

2 ) = 1.

2. −F (u+ 1
2 ,v+ 1

2 )ξ(u+ 1
2 ,v+ 1

2 ) =
= ν1(u+ 1

2 , v)× ν2(u,v+ 1
2 )

= ν1(u+ 1
2 , v)× ν2(u+1,v+ 1

2 )
= ν1(u+ 1

2 ,v+1)× ν2(u,v+ 1
2 )

= ν1(u+ 1
2 ,v+1)× ν2(u+1,v+ 1

2 ).

Proof : All formulas of Item 1 follow directly from the
equation

q12(u+1
2 ,v+

1
2 ) = ν(u,v+1)×ν(u+1,v+1)−ν(u, v)×ν(u+1, v).

For the second Item, we shall prove one of the equations,
the others being similar:

ν1(u+ 1
2 , v)× ν2(u+1,v+ 1

2 )
= ν(u+1, v)× ν(u,v+1)−
−ν(u+1, v)× ν(u, v)− ν(u, v)× ν(u,v+1)

= −q12(u+ 1
2 ,v+ 1

2 )
= −F (u+ 1

2 ,v+ 1
2 )ξ(u+ 1

2 ,v+ 1
2 ),

thus proving the proposition. �

(d) Bi-linear interpolation

The bi-linear interpolation between four points q(u, v),
q(u + 1, v), q(u, v + 1) and q(u + 1, v + 1) suits very
well to the discrete affine minimal surface with indefinite
metric. This interpolation generates a continuous surface
and respects the normal and co-normal vectors. All figures
of this paper were computed using this interpolation.

A parameterization of the hyperbolic paraboloid that
passes through q(u, v), q(u + 1, v), q(u, v + 1) and q(u +
1, v + 1) is given by
r(s, t) = q(u, v)+

s(q(u+1, v)− q(u, v))+
t(q(u,v+1)− q(u, v))+
st(q(u+1,v+1) + q(u, v)

− q(u+1, v)− q(u,v+1)), (12)

for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Lemma 3 The parameterization (12) is asymptotic and the
affine area of the quadratic patch is exactly F (u+ 1

2 , v+ 1
2 ).

Also, ξ(u + 1
2 , v + 1

2 ) is the constant affine normal of the
surface, and the co-normals at the corners coincide with
ν(u, v), ν(u+ 1, v), ν(u, v + 1) and ν(u+ 1, v + 1).

Proof : Direct calculations shows that the area element of
the surface defined by (12) is F (u + 1

2 , v + 1
2 )dsdt and

thus its affine area is F (u + 1
2 , v + 1

2 ). The calculation
of the affine normal and the co-normals at the corners are
straightforward. �

The corresponding work was published in Differential Geometry and its Applications.

file:dga.math.muni.cz
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(a) Discrete helicoid. (b) Discrete helicoid at a higher resolution. (c) Smooth helicoid.

Figure 3: Discrete helicoid in two resolutions and the smooth one.

(a) Discrete minimal cubic. (b) Discrete minimal cubic in higher resolution. (c) Smooth minimal cubic.

Figure 4: Discrete minimal cubic in two resolutions and smooth minimal cubic.

(a) Discrete hyperbolic paraboloid. (b) Discrete hyperbolic paraboloid in
higher resolution.

(c) Smooth hyperbolic paraboloid.

Figure 5: The discrete hyperbolic paraboloid and the smooth one coincides.

(a) Discrete affine sphere. (b) Discrete affine sphere in higher resolution. (c) Smooth affine sphere.

Figure 6: A discrete and smooth improper affine spheres.
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(e) Examples

Example 1 The smooth helicoid can be parameterized in
asymptotic coordinates by

q(u, v) = (u cos(v), u sin(v), v), (u, v) ∈ R2,

and its co-normal vector field is ν(u, v) =
(sin(v),− cos(v), u). In order to obtain a discrete coun-
terpart of the helicoid, we integrate the map ν(u, v) =
(sin( 2π

N v),− cos( 2π
N v), u) for (u, v) ∈ Z × [0, N ] ⊂ Z2.

