
An initiation to SPH

Lucas Braune, Thomas Lewiner
Department of Mathematics, PUC–Rio – Rio de Janeiro, Brazil

Figure 1. An SPH simulation of a dam break.

Abstract—The recent expansion of particle-based methods
in physical simulations has introduced a lot of diversity and
power aside existing numerical methods. In particular for
fluid simulation, Smoothed Particle Hydrodynamics (SPH) have
become a very popular technique. Even with the large available
SPH literature, such methods are delicate to implement. This
work proposes a short and simple SPH initiation that intends
to be accessible for undergraduate students.

Keywords-Smoothed Particles Hydrodynamics; SPH;

I. INTRODUCTION

Simulation of natural phenomena is a very active and
delicate field of research. On one side, it has innumerous
applications, from scientific experiments and industrial vali-
dation to virtual environments and computer games. On the
other side, it combines difficulties in many domains, such as
applied mathematics, numerical analysis, physics and com-
puter science. The typical example is fluid simulation, which
received a lot of attention in recent years due to increased
computational power and experimental instruments, which
allows to generate and process each time more precise data.

In particular, the increasing manipulation of point-based
data in computer science has boosted particle-based models
for simulation, among which Smoothed Particle Hydrody-
namics (SPH). This technique started in the 1970’s for
astrophysical simulations [1], [2] and has received a lot of
attention since then, generating a large literature.

However, during the preparation of this scientific initi-
ation, we found very little reference that would be both
simple, short and accessible to undergraduate students. The
main objective of this work is to propose a simple but
effective introduction to SPH.

II. DESCRIPTION OF THE SPH METHOD

In this work we will discuss the simulation of ideal fluids
without dissipation whose motion can be described by the

Euler equation [4, Sec. 6.1]:

dv
dt

= −1
ρ
∇P + b, (1)

where v is the velocity, ρ is the density, P is the pressure
and b is the external force per unit mass applied to the fluid
(body force). The canonical example of a body force is the
gravity. In general P is a function of ρ and the thermal
energy, but in the case where there is no dissipation the
pressure can be taken as a function of ρ alone. In this
equation d/dt is the material derivative, i.e. following the
motion [4, Sec. 6.1].

The idea behind SPH is to replace the fluid by a set
of particles whose individual motion is approximated by
dr/dt = v, where r is the particle position. This implies that
each particle’s velocity changes by the rule of Eq. (1). One
thus needs spatial derivatives to calculate the accelerations
of each particle. The description of the SPH approximation
for these follows.

A. The SPH approximation of any fluid quantity

Consider the identity

A(r) =
∫
A(r′)δ(r− r′)dr′ (2)

where δ(r − r′)dr′ is the Dirac delta measure at r. The
integral is taken over all space. Let W (r, h) be a smooth
function such that

∫
W (r′, h)dr′ = 1 and

lim
h→0

W (r− r′, h)− dr′ = δ(r− r′)dr′. (3)

These properties leads to the approximation of Eq. (2), for
small values of h, by:

A(r) ≈
∫
A(r′)W (r− r′, h)dr′. (4)

One example of such a function W is the cubic spline.
Let q = |r|/h.

W (r, h) = Ch

 (2− q)3 − 4(1− q)3 if 0 ≤ q < 1;
(2− q)3 if 1 ≤ q < 2;
0 if q ≥ 2;

(5)

The constant Ch ensures normalization and is 1/(6h),
15/(14πh2) and 1/(4πh3) in one, two and three dimensions
respectively. This is the kernel used in our simulations.

Divide the volume of fluid into a set of small volume
elements (particles). The element a has mass ma, density ρa

and position ra. The value of A at the position of particle a
is written Aa. Multiplying and dividing the integrand in the
right hand side (RHS) of Eq. (4) by ρ(r′), approximating
the integral by a summation and noting that ρa∆Va = ma

yields

A(r) ≈
∑

b

Ab

ρb
W (r− rb, h)mb. (6)

This summation is the SPH approximation of the quantity A
at position r. It takes place over all particles but, in practice,
only particles near r contribute since W looks like Dirac’s
delta.

Spatial derivatives can be approximated (see [3], [4] for
argument) as

∂A

∂x
≈
∑

b

mb
Ab

ρb

∂W

∂x
, (7)

i.e., one can approximate the derivative by the derivative of
the approximation of Eq. (6).

