Efficient implementation of Marching Cubes’ cases with topological guarantees
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Abstract. Marching Cubes’ methods first offered visual access to experimental and theoretical data. The imple-
mentation of this method usually relies on a small lookup table. Many enhancements and optimizations of Marching
Cubes still use it. However, this lookup table can lead to cracks and inconsistent topology. This paper introduces
a full implementation of Chernyaev’s technique to ensure a topologically correct result, i.e. a manifold mesh, for
any input data. It completes the original paper for the ambiguity resolution and for the feasibility of the implemen-
tation. Moreover, the cube interpolation provided here can be used in a wider range of methods. The source code

is available online.
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Figure 1: Implicit surface of linked tori generated by the classical Marching Cubes algorithm, and ours.

1 Introduction

Isosurface extractors and implicit surface tilers opened up
visual access to experimental and theoretical data, such as
medical images, mechanical pieces, sculpture scans, mathe-
matical surfaces, and physical simulation by finite elements
methods. Among those techniques, the Marching Cubes [3]]
produces a surface out of a sampling of a scalar field f :
R3 — R. It has been enhanced to a wide range of applica-
tions, from geological reconstruction [[10], medical images
to 3D scanning (see [4] for an original use in the Digital
Michelangelo Project). Although this paper focuses on sur-
face reconstruction from sampled data, the tilings of cubes
introduced here can be used in simple reconstruction meth-
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ods for synthetic data [2,[13]] in order to guarantee the topo-
logical consistency of the result when the precision of the
result is limited.

Marching Cubes [3] has become the reference method
when the sampled scalar field is structured on a cuberille
grid. It classifies vertices as positive or negative, according
to their comparison with a given isovalue. Then, it uses a
lookup table to tile the surface inside the cube. This method
has been enhanced and generalized in various directions,
especially to reduce the number of cubes to be evaluated.
However, most of those modern techniques still use a simple
lookup table, which does not ensure the topological consis-
tency of the result.

Prior work. The main obstacles of the Marching Cubes’
derived methods are the ambiguities inherent to data sam-
pling. Those ambiguities can appear on the faces of a cube,
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Figure 2: Original Marching Cubes’ lookup table.

or inside the cube. The ambiguities on faces have been re-
solved in [8]], supposing the scalar field f is trilinear over
each cube, which gave a modified lookup table [6]]. Within
the same hypothesis, it is possible to resolve internal ambigu-
ity as done in [7,|3]. Further approaches [12}[1}[14]] computes
the topology of f as a volume, giving rise to more complex
algorithms that need, at the end, to tile each cube.

Contribution. In this paper, we describe an efficient and
robust implementation of Chernyaev’s Marching Cubes
33 algorithm [3]] (see Figure ). We needed to complete
Chernyaev’s paper on the internal ambiguity resolution. We
computed and tested the 730 subcases of the enhanced
lookup table. This table can be used as is into Marching
Cubes’ improvements (in particular, those who avoid empty
cell tests). Our result is guaranteed to be a manifold surface,
with no crack, with the topology of the trilinear interpola-
tion of the scalar field over each cube. The complete source
code is available online at the address listed at the end of this

paper.

Cube vs. tetrahedron. Another range of techniques for iso-
surface generation is based on tetrahedra [11], as opposed
to cubes. Those methods guarantee the topological consis-
tency, and have a small lookup table. However, they have
many drawbacks. They generate much more triangles, with a
weaker geometrical accuracy of the result: the cubes’ tilings
are segmented even in obvious configuration, and the vertex
position cannot be adjusted to fit the geometrical trilinear ap-
proximation as we do with cubes. Moreover, the ambiguity
resolution that is hidden in those methods leads to slower
algorithms, which are more difficult to speed up with hard-
ware implementation. Our technique uses a complex lookup
table, that only needs to be stored, which enable our algo-
rithm to be efficiently hardware accelerated. This technique
allows a topologically correct result with a single entry cu-
bical lookup table, by a low complexity algorithm. This is
a significant practical improvement compared to the former
state of the art of isosurface tilers [9].