The resulting discrete helicoid is shown in Figure 3, to-
gether with the smooth one. We observe that the discrete
parameterizations are not restrictions to Z2 of the smooth
parameterization, i.e., the vertices of the discrete surfaces
are not points of the smooth surface.

Example 2 Consider a smooth vector field ν(u, v) =
(u, v, u2 + v2), (u, v) ∈ R2. The associated smooth im-
mersion is given by

q(u, v) = (u2v − v3

3
, v2u− u3

3
,−uv).

To obtain the discrete counterpart of this minimal surface,
we make a discrete integration of ν(u, v) = (u, v, u2 +v2),
(u, v) ∈ Z2. The resulting discrete surface, together with
the smooth one, is shown in Figure 4. Again, the vertices of
the discrete surface are not points of the smooth surface.

Example 3 The hyperbolic paraboloid can be parameter-
ized in asymptotic coordinates by

q(u, v) = (u, v, uv), (u, v) ∈ R2,

and its co-normal vector field is ν(u, v) = (−v,−u, 1). If
we integrate the restriction of ν to Z2, we obtain a discrete
minimal surface. It turns out that in this special case, the
discrete immersion is the restriction to Z2 of the smooth
immersion. Moreover, we observe that if we interpolate this
discrete surface as in subsection 3(d), we obtain again the
smooth hyperbolic paraboloid (see Figure 5).

A discrete improper affine sphere is a discrete minimal
surface for which the affine normal vector field is constant.
It can also be characterized by the fact that the co-normal
vector field is contained in a plane.

Example 4 Consider ν(u, v) = (v
2−u2

4 , u−v2 ,−1). The
corresponding smooth affine immersion is

q(u, v) = (
u+ v

2
,
u2 + v2

4
,

(u− v)3

24
),

and it is defined only for u > v. It is an improper affine
sphere, since the image of the co-normal vector field is
contained in a plane. This surface is the graph of the

area distance (see [9]), a well-known concept in computer
vision, to the parabola (t, t

2

2 ), t ∈ R . The corresponding
discrete immersion is the graph of the area distance of the
polygon defined by (t, t

2

2 ), t ∈ Z (for details, see [8]). The
smooth and discrete surfaces are shown in Figure 6.

4 Variational property
In this section we introduce a functional on the space of

discrete indefinite quadrangular surfaces and prove that the
affine minimal discrete surfaces that we have described in
Section 3 are actually critical points of this functional.

(a) The discrete affine area functional

Let S a discrete quadrangular surface and q : D → R3,
with D ⊂ Z2 a parameterization of S. We further assume
that for any (u, v) ∈ D, the quantity

M(u, v) =
[
q(u+1, v)− q(u, v), q(u,v+1)

− q(u, v), q(u+1,v+1)− q(u, v)
]

is strictly positive. The quantity F =
√
M is the affine area

of the hyperbolic paraboloid that passes through the vertices
q(u, v), q(u + 1, v), q(u, v + 1) and q(u + 1, v + 1). The
affine area of S is defined as

F(S) =
∑

(u,v)∈D

F (u, v).

Let V (u, v) : D → R3 a map such that V (u, v) van-
ishes except on a finite number of points (u, v) of D.
Intuitively, V must be regarded as a compactly suppor-
ted vector field on S. The surface S(t) parameterized by
qt(u, v) = q(u, v) + tV (u, v) is a deformation of S. For
t small enough, we still have Mt(u, v) > 0, so the next
definition makes sense:

Definition 4 A quadrangular surface is said to be vari-
ationally discrete affine minimal if

dF(St)
dt

∣∣∣∣
t=0

= 0,

for any such deformation.

Theorem 5 Let q : D ⊂ Z2 → R3 be a discrete affine
minimal immersion as defined in Section 3. Then it is vari-
ationally minimal.