B. Approximation of the density and Euler equations

The density at particle a is in our simulations calculated
via Eq. (6) by simple substitution of A by ρ

ρa =
∑

b

mbW (ra − rb, h). (8)

Such a straightforward substitution of A by P in Eq. (7)
does not yield a satisfactory approximation of ∇P for
simulations. Considering a pair of particles a and b, the
pressure force of a on b would in general be different of
the force of b on a should this approximation be made. To
write an acceleration equation which conserves total linear
and angular momentum, one notes that

∇P
ρ

= ∇
(
P

ρ

)
+
P

ρ2
∇ρ. (9)

Calculation of the spatial derivatives in this expression via
Eq. (7) yields the SPH approximation for each particle’s
acceleration of Eq. (1)

dva

dt
= −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
∇Wab, (10)

where ∇Wab = ∇W (ra−rb, h). The body force term +ba

outside the summation was suppressed for clarity.

III. NUMERICAL INTEGRATION OF THE EQUATIONS OF
MOTION

We used the Leap Frog method in our simulations for
calculating the trajectories of each particle. This method will
be discussed in Subsection III-B. In the first we will justify
the addition of a fictitious force term in Eq. (10) in terms
of the simpler Euler’s method.

A. The need for motion damping

Euler’s method for solving a differential equation of the
form x′(t) = f(x(t), t) is defined as follows

x(t+ ∆t) = x(t) + f(t)∆t. (11)

Although it is not necessary for the understanding of the
current text, we refer the reader interested in the numerical
solution of differential equations to [5].

Consider a two dimensional vector field f : R2 → R2

such that its integral curves are concentric circles. The
solution of the differential equation x′(t) = f(x(t)) will
always be on the same circle as the initial condition (IC)
x(0) = x0. Starting from this IC, the Euler solution will
follow a straight line tangent to the circle over which the
IC lies and fall on some other circle with a larger radius.
This will happen every time step and the Euler solution will
spiral outward.

A similar phenomenon occurs when solving the differen-
tial equations of a particle in a harmonic oscillator potential.
In this case, the outward spiraling is replaced by a steady
increase in the energy of the system: the particle’s speed and
movement amplitude increase with time. Such effects are
diminished but not eliminated by using more sophisticated
time integration methods such as Runge-Kutta and Leap
Frog.

One approach for dealing with the problem above is to
remove the energy introduced by the integrator with some
fictitious force. We adopted this strategy in our simulations:
each particle had a term proportional to its velocity deduced
from its final acceleration. We refer to this strategy as motion
damping.

The final equations of motion to be integrated for each
particle are

dxa

dt
= va

dva

dt
= −νva −

∑
b

mb

(
Pa

ρ2
a

+
Pb

ρ2
b

)
∇Wab + ba,(12)

where ν is the motion damping constant and ba is the
acceleration of particle a due to the body force (which was
gravity in both our simulations).

B. Leap Frog time integration

The Leap Frog method was used in our simulations for
solving the differential equations of Eq. (12). It is defined

by

v(t+ ∆t/2) = v(t−∆t/2) + a(t)∆t (13)
x(t+ ∆t) = x(t) + v(t+ ∆t/2)(t)∆t. (14)

This method is more accurate than Euler’s (it is of second or-
der) and requires only one acceleration calculation per time
step (these are expensive in the SPH case). Moreover, the
energy introduction errors are small with it (in comparison
with other methods of similar computational cost).

In general, the accelerations of the particles at an instant
depend on their velocities at that instant, i.e., a(t) may de-
pend on v(t). Suppose this is the case and calculate v(t) as
v(t) = 0.5(v(t−∆t/2)+v(t+∆t/2)). The dependency of
a(t) on v(t) which in turn depends on v(t+∆t/2) makes the
relationship of Eq. (13) implicit. One could in principle find
good approximations for v(t+ ∆t/2) by standard methods,
but this would involve the solution of linear systems (of
dimensions proportional to the number of particles) in every
time step. Considering that the velocity at the current time
step plays a minor role in the acceleration computation of
Eq. (12), one can make the crude approximation

v(t+ ∆t) =
1
2

(v(t−∆t/2) + v(t+ ∆t/2)). (15)

This has been tested with satisfactory results and is used in
our simulations.

