
Instituto de Matemática Pura e Aplicada

Doctoral Thesis

FOLIATING MARCHING CUBE’S CASES IN DIMENSIONS
THREE AND FOUR

Jyrko Correa-Morris

Rio de Janeiro
March 10, 2013
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Codá. In a time when things seemed to be o↵ course, they helped me to put
everything in place. To them, my respect and friendship.

I also wish to o↵er my sincere thanks to the IMPA and its professors for
help me to be a better professional.

I want to thank to Alejandro Simarra and Rubén Lizarbe for many useful
conversations and suggestions.

To Noslen Hernández and Aniel Ojeda, my longtime friends and saviors.
Whenever I have some technical problem, it is to them that I go first.

During this period I have met many people from di↵erent lands. The
truth is that not everything has been joy. However, I consider myself lucky
to have found great friends. Alessandro Gaio, Ana Maria Menezes, Gonzalo
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Abstract

Marching Cubes is the reference method when constructing the isosurface of
a scalar field f sampled over a grid is the task at hand. After the original
publication, numerous modifications and extensions of the method have been
published. The majority of these modifications focuses mainly on variations
to the shape of the cells of the grid, the dimension, or even, the number of
categories used to classify the vertices of the grid (e.g., positive, negative,
and zero). In this thesis, we address the problem in dimensions three and
four. In dimension three, one of our main goals is to construct a much more
complete case description based on linear interpolation, and consequently
a better algorithm. To achieve this, we need to solve a primary problem:
the classification of all the solutions of the equation f(x, y, z) = 0, where
f is trilinear function. Once all the solutions are obtained and visualized,
we are able to provide all the intersections of these solutions with a cube.
Such intersections allow us to know all the possible formats (or portions
of surface) that the solutions above describe within the cube. The correct
list of all configurations with its respective surface naturally leads to an
improvement of the correctness of the surface generation. Then, from the
classification obtained in dimension three and the extension of the main ideas
and results, we achieve to explore some aspects of the problem in dimension
four. In this regard, two main contributions are presented. The first is a
coarse classification of all the solutions of the equation f(x, y, z, t) = 0, where
f is a quadri-linear function. The second consists of a primary marching
hypercubes algorithm restrited to configurations not presenting null vertices
nor internal ambiguities.
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Resumo

Marching Cubes é a metodoloǵıa de referência quando o problema requer a vi-
sualização da superf́ıcie de ńıvel de um campo escalar amostrado nos vértices
de um reticulado. Depois da publicação do algoritmo original, muitas mod-
ificações e extenções têm sido reportadas na literatura. A grande maioria
delas tem estado focada em variações na dimensão e forma das células do
reticulado, ou inclusive, no número de categorias usadas para classificar seus
vétices, por exemplo, positivo, negativo e nulo. Neste trabalho, se estuda
o problema em dimensões três e quatro. Em dimensão três, nosso princi-
pal objetivo é descrever os casos posśıveis, de modo muito mais detalhado
e espećıfico, quando interpolação linear é usada, e como consequência obter
um algoritmo muito mais robusto e eficiente. Para tal, nós temos que re-
solver um problema primário: a classificação de todas as soluções da equação
f(x, y, z) = 0, onde f é uma função trilinear. De posse de tais soluções,
nós podemos descrever todas as posśıveis porções de superf́ıcies que podem
ser desenhadas dentro de um cubo a partir de uma função trilinear. A lista
de todas as configurações de sinais dados aos vértices do cubo junto com a
sua respectiva porção de superf́ıcie separando os vértices com diferente sinal
conduze a uma melhora substancial no processo de geração da isosuperfcie.
Baseados nos resultados obtidos em dimensão três e estendendo as principais
ideias da filosofia adotada, nós começamos o estudo em dimensão quatro.
Duas importantes contribuições são exibidas. A primeira delas consiste de
uma classificação inicial das soluções da equação f(x, y, z, t) = 0, onde f é
uma função de interpolação linear . A segunda é a introdução de um algo-
ritmo primário que não trata nem com as ambiguidades internas nem com
os vértices nulos.
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Introduction

Level surface extractors and implicit surface tilers have facilitated access
to many types of data including, but not limited to medical images, phys-
ical simulations, 3D reconstruction, geological and petroleum exploration.
Among all techniques that have been reported in literature, Marching Cubes
is the most referenced methodology. The purpose of the algorithms that are
based on this philosophy is to produce a level (hyper)surface S of a scalar
function f : Rn ! R, namely the set of those points in Rn that satisfy
the equation f(x1, x2, . . . , xn