Proof : We first observe that the first variation dF(St)
dt

∣∣∣
t=0

is linear with respect to V, so that it is sufficient to look at a
point-wise deformation. Let (q0, q1, q2, q3) be a quadrangle,
whose last vertex q3(t) is deformed by

q3(t) = q3(0) + tV + o(t),

The corresponding work was published in Differential Geometry and its Applications.
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7 Discrete affine minimal surfaces with indefinite metric

i.e. q′3(0) = V . Since F 2(t) = [q1−q0, q2−q0, q3(t)−q0],
we obtain

F ′(0) = (
(q1 − q0)× (q2 − q0)

2F (0)
) · V.

If a vertex q(u, v) is deformed by

q(u, v, t) = q(u, v) + tV + o(t),

it affects the affine area of its four neighbors quadrangles.
The area variation of the quadrangle (u− 1

2 , v−
1
2 ) is given

by h1 · V , where

h1 =
q1(u− 1

2 , v − 1)× q2(u− 1, v − 1
2 )

2F (u− 1
2 , v −

1
2 )

Similarly, the area variations of the quadrangles (u+ 1
2 , v−

1
2 ), (u+ 1

2 , v + 1
2 ) and (u− 1

2 , v + 1
2 ) are given by h2 · V ,

h3 · V and h4 · V , where

h2 = −
q1(u+ 1

2 , v − 1)× q2(u+ 1, v − 1
2 )

2F (u+ 1
2 , v −

1
2 )

h3 =
q1(u+ 1

2 , v + 1)× q2(u+ 1, v + 1
2 )

2F (u+ 1
2 , v + 1

2 )

h4 = −
q1(u− 1

2 , v + 1)× q2(u− 1, v + 1
2 )

2F (u− 1
2 , v + 1

2 )
.

Since dF(St)
dt

∣∣∣
t=0

= (h1 +h2 +h3 +h4) ·V , the surface is
variationally minimal if and only if h1 +h2 +h3 +h4 = 0,
for any (u, v) ∈ D.

Assuming that S is affine minimal, we have that

ν(u+1,v+1) + ν(u, v)− ν(u,v+1)− ν(u+1, v) = 0,

for any (u, v) ∈ D, implying that

ν(u−1,v−1)+ν(u+1,v+1)−ν(u−1,v+1)−ν(u+1,v−1) = 0,

for any (u, v) ∈ D, which, by Proposition 1, is equivalent
to h1 + h2 + h3 + h4 = 0. �

5 Structural equations and compatibility
In this section we define the discrete affine cubic form

and show that any discrete affine minimal surface must sat-
isfy compatibility equations that involve also the discrete
quadratic form, i.e., the Berwald-Blaschke metric. On the
other hand, given discrete quadratic and cubic forms sat-
isfying the compatibility equations, there exists a discrete
affine minimal surface, unique up to affine transformations
of R3, with the given quadratic and cubic forms. This res-
ult is the discrete counterpart of the structural theorem for
smooth affine minimal surfaces.

(a) The discrete cubic form

We define the discrete cubic form as A(u, v)δu3 +
B(u, v)δv3, where

A(u, v) = [q1(u− 1
2 , v), q1(u+ 1

2 , v), ξ(u± 1
2 , v ±

1
2 )]

B(u, v) = [q2(u, v + 1
2 ), q2(u, v − 1

2 ), ξ(u± 1
2 , v ±

1
2 )].

Since we are interested only in the coefficients A(u, v) and
B(u, v) of the discrete cubic form, we shall not discuss in
this paper the meaning of the symbols δu3 and δv3.