2 Marching Cubes with topological guarantees

The corresponding work was published in theJournal of Graphics Tools, volume 8, number 2, pp. [I-15. ACM Press, 2003..
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Marching Cubes. The Marching Cubes method produces
a triangle mesh of the preimage f~! () of an isovalue o by
a scalar function f : R* — R. We will consider a = 0 for
the rest of the paper (considering f — «). This scalar field is
given by samples over a cuberille grid. The original method
sweeps the grid, and tiles the surface cube per cube. Each
vertex v of the cube is classified into positive and negative
vertices, depending whether f (v) is greater than « or not.
Thus, there are 28 = 256 possible configurations of a cube.
The usual implementation stores those 256 in a lookup table
that encodes the tiling of the cube in each case (see Figure[2).

Correct topology. However, this simple algorithm can
leads to cracks, as shown on Figure 3l The same configura-
tion can be tiled in various ways, and the 256— entries lookup
table does not distinguish between those. Among the differ-
ent tilings, some approximate a trilinear interpolation of the
scalar field f over the cube. We will say a resulting mesh
has the correct topology if it is homeomorphic to F~1 (),
where I is equal to f at the sample vertices, and trilinear
over each cube of the grid. This allows avoiding cracks, by
applying topological test on ambiguous faces of a cube. The
same test will be done on the adjacent cube, allowing a co-
herent transition from one cube to the other one. Nielson and
Hamann [8]] introduced the usual face test to resolve those
face ambiguities.

= L

Figure 3: A crack occurring on an ambiguous face in-between
cases 12 and 3 with the 256—lookup table.

By resolving face ambiguities, we avoid cracks. Never-
theless, this does not guarantee the correct topology, as with
the same cube configuration and the same resolution of am-
biguous faces, there are topologically different trilinear inter-
polations (see Figure M)). Therefore, we also need to resolve
internal ambiguity to guarantee the topology. The technique
described in this paper guarantees the topology by providing
an extended lookup table and an enhanced analysis of each
cube.

Marching Cubes 33. Chernyaev described, with the
Marching Cubes 33 [3]], the different possible topologies
of a trilinear function over a cube. He gave a tiling for
each case, adding some extra points for better geometrical
approximation if necessary. He also proposed a method for
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Figure 4: Two trilinear tilings of the 6th case, with the same
resolution of faces’ ambiguity.

resolving internal ambiguity, although it was not complete.
We completed and enhanced this method, adding some tricks
to avoid useless tests. We computed and tested the complete
lookup table described by Chernyaev (see Figure[3)).

3 Algorithm and implementation
The algorithm goes through the following 4 steps:

1. determine the case number and configuration (section
B)| Determining the configuration).

2. lookup which faces are to be tested for this configura-
tion (section 3(b)] Performing the tests).

3. determine the subcase based on the result of the face
tests (section [3(c)| Determining the subcase).

4. lookup the tiling of the cube for this subcase (section
B{@)\ Tiling each cube).

noindent The simplicity of the algorithm relies on the
lookup table, which is actually split into three tables:

— The case table maps each of the 256 possible configu-
rations of a cube to one of the 15 cases of Figure2] and
to a specific number designating this configuration.

— The test table stores, for each configuration, the tests
to be performed to resolve topological ambiguity.

— The tiling table stores the tiling for each configuration
and subcase (there is no need for computing any geo-
metrical transformation).

(a) Determining the configuration

The classical Marching Cubes lookup table has 256 en-
tries (represented on Figure [2] by the 15 geometrically dif-
ferent cases, i.e. that cannot be deduced by solid transfor-
mations.). Each entry represents a different vertex config-
uration, given that a vertex is simply described by its sign
(positive or negative).

Each entry is identified by an 8-bit word b, as for the
classical Marching Cubes: its i*” bit is set to 1 (resp. 0) if the
it" vertex of the cube is positive (resp. negative). Figure
details the label of the vertices. The case table maps this
8-bit word b to the corresponding configuration of one of
the 15 cases (see Figure P)). The configuration numbering is
arbitrary.
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Figure 5: Chernyaev’s lookup table.
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Figure 6: Labeling of vertices, edges and faces: vertex 0 has the lowest x,y,z coordinates, and vertex 6 the highest.

For example, b = 129 means that only vertices 0 and 7
are positive, which is numbered in the case table as the 3rd
configuration of the case 3 (see Figure[7)).

(b) Performing the tests

To determine the topology of the graph of f inside each
cube, it is not sufficient to know the sign of f over each
vertex, even when f is trilinear. For example, Figure[Z]shows
two trilinear tilings of a cube with the same sign of the
vertices. When two or more adjacent vertices of a face have
the same sign, the topology of the isosurface on that face is
obvious. Otherwise, this ambiguity can be resolved using the
tests described in section Resolution of faces ambiguities.
When the positive vertices of a cube are connected by edges
or through the faces, and also are the negative vertices, the
topology of the interior of the cube is obvious. Otherwise,
this ambiguity can be resolved using the method described
in section [A(b)| Resolution of internal ambiguities.