) = c, for certain real constant c. The original
Marching Cubes algorithm was introduced by Lorensen and Cline in 1987,
[1], for the case in that f : R3 ! R. Roughly speaking, the algorithm works
as following:

1. The input of the algorithm is a signed cuberille grid

G = {(v
ijk

, sg(f(v
ijk

))) : v
ijk

= (x
i

, y
j

, z
k

)}
obtained by sampling f on the points v

ijk

’s, 1  i  p, 1  j  q,
1  k  r. Here, sg denotes the sign function.

2. The algorithm processes one cube at a time and uses linear interpola-
tion to determine whether S intersects an edge. In this way the algo-
rithm yields an approximation of the portion of S contained in each
cube of G and produces a global result. The trick here is to match
each cube to a representative case via a lookup table which contains
the solution for each possible configuration.

This approach relies heavily on the lookup table. Frequently, the lookup
table splits into three tables. The first table stores all the possible config-
urations of the (hyper)cube, that is, all the manners we can assign a sign
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to each vertex of the (hyper)cube. The n-dimensional (hyper)cube has 2n

vertices, and each vertex has usually assigned one of the signs positive or
negative, obtaining a total 22

n
configurations. Thus, we have 16 configura-

tions in dimension two, 256 in dimension three, and 65 536 in dimension four.
Observe that the number of configurations increases exponentially with di-
mension. Sometimes, in addition to positive and negative signs the category
“null” is used leading to 32

n
configurations. Once all the configurations were

computed, we need to investigate all possible solutions for each configura-
tion. An important point to note here is that there are configurations which
admit more than one portion of surface as possible solution. In dimension
two this situation arises when the diagonally-opposed vertices of the square
have the same sign, while consecutive vertices have di↵erent sign. This phe-
nomenon is known as ambiguaties and it is perhaps the biggest challenge for
this approach. In higher dimensions we find two kind of ambiguities: (a) face
ambiguities, and (b) internal ambiguities. The face ambiguities appears in a
lower-dimensional face of the cube, while internal ambiguities is associated
to the presence of a “tunnel” that connects two vertices along an internal
diagonal. The cubes that present ambiguities require some additional test
before deciding its corresponding solution. The second table stores the ad-
ditional topological tests to be performed in each ambiguous configuration,
and maps the possible results of the test into all subconfigurations. In the
third table we can find the tiling (i.e., triangulation) that corresponds to
each (sub)configuration. Such a tiling depends on linear interpolation and
the topological tests. Hereafter, we refer to these tables as configuration
table, test table, and tiling table, respectively.

The solutions of linear interpolation andMarch-
ing Square

This section provides the main results about marching square. To obtain
the possible tilings for each configuration of marching square, we need to
know two things: (1) all the solutions of the linear interpolation equation
P (x, y) = 0, where P (x, y) = b0+ b1x+ b2y+ b3xy, bi 2 R, 0  i  3; and all
intersections of the solutions of the previous equation with the square [0, 1]2.

From the classification of algebraic curves, we know that if C is a solution
of the linear interpolation equation P (x, y) = 0, then C is:

1. a hyperbola, if b3 6= 0. The hyperbola is degenerated (i.e., two orthog-
onal straight lines) if and only if b3b0 � b1b2 = 0.

Instituto de Matemática Pura e Aplicada 2 March 10, 2013
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2. a straight line, if b3 = 0 and at least one of the coe�cients b1 and b2 is
not zero.

3. a plane, if b0 = b1 = b2 = b3 = 0.

4. the empty set, if b0 6= 0 and all remaining coe�cients are null.

It is an easy matter to check that this classification leads to the following
representative tilings of the marching square:

Non-degenerated cases without zeros

+ +

++

(A)
+ �

++

(B)
� �

++

(C)
� +

�+

(D)

Non-degenerated cases with zeros

0 0

00

(E)
0 +

++

(F)
0 0

++

(G)
0 �

0+

(H)

0 +

0+

(I)
+ 0

�+

(J)
+ 0

+�

(K)

Degenerated cases without zeros

� +

�+

(L)
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Degenerated cases with zeros

0 0

0+

(M)
0 0

�+

(N)

Thus, the configuration table possesses fourteen cases (A)-(N), each of
them grouping equivalent configurations. For example, case (A) stores ex-
actly two configurations: (+,+,+,+) and (-,-,-,-), which are related by a
reversing sign map. In turn, case (B) stores eight configuration, all of them
equivalent to (+,-,+,+). One representative configuration of the remaining
cases was shown above.