Note that with this method advancing from time t to t+∆t
requires the knowledge of the quantities x(t), v(t) and v(t−
∆t/2). These quantities must be updated in every time step.
Suppose the initial conditions of the problem considered are
only given at time t = 0, i.e., the information v(−∆t/2) is
not available. In this case, it is possible to approximate it by
using Euler’s method to go half a time step back in time.

IV. IMPLEMENTATION OF A GENERAL PARTICLE SYSTEM

We will discuss the implementation of the above described
method in terms of a real programming language, C++. For
the readers who do not know it, there is plenty of material
about this language on the web. A particularly helpful re-
source is the tutorial available in http://www.cplusplus.com.
In this section we will discuss the classes used for repre-
senting sets of particles, the function which actually does
the time stepping and how boundaries can be dealt with in
SPH.

A. Classes for representing particles

The first thing one needs when programming a particle
system is a class for representing single particles. The
declaration of such a class could look like the following
piece of code.

class Particle{
public:

Particle();
float x[2], v[2], a[2];
float pressure, density;
float v prev[2];
unsigned short n;
Particle* next;

};

The constructor just initializes the other members to some
set of values. The members position, velocity, pressure, etc.
in the next two lines of code store physical properties of this
fluid element. The member v prev[2] stores the velocity at
current time minus half a time step. This is used in Leap
Frog time integration. The integer n stores the position of
this particle in the vector it is stored. The last member is a
pointer to some other particle which will be explained later.

The particle system itself can be represented in C++ as a
class with a vector of Particles. It should contain two public
functions: one for displaying the particles on the screen and
one for advancing the system in time. This class’ declaration
in our code follows.

class ParticleSystem{
public:

ParticleSystem();
void Step();
void Draw();
float Parameters[N PARAMS];

protected:
void Boundaries(Particle* a);
void AddGravity();
void AddMotionDamping();
virtual void ComputeAccelerations();
virtual void InitialPositions();
vector<Particle> Particles;

};

The two members which are not functions are the
vectors Parameters and Particles. The number parameters
N PARAMS should be defined earlier in the code. Examples
of elements of this vector are simulation parameters such as
the number of particles, the motion damping constant and the
time step size. The vector of particles is implemented using
the vector class which is defined in the Standard Template
Library.

The following subsections will explain this class’ member
functions. Although the discussion will be based on our
particular implementation, it is quite general.

B. ParticleSystem() and Draw()

The first thing to be done in the constructor is to fill
the Parameters vector with values. After this is done, the

Particles vector should be resized to the correct values. The
function InitialPositions() is then called to initialize each
particle’s properties. Finally, half an euler step is made
backwards so as to estimate each particle’s v(−∆t/2).

for(i=0; i<Particles.size(); i++){
pcurr = &(Particles[i]);
pcurr->v prev[0] = pcurr->v[0] - 0.5*dt*pcurr->a[0];
pcurr->v prev[1] = pcurr->v[1] - 0.5*dt*pcurr->a[1];

}

The Draw() function should display on some previously
set up window the fluid represented by the particles in its
current configuration. In our software, we display a black
disk in each particle’s position. The background is white.
This was done using GLUT and OpenGL. The reader who
does not know how to do this is once again encouraged to
ask the first author via email for the commented code.

C. Step() and ComputeAccelerations()

The stepping function initially calls the ComputeAcceler-
ations() function and then begins a loop through all particles.
In this loop, the boundaries are applied to the current particle
(Boundaries(pcurr) is called) and then the Leap Frog step of
Eq. (13),(14),(15) is performed. The code for this is similar
to the above displayed code for euler stepping.

Our code for the ComputeAccelerations() function is
displayed below.

void ParticleSystem::ComputeAccelerations(){
for(int i=0; i<Particles.size(); i++){

Particles[i].a[0] = 0.0;
Particles[i].a[1] = 0.0;

}
AddGravity();
AddMotionDamping();

}

The idea is to set the accelerations of all particles initially
to zero and than add the contributions of different forces.
The AddGravity() function goes through all particles and
deduces some constant term from the vertical component of
the acceleration. This term could be set to 9.8, but we rather
leave it as a simulation parameter to see how the system
responds to different values of external force. We make this
function which computes accelerations virtual so that we can
change it (add spring forces, or forces arising from pressure)
when we derive from the particle system class.