From the definition of A and B, we can write

q11(u, v)

=
F1(u,v+ 1

2 )q1(u+ 1
2 , v) +A(u, v)q2(u,v+ 1

2 )
F (u+ 1

2 ,v+ 1
2 )

=
F1(u,v+ 1

2 )q1(u− 1
2 , v) +A(u, v)q2(u,v+ 1

2 )
F (u− 1

2 ,v+ 1
2 )

=
F1(u,v− 1

2 )q1(u+ 1
2 , v) +A(u, v)q2(u,v− 1

2 )
F (u+ 1

2 ,v−
1
2 )

=
F1(u,v− 1

2 )q1(u− 1
2 , v) +A(u, v)q2(u,v− 1

2 )
F (u− 1

2 ,v−
1
2 )

q22(u, v)

=
B(u, v)q1(u+ 1

2 , v) + F2(u+ 1
2 , v)q2(u,v+ 1

2 )
F (u+ 1

2 ,v+ 1
2 )

=
B(u, v)q1(u− 1

2 , v) + F2(u− 1
2 , v)q2(u,v+ 1

2 )
F (u− 1

2 ,v+ 1
2 )

=
B(u, v)q1(u+ 1

2 , v) + F2(u+ 1
2 , v)q2(u,v− 1

2 )
F (u+ 1

2 ,v−
1
2 )

=
B(u, v)q1(u− 1

2 , v) + F2(u− 1
2 , v)q2(u,v− 1

2 )
F (u− 1

2 ,v−
1
2 )

,

where F1(u,v+ 1
2 ) = F (u+ 1

2 ,v+ 1
2 )− F (u− 1

2 ,v+ 1
2 ) and

F2(u+ 1
2 , v) = F (u+ 1

2 ,v+ 1
2 )− F (u+ 1

2 ,v−
1
2 ).

(b) Derivatives of the affine normal

We shall now calculate the derivatives of the affine nor-
mal. We first prove a technical lemma:

Lemma 6 The discrete derivatives A2 and B1 can be ex-
pressed as:

A2(u,v+ 1
2 ) =

F (u−1
2 ,v+

1
2 )[q1(u+1

2 , v), ξ(u−1
2 ,v+

1
2 ), ξ(u+1

2 ,v+
1
2 )]

B1(u+ 1
2 , v) =

−F (u+1
2 ,v−

1
2 )[q2(u,v+1

2 ), ξ(u+1
2 ,v−

1
2 ), ξ(u+1

2 ,v+
1
2 )].

Proof : We can write

q1(u− 1
2 , v)× q1(u+ 1

2 , v) = A(u, v)ν(u, v)
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Differentiating with respect to v we obtain

A(u,v+1)ν(u,v+1)−A(u, v)ν(u, v) =

q1(u−1
2 ,v+1)×q1(u+1

2 ,v+1)−q1(u−1
2 , v)×q1(u+1

2 , v).

Multiplying by ξ(u+ 1
2 ,v+ 1

2 ) we have

A(u,v+1)−A(u, v)
= [q1(u− 1

2 ,v+1)× q1(u+ 1
2 ,v+1)−

q1(u− 1
2 , v)× q1(u+ 1

2 , v)] ·
ξ(u+ 1

2 ,v+ 1
2 )

= [q1(u− 1
2 ,v+1)−q1(u− 1

2 , v), q1(u+ 1
2 , v),

ξ(u+ 1
2 ,v+ 1

2 )]
= −F (u− 1

2 ,v+ 1
2 )

[ξ(u− 1
2 ,v+ 1

2 ), q1(u+ 1
2 , v), ξ(u+ 1

2 ,v+ 1
2 )]

The calculation for B1 is similar. �

Observe that ν(u, v) · ξ1(u, v + 1
2 ) = ν(u, v) · ξ2(u +

1
2 , v) = 0, and thus we can write ξ1(u, v + 1

2 ) and ξ2(u +
1
2 , v) as linear combinations of q1(u + 1

2 , v) and q2(u, v +
1
2 )). More precisely, we have the following proposition:

Proposition 7 The discrete derivatives of the affine nor-
mals can be expressed as:

F (u− 1
2 ,v+ 1

2 )F (u+ 1
2 ,v+ 1

2 )ξ1(u,v+ 1
2 ) =

−A2(u,v+ 1
2 )q2(u,v+ 1

2 ) (13)