To know which test are necessary to perform, a test table
stores for each configuration of each ambiguous case (cases
3,4,6,7,10,12 and 13) the label of the faces to be tested.
The interior test sometimes requires an edge code further
describing the configuration, which are stored at specific
position in the tiling table (see section Resolution of
internal ambiguities). The labels of the edges and faces are
detailed on Figure[@] face 7 stands for the interior.

- |

Figure 7: Case 3, configuration 3: two different tilings of the
ambiguous face 4.

For example, with b = 129, the 3rd entry of the test table
of case 3 is just * 4’ , which means that face 4 is ambiguous
(there is no adjacent vertices with the same sign) and has to
be tested (see Figure[7)).

(c) Determining the subcase

The branching of those tests determines the subcase to
be tiled (represented on Figure [3 by the 32 geometrically
different cases). This branching is hard—coded for the simple
cases (see table[D). For complex cases (cases 7 and 13), other
small tables are used to map the result of the tests to their
corresponding subcase.

For example, with b = 129, the subcases of case 3 are
determined by only one test, and is thus hard—coded. The
cube will be tiled according to subcase 3.1 if the test is
negative, and to subcase 3.2 otherwise (see Figure [5| and

Figure[7).
(d) Tiling each cube

Each cube is tiled with triangles according to the tiling
table. Each code of the tiling sequences identifies an edge of
the cube (see Figure[6) on which a vertex of the cube’s tiling
will be computed. The 12th code means interior vertex. The
vertices of the final triangulation are computed by barycen-
tric interpolations on the edges of the cube. Each group of
3 consecutive edge codes in the tiling table corresponds to a
triangle.

For example, with b = 129, the 3rd configuration of case
3 corresponds in the tiling table to

{ 3,0,8,11,7,6,
7,8,6,8,0,6,3,11,6,3,6,0 }

Subcase 3.1 corresponds to the first sequence of the tiling
table (2 triangles), and subcase 3.2 to the second one (4
triangles), as shown on Figure[7l As each tiling of the same
subcase has the same number of triangles, those sequences
are easily distinguished even if stored in the same table.

4 Ambiguity resolution

This section describes the methods used to test the faces
and interior of a cube, when the values at the vertices yield
an ambiguous configuration. Those tests are used in step 2
of the algorithm, to resolve those ambiguities on a face (see
section [(a)] Resolution of faces ambiguities) or on the interior
of a cube (see section [d(b)| Resolution of internal ambiguities).
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Case Face tests Interior Test | Subcase # triangles
Ist 2nd 3rd
0 0
1 1
2 2
3 - 3.1 2
+ 32 4
4 - 4.1 2
+ 4.2 6
5 3
6 - - 6.1.1 3
- + 6.1.2 7
+ 6.2 5
7 - - - 7.1 3
+ - - 7.2 5
- + - 7.2 5
- - + 7.2 5
+ + - 7.3 9
+ - + 7.3 9
- + + 7.3 9
+ + + + 74.1 9
+ + + - 74.2 9
8 2
9 4
10 + + 10.1.1 4
- - - 10.1.1 4
- - + 10.1.2 8
+ - 10.2 8
- + 10.2 8
11 4
12 + + 12.1.1 4
- - - 12.1.1 4
- - + 12.1.2 8
+ - 12.2 8
- + 12.2 8
13 | 45 subcases, testing all the 6 faces and eventually the interior
14 4

Table 1: A reduced representation of the test table. Case 13 has 45 entries to map the results of all the possible tests to the right subcase.
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Figure 8: Face ambiguity test (Chernyaev’s illustration [3]).

(a) Resolution of faces ambiguities

Face ambiguity arise when two opposite vertices A and
C of the face are positive, and the two others B and D
are negatives (see Figure [l and Figure [§). We supposed the
scalar field F' is trilinear on each cube, thus, bilinear on each
face. Therefore, F'~* () restricted to the face is a hyperbola
(see Figure [§). Testing whether the center of the hyperbola
is positive or negative (i.e. whether the positive vertices are
connected inside the face) reduces (for o = 0) to testing the
signof F(A) - F(C) — F(B) - F(D).