D. Dealing with boundaries

The boundaries we simulated were rigid plane walls
(actually, in 2D they were lines). The question is what to do
when collision is detected, i.e., when some particle is found
to be inside some wall.

A common approach is placing the particle back in the
legal space and mirroring its velocity with respect to the
wall so that it moves away from it. This approach did not
yield satisfactory results in our simulations. We believe it
did not work because it involves the arbitrary displacement
of particles (“placing the particle back in legal space”).

What we did worked very well for particle systems with
up to a few thousand particles. The reason for this not
working for larger systems is under investigation. We added
a force proportional to how deep a particle was inside the
wall and perpendicular to the boundary so as to push the
particle out of it. The proportionality constant is a simula-
tion parameter. This approach is generally discouraged in
literature on physical simulation because it requires small
time steps. In the SPH case this is not an issue because
integrating the pressure term in the acceleration requires time
steps which are just as small.

The equations arising with this collision model are the
ones of a harmonic oscillator. As we mentioned before, Leap
Frog introduces energy in the system when integrating these
equations. For this reason, further motion damping is added
to particles inside walls. How much damping is necessary
is another simulation parameter.

V. IMPLEMENTING SPH
Continuing the discussion of our implementation, we

now derive from the above described particle system class
one specialized for SPH. Its sole purpose is calculating
the particles’ acceleration quickly, i.e., calculating Eq. (12)
quickly.

A. Computational cost
Suppose the particle system has N particles. The naı̈ve

calculation of each acceleration involves going through all
N−1 particles other than the one whose acceleration is being
calculated and doing the summation of Eq. (12). The task
of computing all accelerations needs a number of operations
asymptotically proportional to N2. This can be reduced to
proportional to N if the following method is employed.

Many kernels used in SPH have the property of being
nonzero only within finite distance of kh of the origin. For
the kernel used in our simulations of Eq. (5), k = 2. This
implies that, although in principle the summation in the
acceleration Eq. (12) takes place over all particles, only each
particle’s near neighbors contribute to its acceleration. This
summation effectively takes place only for near neighbors of
each particle. Suppose each particle has about 10 neighbors
which contribute. If each particle’s summation involve only
these 10 neighbors, the number of operations falls from
proportional to N2 to proportional to 10N , i.e., proportional
to N .

B. Finding neighbors
To find neighbors, we subdivide space in square cells (we

simulated two dimensions) of side kh. The whole set of cells

is called a grid. One need only look for the neighbors of a
given particle in the cell this particle is and the ones next to
it.

We now describe our particular implementation. The
declaration of the particle system class specialized for SPH
is below.

class ParticleSystemSPH: public ParticleSystem{
public:

ParticleSystemSPH();
float ParametersSPH[N SPH PARAMS];

protected:
void ComputePressures();
void AddSpatialInteraction();
void ComputeAccelerations();
void InitialPositions();

vector<Particle*> Grid;
void PrepareGrid();
void FindCells(float *r, int *cells);
unsigned short NeighborCount[16000];
unsigned short Neighbor[16000][40];
unsigned short NeighborDist[16000][40];

};

The grid is represented by a matrix. The element of the
i-th row and j-th column of this matrix stores pointers to
the particles which are on the cell in the i-th row and j-th
column of the grid. This matrix is implemented as a vector.
The pointers are stored in a list. Each element of the grid
vector is a pointer to some particle in the corresponding grid
cell (or NULL should the cell be empty). This particle in
turn points to some other particle also on the same grid cell.
This goes on until all particles are on the list.

These lists must be prepared before the pressure terms
of the acceleration can be computed. The function which
does this is PrepareGrid(). It first sets all entries of the grid
vector to NULL. It then goes through each particle and does
as follows. First, a simple calculation yields the position of
the particle on the grid. Then this particle’s pointer is set to
the value of the grid on this position. Finally, this element
of the grid vector is set to point to this particle.

C. Doing neighbor loops

Note that before one can even begin to calculate the
acceleration of a single particle, one needs its density.
The calculation of this quantity via Eq. (8) involves going
through all the other particles. For the same reason as
in the acceleration computation, only the near neighbors
contribute. So in each time step one must do two neighbor
loops. The first one for calculating all the pressures and
densities (all this is in ComputePressures()). The second
for actually adding the pressure terms to each particle’s
acceleration (AddSpatialInteraction(); we call it this way

because other forces such those arising from viscosity can
be added here).