F (u+ 1
2 ,v−

1
2 )F (u+ 1

2 ,v+ 1
2 )ξ2(u+ 1

2 , v) =

−B1(u+ 1
2 , v)q1(u+ 1

2 , v). (14)

Proof : We first show that the coefficient of q1(u+1
2 , v) in

the expansion of ξ1(u,v+ 1
2 ) is zero. We have

[ξ1(u,v+ 1
2 ), q2(u,v+ 1

2 ), ξ(u+ 1
2 ,v+ 1

2 )]
= −[ξ(u− 1

2 ,v+ 1
2 ), q2(u,v+ 1

2 ), ξ(u+ 1
2 ,v+ 1

2 )]

=
[q2(u−1,v+ 1

2 ), q2(u,v+ 1
2 ), q2(u+1,v+ 1

2 )]
F (u− 1

2 ,v+ 1
2 )F (u+ 1

2 ,v+ 1
2 )

And q2(u−1,v+ 1
2 )× q2(u,v+ 1

2 )
= (ν(u−1,v+1)× ν(u−1, v))× (ν(u,v+1)× ν(u, v))
= ((ν(u,v+1)− ν(u, v))×ν(u−1, v))

×(ν(u,v+1)×ν(u, v))
= −F (u− 1

2 ,v+ 1
2 )(ν(u,v+1)− ν(u, v))

So [ξ1(u,v+ 1
2 ), q2(u,v+ 1

2 ), ξ(u+ 1
2 ,v+ 1

2 )]

= − (ν(u,v+1)− ν(u, v)) · (ν(u+1,v+1)× ν(u+1, v))
F (u+ 1

2 ,v+ 1
2 )

= −
F (u+ 1

2 ,v+ 1
2 )− F (u+ 1

2 ,v+ 1
2 )

F (u+ 1
2 ,v+ 1

2 )
= 0.

We can now easily complete the proof of the first equation
using lemma 6. The proof of the second equation is similar.
�

Corollary 8 A discrete affine minimal surface is an im-
proper affine sphere if and only if A = A(u) and B =
B(v).

(c) Compatibility equations

In this subsection we obtain three compatibility equa-
tions. They are generalizations of the equations obtained in
[10] for discrete improper affine spheres. The first equation
is proved in the following lemma:

Lemma 9

F (u− 1
2 , v+ 1

2 )F (u+ 1
2 , v−

1
2 )− (15)

F (u+ 1
2 , v+ 1

2 )F (u− 1
2 , v−

1
2 ) = A(u, v)B(u, v).

Proof : We can calculate q112(u, v+ 1
2 ) as q12(u+ 1

2 , v+
1
2 )−q12(u− 1

2 , v+ 1
2 ) and also as q11(u, v+1)−q11(u, v).

Calculating in the first way, we have from q12 = Fξ that

q112(u, v+ 1
2 ) = F1(u, v+ 1

2 )ξ(u+ 1
2 , v+ 1

2 )
+ F (u+ 1

2 , v+ 1
2 )ξ1(u, v+ 1

2 )
= F1(u, v+ 1

2 )ξ(u+ 1
2 , v+ 1

2 )

−
A2(u, v+ 1

2 )
F (u− 1

2 , v+ 1
2 )
q2(u, v+ 1

2 ).

Calculating in the second way, formulas of subsection 5(a)
imply that

q112(u, v+ 1
2 ) =(

F1(u, v+ 1
2 )

F (u+ 1
2 , v+ 1

2 )
−

F1(u, v− 1
2 )

F (u+ 1
2 , v−

1
2 )

)
q1(u+ 1

2 , v)

+ F1(u, v+ 1
2 )ξ(u+ 1

2 , v+ 1
2 )

+
(

A(u, v+1)
F (u+ 1

2 , v+ 1
2 )
− A(u, v)
F (u+ 1

2 , v−
1
2 )

)
q2(u, v+ 1

2 )

+
A(u, v)

F (u+ 1
2 , v−

1
2 )
q22(u, v)