The test table stores the test (if any) we have to perform for the configu-
ration of each case. The only cases that need to be tested are those presenting
ambiguities.

The tiling table stores the tiling corresponding to each configuration.
In higher dimensions we proceed analogously. When constructing the

configuration table, it is customary to gather those configurations that are
the same up to a rigid movement of the space (e.g., rotations, reflections)
or a map that reverses the sign of each vertex of the (hiper)cube. We can
think of the configuration table as the collection of orbits of the action of the
direct product of these groups. The construction of the configuration table
is associated to the counting cases problem. The main task to be solved in
this latest problem is to count all the non-equivalent configurations of signs
that can be attributed to the vertices of the (hyper)cube. In other words,
the counting problem investigates the number of orbits of the action of the
afore-mentioned group over the set of all the configurations of signs that can
be assigned to the vertices of the (hyper)cube. Counting cases approach is
also concerned with other statements of the marching cubes problem which
include variations in the dimension, the shape of the cells in the grid, the
number of “signs,” etc.. In this regard, the article of Banks and Linton, [11],
provides valuable information.

On the other hand, the tiling we associated to each configuration of signs
of the (hiper)cube corresponds with the intersection of a solution of the in-
terpolation equation P (x1, x2, . . . , xn

) = 0 with the (hiper)cube [0, 1]n. This
leads to a much more di�cult task — the classification of all the solutions
of the linear interpolation equation. In the bi-dimensional case, the classi-
fication of the solutions of the equation P (x, y) = 0 is easily deduced from

Instituto de Matemática Pura e Aplicada 4 March 10, 2013
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the classification of algebraic curves such as we showed above. In dimension
three, a classification of the solutions of the linear interpolation equation
P (x, y, z) = 0 was introduced by Nielson [2]. In higher dimensions, this is an
open problem.

Contributions and organization

Nowadays there are countless variants of the original algorithm in dimensions
two, three and four, although undoubtedly the majority of them focus on the
three-dimensional case. Aside from the classification, perhaps the greatest
contribution in dimension two is the asymptotic decider [4], the simplest test
to resolve the ambiguous cases. In dimension three we have already men-
tioned two of the main works: the original article of marching cubes, and
the classification introduced by Nielson [2]. Another important input is the
work of Lewiner et al. [3] in which a full implementation of the Nielson’s
lookup table is introduced. Other articles have been published extending the
method to other data input, and also to improve its computational e�ciency.
Among the most important works in the first of these task we can cite the
article of Weber et al. [5] which expands on the marching cubes principle
to rectilinear grid data with multi-resolution regions. The extension of the
method to non-rectangular data has also been carried out in several ways.
For instance, extensions of the marching cubes method for unstructured grids
have been proposed [6], and the approach of tetrahedral cells has been ad-
dressed by several authors [7, 8, 9, 10]. Among the approaches devoted to
accelerate the algorithms we can find those with interval-based representa-
tions [12, 13, 14], those based on hierarchies [15, 16, 17], those based on
propagation [18, 19, 20], those based on parallel and distributed processing
[21, 22]; just to mention some examples. The reader interested in more de-
tails can consult the survey of this subject presented by Newman and Yi
[23]. In dimension four, Bhaniramka et al. introduced an algorithm which
automatically produces a tiling of each hypercube by using a convex-hull
algorithm [24]. A di↵erent approach was presented by Robert and Hill [25].

In this work, we address the problem in dimensions three and four. The
main contributions are:

1. We face the classification of the solutions of the linear interpolation
equation by looking to some suitable foliations. As we already men-
tioned, one of the first steps towards the construction of marching cubes
algorithm is the classification of all the possible solutions of the in-
terpolation equation. Our approach via foliations allows us to easily
generalize the thecniques to higher dimensions. In dimension three, we

Instituto de Matemática Pura e Aplicada 5 March 10, 2013
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get a similar result to that presented by Nielson; however, the folia-
tions brings up some interesting elements. These topics are presented
in Chapter 1.

2. One of the advantages of our approach is that it is also very useful
when computing the intersections of the solutions of the linear interpo-
lation with the (hiper)cube. This is evidenced in Chapeter 2, where a
complete list of such intersections, including those with zeros and those
which are denerated, is presented. As a consequence, a complete look
up table for the marching cubes algorithm is given.