The sign of the center of the hyperbola is the sign
of the above expression if A is positive, and the op-
posite if A is negative. In addition, for some con-
figuration, we want the opposite of the result. This
is encoded by a negative face label in the test table.
Therefore, the implemented test returns the sign of:

sign (face_label - F(A) - (F(A) - F(C) — F(B) - F(D))).

(b) Resolution of internal ambiguities

- —

Figure 9: Case 4, configuration 0: two different tilings of the
interior of a cube.

An internal ambiguity arises when two diagonally oppo-
site vertices Ay and C of a cube can be connected through
the interior of the cube, creating a kind of tunnel (see Fig-
ure[dland Figure[0)). Let say those two vertices Ay and C are
positive (the description holds for negative vertices also). We
first resolve face ambiguity, according to section [(a)| Resolu-
tion of faces ambiguities. If there is a chain of positive vertices
joining Ag to C1, connected by edges or crossing ambiguous
faces resolved as positive, then there is no internal ambigu-
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ity. Otherwise, we have to test if Ay and C; are connected
only through the cube.

Suppose Ay and C'y are connected through the interior of
the cube. For X = A, B,C, D,let X; =t- Xo+(1—1t)- X;.
As F is trilinear, F' cannot change sign more than once
along segment. Thus, there is a plane P = (A, By, Cy, Dy),
where the two edges AgA; and C1Cy are connected inside
the square A;, By, Cy, Dy (see Figure [I0). For each case,
we must find the direction of P, compute the height ¢ of P
along the edge, and resolve the ambiguity inside the square
At7 Bt7 Ota Dt.

Cl A AtBt_CtDt

/
A D
1 ]3t 1 Ct /—E\
| t
A D . -
"IB G € nax \1
AO DO

Figure 10: Internal ambiguity test for cases 4 and 10 (Chernyaev’s
illustration [3|]).

Cases 4 and 10 have enough symmetry to choose always
the same direction, independently of the configuration. The
height ¢ € [0, 1] is the solution of Chernyaev’s second order
equation : a - t24+b-t+c with:

a = (A1 —A) (C1—Co)—(B1— Bo) - (D1 — Do)
b = Co- (AL — Ao)+ Ao - (Ch — Cy)

—Dy - (B — Bo) — Bo - (D1 — Do)
c = Ag-Co—By-Dy

For the other cases, the direction of P is encoded as an edge
e inside one particular sequence of the tiling table: the 17th
edge for cases 6, 7, and 12; the 2nd edge for the case 13.5. In
that case, the height of the plane is the barycenter of the end
vertices of e, weighted by F.

In both situations, the intersection of P with the cube is
a square, with vertices A;, By, Cy, D;. There is no ambiguity
inside this square if 0 or 1 vertex is positive (negative vertices
are connected through the cube), if 3 or 4 vertices are positive
(positive vertices are connected through the cube), or if 2
consecutive vertices are positive (no diagonal connection).
In the other case, the square is ambiguous, and we resolve it
in the same way as for face ambiguity.

5 Tips and tricks

The vertices of the final mesh are interpolated along an
edge. To avoid computing them more than once, they can be
all computed first. To store them, we used 3 arrays, which
assign respectively to each grid vertex an eventual index to
the mesh vertex on the edge parallel to the x, y and z axis.
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The normal coordinates at each grid vertex p can be
s — N — — .
computedasF(p + 5) —F(p — 6>,Where é is the
grid step along that coordinate. The normal at each point is
then interpolated linearly.

A low resolution extraction can be obtained by consid-
ering a lower resolution grid, i.e. taking into account every
other vertex or every n—th vertex.

This algorithm is guaranteed to produce manifold meshes
for any sample data, which allows working on previews with
the same tools as on the final mesh.

This algorithm can be used for implicit surface tiling to
construct fixed precision or exact result. In the latter case, it
allows an economic use of exact arithmetic: when an evalua-
tion of the surface inside a cube is ambiguous, the cube needs
to be subdivided and the implicit function is evaluated again
on the subdivision cubes. The tests we provided here can be
substituted to avoid subdividing cubes guaranteeing a mani-
fold result. For example, an exact evaluation of the contour
graph of F' [1]] gives the number of connected components
inside a cube. This topological information is a powerful test
to distinguish between subcases.

Web information

A C++ implementation together with the tables are avail-
able online at http://www.acm.orqg/jgt/papers/
LewinerEtA103. A small interface allows examining
each entry of those tables.
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