Now, using the formula for q22(u, v) and comparing the
coefficients of q1(u+ 1

2 , v), we obtain

A(u, v)B(u, v)+F1(u, v+ 1
2 )F (u+ 1

2 , v−
1
2 )

−F1(u, v− 1
2 )F (u+ 1

2 , v+ 1
2 ) = 0,

thus proving the lemma. �

The corresponding work was published in Differential Geometry and its Applications.

file:dga.math.muni.cz


9 Discrete affine minimal surfaces with indefinite metric

The two other compatibility equations are obtained from
Equations (13) and (14). We can write

F (u+ 1
2 ,v+ 1

2 )ξ12(u, v) =

−
B(u, v)A2(u,v− 1

2 )
F (u− 1

2 ,v−
1
2 )F (u+ 1

2 ,v−
1
2 )
q1(u+ 1

2 , v)

+
(

A2(u,v− 1
2 )

F (u− 1
2 ,v−

1
2 )
−

A2(u,v+ 1
2 )

F (u− 1
2 ,v+ 1

2 )

)
q2(u,v+ 1

2 )

F (u+ 1
2 ,v+ 1

2 )ξ21(u, v) =(
B1(u− 1

2 , v)
F (u− 1

2 ,v−
1
2 )
−

B1(u+ 1
2 , v)

F (u+ 1
2 ,v−

1
2 )

)
q1(u+ 1

2 , v)

−
A(u, v)B1(u− 1

2 , v)
F (u− 1

2 ,v−
1
2 )F (u− 1

2 ,v+ 1
2 )
q2(u,v+ 1

2 ).

Thus we get

F (u− 1
2 ,v−

1
2 )B1(u+ 1

2 , v)−F (u+ 1
2 ,v−

1
2 )B1(u− 1

2 , v)

= B(u, v)A2(u,v− 1
2 ) (16)

F (u− 1
2 ,v−

1
2 )A2(u,v+ 1

2 )− F (u− 1
2 ,v+ 1

2 )A2(u,v− 1
2 )

= A(u, v)B1(u− 1
2 , v). (17)

(d) Existence and uniqueness theorem

In this subsection, we prove the existence and unique-
ness of a discrete affine minimal surface with given quad-
ratic and cubic forms satisfying the compatibility equations.

Theorem 10 Given function F (u+ 1
2 , v+ 1

2 ), A(u, v) and
B(u, v) satisfying the compatibility equations (15), (16)
and (17), there exists a discrete affine minimal surface
q(u, v) with quadratic form Fdudv and cubic formAδu3 +
Bδv3. Moreover, two discrete affine minimal surfaces with
the same quadratic and cubic forms are affine equivalent.

Proof : We begin by choosing four points q(0, 0), q(1, 0),
q(0, 1) and q(1, 1) satisfying [q(1, 0) − q(0, 0), q(0, 1) −
q(0, 0), q(1, 1)− q(0, 0)] = F 2( 1

2 ,
1
2 ). This four points are

determined up to an affine transformation of R3.
From a quadrangle (u − 1

2 , v −
1
2 ), one can extend

the definition of q to the quadrangles (u + 1
2 , v −

1
2 ) and

(u − 1
2 , v + 1

2 ) by the formulas of Section 5(a). With
these extensions, we can calculate ξ(u + 1

2 , v −
1
2 ) and

ξ(u− 1
2 , v+ 1

2 ). It is clear that ξ1(u, v− 1
2 ) and ξ2(u− 1

2 , v)
satisfy equations (13) and (14). The coherence of these
extensions are assured by formula (15).

Then one can extend the definition of q to (u+ 1
2 , v+ 1

2 )
in two different ways: from the quadrangle (u + 1

2 , v −
1
2 )

and from the (u − 1
2 , v + 1

2 ). Our task is to show that both

extensions leads to the same result. This amounts to check
that both affine normals ξ(u + 1

2 , v + 1
2 ) are the same,

which in fact reduces to verify that ξ12 = ξ21. But this
last equation holds by the compatibility hypothesis, which
completes the proof of the theorem. �
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