3. An improved marching cubes algorithm is presented in Chapter 3.

4. The approach of foliations is extended to dimension four in order to ob-
tain the classification of the solutions of the linear interpolation equa-
tion P (x, y, z, t) = 0. The details are treated in Chapter 4.

5. Finally, Chapter 5 introduces a primary Marching Hypercubes algo-
rithm. Because we do not have yet the entire classification of the
solutions of the linear interpolation equation, the tiling table of this
algorithm is incomplete.

Thus, in addition to the introduction, the thesis is organized into six
chapters. The first is devoted to the classification of all solutions of the lin-
ear interpolation equation in dimension three. Chapter 2 uses the results
obtained in the previous to construct a complete lookup table for the algo-
rithm that is presented in Chapter 3. Following a similar reasoning as in
the three dimensional case, Chapter 4 presents a coarse classification of the
solutions of the linear interpolation equation in dimension four. Chapter 5 is
intended to the development of a primary Marching Hypercubes algorithm.
Finally, we present some concluding remarks and future works.

Instituto de Matemática Pura e Aplicada 6 March 10, 2013



CHAPTER 1

Linear Interpolation in R3

The main goal of this chapter is to provide a complete classification of the
solutions of the linear interpolation equation:

P (x, y, z) = b0 + b1x+ b2y + b3z + b4xy + b5xz + b6yz + b7xyz = 0, (1.1)

where all the coe�cients are real numbers. Such classification consists in
partitioning the set of these solutions in minor disjoint subsets so that two
solutions lie together in some of these subsets if and only if they are equivalent
in some sense. We are interested in that equivalent solutions, as well as
sharing the same topological properties, be visually indistinguishable. To
accomplish this, we define the equivalence by means of maps which only
involve translations, changes in the scale, reflections, and rotations. Thus,
we say that the solutions S = {(x, y, z) 2 R3 : P (x, y, z) = 0} and S 0 =
{(x, y, z) 2 R3 : P 0(x, y, z) = 0} are equivalent if and only if there exists
an a�ne isomorphism � : R3 ! R3 which is the composition of a diagonal
isomorphism ' : (x, y, z) 7! (ax + d, by + e, cz + f) (a, b, c 6= 0) with a
permutation � of the set {x, y, z} such that P 0 = C(P � �), for certain real
constant C. � is often called equivalence between S and S 0.

Here are some relationships between the coe�cients of P and the coe�-
cients of P � ' and P � �, respectively. If P � '(x, y, z) = B0 +B1x+B2y +
B3z +B4xy +B5xz +B6yz +B7xy, then

7
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B0 = b0 + b1d+ b2e+ b3f + b4de+ b5df + b6ef + b7def. (1.2)

B1 = a(b1 + b4e+ b5f + b7ef). (1.3)

B2 = b(b2 + b4d+ b6f + b7df). (1.4)

B3 = c(b3 + b5d+ b6e+ b7de). (1.5)

B4 = ab(b4 + b7f). (1.6)

B5 = ac(b5 + b7e). (1.7)

B6 = bc(b6 + b7d). (1.8)

B7 = b7abc (1.9)

Now, if we compose P with a permutation �, then the sequence of coef-
ficients of P � � is a permutation of the sequence of coe�cients of P . The
table below shows the cases of the permutations �

xy

, �
xz

, and �
yz

.

Table 1.1: Coe�cient permutations.

P b0 b1 b2 b3 b4 b5 b6 b7
P � �

xy

b0 b2 b1 b3 b4 b6 b5 b7
P � �

xz

b0 b3 b2 b1 b6 b5 b4 b7
P � �

yz

b0 b1 b3 b2 b5 b4 b6 b7

1.1 Invariants and foliations

The classification is based on few invariants. An invariant is a property which
is preserved under any equivalence �, thereby a solution meets this property if
and only if so does any other solution equivalent to it. The primary invariant
is the set of all intersections of S with the planes normal to a principal axis
✓. These intersections determine a foliation F

✓

:= {ST{✓ = ✓0}, ✓0 2 R} of
S which provides some valuable geometric information about S. Here and
subsequently, the term foliation means a decomposition of a surface S as
union of all its intersections with planes perpendicular to a given axis. Each
one of these intersections is called leave of the foliation.

The following result describes all the possibilities we have for the leaves
of F

x

.