The two neighbor loops don’t have to be the same. It is
clear that the grid needs only be prepared once per time
step. This is to be done in the ComputePressures() function.
In the first neighbor loop it is checked which particles of
the surrounding grid cells are actually neighbors of a given
particle. This needs not be done a second time and we store
on an array of integers (Neighbors[16000][40]) the numbers
of each particle’s neighbors. For example, the number of the
zeroth neighbor of particle 10 is stored in Neighbors[10][0].
We needed to keep track of the number of neighbors each
particle had and a similar array was created for storing this
information. Calculating the distance of each particle and its
neighbors is expensive and the creation of a third array for
storing this sped up our simulation.

The neighbor looping in the function for computing
pressures begins with the preparation of the grid. Then the
following is done for each particle. First the positions in the
grid vector of the cells around the iterated particle are found
(FindCells()). The number of neighbors (stored in the above
discussed array) of this particle is set to zero. Then one goes
through each particle in each cell around the iterated particle
and checks if it is a neighbor. In case it is, the number of the
neighbor and its distance to the iterated particle are stored
and the number of neighbors is increased. This neighbor is
then used in the calculation of the density. Once this is done
for every particle in every neighboring grid cell, the pressure
of the iterated particle is calculated.

The structure of neighbor looping in the AddSpatialInter-
action() similar to the following loop.

for(i=0; i<Particles.size(); i++){
a = &(Particles[i]);
for(j=0; j<NeighborCount[i]; j++){

//Add term due to b to a’s acceleration
b = &(Particles[Neighbor[i][j]]);

}
}

VI. SIMULATION OF A TOY STAR

We will now consider a finite region of gas held together
by a simple force. This system is a model of a star with
the gravitational force replaced by a force which is easy to
compute. Such a system is called a Toy Star. The force we
consider is such that for any two elements of mass the force
between them proportional to their separation and along the
line of their centers.

A. The gravity force

Suppose that we have a group of N particles so that the
force on particle j due to particle k is ηmjmk(xj − xk)2.

Figure 2. A few steps of the progressive ordering of the particles in the simulation of a toy star

The potential energy is

Φ =
1
4
η

N∑
j=1

N∑
k=1

mjmk|xj − xk|2. (16)

The equation of motion of the j-th particle is then

mj
d2xj

dt2
= −ηmj

∑
k

mk(xj − xk). (17)

Choosing the center of mass∑
k mkxk∑

k mk
(18)

as the origin, the motion of Eq. (17) becomes

d2xj

dt2
= −ηMxj , (19)

where M is the total mass of the system.
This says that even though particles are interacting, each

one of them moves as if it were on a harmonic oscillator
potential.

B. Analytic solution of the Euler equations

In this problem, we will use the pressure equation of state

P = kρ2. (20)

Figure 3. Comparison of the analytical solution of the toy star model with
the proposed SPH simulation.

With this equation of state and a body force given by −λx,
the Euler equations (1) become

dv
dt

= −2k∇ρ− λx. (21)

The static model (v ≡ 0) has a density given by

ρ(r) =
ν

4k
(r2e − r2) (22)

where re is determines where the density is to be zero.
We compare the analytical solution of the above differential
equation (integrated using Matlab solvers) with our SPH
simulation in Figure 3 with the parameters described in the
next subsection.

C. SPH simulation of the toy star

We simulated a toy star of mass M = 2.0 kg, a radius of
R = 0.75 m. The simulation area was the region [−1, 1]×
[−1, 1]. Walls were placed at the positions x = −0.95, x =
0.95, y = −0.95 and y = 0.95 (Table I). For N particles
the smoothing length was set to

0.04√
N/1000

.

All particles were assigned a mass equal to M/N .
The time step was set to 0.004 s. With these configura-

tions, up to 4, 000 can be used. Up to 10, 000 can be used
if the time step is made half. The resulting simulation is
depicted in Figure 2.

The equation of motion was Eq. (12) with ba = −λxa.
The particles’s positions were initialized to random points
within the circle of radius 0.75 m centered in the origin.

Table I
PARAMETERS FOR THE TOY STAR SIMULATION.