Lemma 1. For each leave S
T{x = x0} of the foliation F

x

, we have one the
following possibilities:

Instituto de Matemática Pura e Aplicada 8 March 10, 2013
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1. S
T{x = x0} is a hyperbola. This occurs when b7x0 + b6 6= 0. The

hyperbola will be degenerated (i.e., two orthogonal straight lines) if and
only if x0 satisfies the equation (b1b7 � b4b5)x2 + (b0b7 + b1b6 � b3b4 +
b2b5)x+ (b0b6 � b2b3) = 0.

2. S
T{x = x0} is a straight line. This situation appears if b7x0 + b6 = 0

and at least one of the numbers b5x0 + b3 and b4x0 + b2 is not zero.

3. S
T{x = x0} is a plane. This occurs if b7x0+b6 = b5x0+b3 = b4x0+b2 =

b1x0 + b0 = 0.

4. S
T{x = x0} is the empty set, which happens when b7x0 + b6 = b5x0 +

b3 = b4x0 + b2 = 0 and b1x0 + b0 6= 0.

Proof. Writing P in the form P (x, y, z) = (b1x + b0) + (b4x + b2)y + (b5x +
b3)z + (b7x + b6)yz, the result follows by using the classification of the bi-
dimensional case.

Lemma 1 has a similar formulation when a plane ortogonal either to the
axis y or to the axis z is considered. To obtain the conditions over the
coe�cients, it su�ces to apply the correspondence among the coe�cients
exhibited in Table 3.

The next result gives us information about the distribution of the leaves
of F

✓

.

Lemma 2. All the leaves of F
✓

, except at most for one, have the same clas-
sification as a solution of the bi-dimensional case.

Proof. We can assume without loss of generality that ✓ = x. Using the
expression P (x, y, z) = (b1x+b0)+(b4x+b2)y+(b5x+ b3)z+(b7x+ b6)yz, we
can note that the coe�cients depend linearly on the parameter x and hence
those non-identically null can vanish at most once. So, using Lemma 1 we
can conclude that if at least one of the coe�cient b6 and b7 is non-null, then
all the leaves of F

x

are hyperbolas when b7x+ b6 does not vanish for all value
of x; otherwise all the leaves of F

x

, except for one, are hyperbolas. The same
reasoning applies for the remaining cases.

Let F and F 0 be two foliations of Rn by hyperplanes perperdicular to a
principal axis ✓ not necessarily the same. We say that F and F 0 are equally
distributed if there is a homeomorphism D : Rn ! Rn that maps each leave
of F into a leave of F 0 with the identical classification as solution of the
bi-dimensional problem.

Instituto de Matemática Pura e Aplicada 9 March 10, 2013
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Lemma 3. For any isomorphism ' and any foliation F
✓

of S, F
✓

and '(F
✓

)
are equally distributed.

Proof. We can assume without loss of generality that ✓ = x. Consider the
expressions P (x, y, z) = (b1x+b0)+(b4x+b2)y+(b5x+b3)z+(b7x+b6)yz and
P �'�1(x, y, z) = (B1x+B0)+(B4x+B2)y+(B5x+B3)z+(B7x+B6)yz. By
virtue of Lemma 2, all the leaves of F

x

, except at most for one, have the same
classification as solutions of a bi-dimensional case. Suppose that all the leaves
of F

x

are hyperbolas. Then by virtue of Lemma 1, b7x+b6 is non-null for any
value of x. This implies that b7 = 0 and b6 6= 0. Using Equation (1.9) we have
that B7 = 0 and Equation (1.8) ensures that B6 6= 0. So, all the leaves of
'(F

x

) are hyperbolas. Now suppose that all the leaves of F
x

, except for one,
are hyperbolas. This implies that there exists a unique value of x0 of x for
which b7x+b6 vanishes. So, b7 is non-null. Using again Equation (1.9), we get
that B7 is non-null and hence all the leaves of '(F

x

) are hyperbolas, except for
exactly one of them. In view of Lemma 1, we have three possibilities for this
distinct leave: a straight line, a plane, and the empty set. If the distinct leave
of F

x

is a straight line, then by virtue of Lemma 1 the coe�cients b4x+b2 and
b5x+ b3 do not vanish simultaneously at x0. This means that at least one of
the discriminants b7b2� b6b4 and b7b3� b6b5 is no-null. Since B7B2�B6B4 =
ab2c(b7b2 � b6b4) and that B7B3 � B6B5 = abc2(b7b3 � b6b5), at least one of
these determinants is non-null and we can conclude that the distinct leave
of '(F