Parameter Value
Number of particles N=1,000
Smoothing Length 0.04
Time Step 0.004
Acceleration of Gravity 8Mk/πR4

Motion Damping 0.5
Pressure Constant 0.1
Particle Mass 0.002
Boundary Repulsive Force 20,000
Boundary Motion Damping 256

The mean square error between of the SPH solution with
3, 000 particles was 0.04. In the outer layers of the star, the
computed density differed from the theoretical because it
was calculated via Eq. (8), a sum of positive terms, and the
theoretical value was negative.

VII. SIMULATION OF A BREAKING DAM

The breaking dam simulation is common challenge for
students getting to know SPH. It is difficult to achieve this a
simulation because tuning the parameters based on physical
principles generally gives spurious results (unless this is
done very carefully; the first author did not manage to do
this).

We here give the parameters which resulted in the simu-
lation depicted in Figure 1. A working simulation is useful
for studying what is each parameter’s effect. Indeed, we
started from the working simulation parameters for the toy
star simulation (i.e. read didn’t blow up) and then adapted
them for the breaking dam simulation (Table II).

The equation of state used was

P = k

[(
ρ

ρ0

)7

− 1

]
, (23)

where ρ0 is a reference density (read simulation parameter).
The constants relative to the boundary forces we used here

were those of the toy star simulation. The boundaries were
plane walls at x = −0.95, x = −0.35, y = −0.95 and
y = 0.95.

Table II
PARAMETERS FOR THE BREAKING DAM SIMULATION.

Parameter Value
Number of particles 600
Smoothing Length 0.068
Time Step 0.004
Acceleration of Gravity 9.8
Motion Damping 1 (8)
Pressure Constant 0.5
Particle Mass 0.0033
Reference Density 2.861

The particles’ initial positions were randomly chosen
from the bottom half of the initially legal area. This initial
condition is in general not the equilibrium position of the
simulated fluid. For this reason, particles start to move very
quickly at the beginning of the simulation so as to achieve
equilibrium. The very fast change in fluid properties can
cause the simulation to explode, so initially the system is
damped to a high degree (motion damping constant initially
set to 8). When equilibrium is reached, motion damping is
set to a normal value (ν = 1). Then is the dam broken: the
rightmost wall is moved from x = −0.35 to x = 0.95.

VIII. CONCLUSION

We described here a simple implementation of an SPH
method for fluid simulations with more detail than it is usual
in the literature. We hope to help other students, providing
a short mathematical introduction and the main steps of the
code. In particular, we provided all the parameters for the
experiments, which is usually delicate to obtain from the
literature.

ACKNOWLEDGEMENTS

The authors would like to thank CNPq (PIBIC) and the
PUC-Rio for their support during the preparation of this
work.

REFERENCES

[1] R. Gingold and J. Monaghan, “Smoothed particle hydrodynam-
ics - theory and application to non-spherical stars,” Monthly
Notices of Royal Astronomical Society, vol. 181, pp. 375–389,
1977.

[2] L. Lucy, “A numerical approach to the testing of the fission
hypothesis,” Astronomical Journal, vol. 82, pp. 1013–1024,
1977.

[3] A. Paiva, “Uma abordagem lagrangeana para simulação de
fluidos viscoplásticos e multifásicos,” Ph.D. dissertation, PUC-
Rio, 2007.

[4] F. Petronetto, “A equação de Poisson e a decomposição de
Helmholtz-Hodge com operadores SPH,” Ph.D. dissertation,
PUC-Rio, 2008.

[5] G. Golub and J. Ortega, Scientific computing and differential
equations: an introduction to numerical methods. Academic
Press, 1991.

	Introduction
	Description of the SPH method
	The SPH approximation of any fluid quantity
	Approximation of the density and Euler equations

	Numerical integration of the equations of motion
	The need for motion damping
	Leap Frog time integration

	Implementation of a general particle system
	Classes for representing particles
	ParticleSystem() and Draw()
	Step() and ComputeAccelerations()
	Dealing with boundaries

	Implementing SPH
	Computational cost
	Finding neighbors
	Doing neighbor loops

	Simulation of a toy star
	The gravity force
	Analytic solution of the Euler equations
	SPH simulation of the toy star

	Simulation of a breaking dam
	Conclusion
	References