x

) is a straight line. Now, if the distinct leave of F
x

is a plane, the
two previous determinants are null at the same time, and in addition, the
determinant b7b0 � b6b1 needs to be zero. In view of the previous comments,
it su�ces to prove that b7b0 � b6b1 = 0 if and only if B7B0 �B6B1 = 0. But,
B7B0 �B6B1 = abc[(b7b0 � b6b1) + e(b7b2 � b6b4) + f(b7b3 � b6b5)] and hence
vanishes. So, the distinct leave of '(F

x

) is also a plane. If the distinct leave
of F

x

is the empty set, then the only di↵erence with the case of the plane
is that the discriminant b7b0 � b6b1 is non-null. Using again the formula for
B7B0 � B6B1 we can conclude that it is also non-null. Hence the distinct
leave of '(F

x

) is the empty set. The remaining possibilities are: (a) all the
leaves of F

x

being straight lines (b,c) all the leaves of F
x

being straight lines,
except for one that is: (b) a plane (c) the empty set, (d) all the leaves of F

x

being the empty set, (f) all the leaves of F
x

being the empty set, except for
one that is a plane, and (g) all the leaves of F

x

being planes. In all these
cases the proof follows in a similar way to those we exhibited.

Here are some immediate consequences of the previous Lemma.

Corollary 1. The distribution of the foliation F
✓

of S is an invariant.
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Corollary 2. The combination of distributions of the three foliations F
x

, F
y

and F
z

of S is an invariant.

A close examination to the proof of Lemma 3 shows that the determi-
nants b1b7 � b4b5, b2b7 � b4b6, and b3b7 � b5b6 play a fundamental role in
determining the distribution of leaves of the foliations F

✓

. We also saw that
the corresponding determinants of the foliations '(F

✓

) are related with the
formers by the formulas: B1B7 � B4B5 = a2bc(b1b7 � b4b5), B2B7 � B4B6 =
ab2c(b2b7 � b4b6), and B3B7 � B5B6 = abc2(b3b7 � b5b6). Thus, we get the
following invariants.

Corollary 3. 1. b1b7 � b4b5 vanishes if and only if so does B1B7 �B4B5.

2. b2b7 � b4b6 vanishes if and only if so does B2B7 � B4B6.

3. b3b7 � b5b6 vanishes if and only if so does B3B7 � B5B6.

4. sg((b1b7 � b4b5)(b2b7 � b4b6)(b3b7 � b5b6)) = sg((B1B7 �B4B5)(B2B7 �
B4B6)(B3B7 � B5B6)).

The following lemma establishes conditions under which we can cancel
some coe�cients of P in order to obtain a much simpler equivalent expression.

Lemma 4. Let P (x, y, z) = b0+ b1x+ b2y+ b3z+ b4xy+ b5xz+ b6yz+ b7xyz.
Then,

1. if b7 6= 0, then for any non-null values of a, b and c, the isomorphism

' : (x, y, z) 7!
✓
ax� b6

b7
, by � b5

b7
, cz � b4

b7

◆

leads to P � '(x, y, z) = B0 +B1x+B2y +B3z +B7xyz, and

2. if b7 = 0 and b4, b5 and b6 are non-null, then for any non-null values of
a, b and c, the isomorphism

' : (x, y, z) 7!
✓
ax+

b1b6 � b2b5 � b3b4
2b4b5

, by +
b2b5 � b1b6 � b3b4

2b4b6
, cz +

b3b4 � b1b6 � b2b5
2b5b6

◆

leads to P � '(x, y, z) = B0 +B4xy +B5xz +B6yz +B7xyz.

Proof. The result is obtained by equating to zero the expressions of B4, B5,
and B6, a linear system in the variables d, e, and f is obtained. Solving this
system get (1). Statement (2) follows analogously from solving the linear
system obtained by equating to zero the expressions of B1, B2, and B3.
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1.2 Foliation classification

We now focus on summarizing the information provided by the results ob-
tained so far by describing in detail all the possibilities for the foliations F

x

of S.

P1 For all real value of x, F
x

is empty. In this instance b0 6= 0 and the
remaining coe�cients are all zero. (This leads to the empty set as the
unique solution.)

P2 For all real values of x, F
x

is a straight line. This case emerges when

b6 = b7 = 0, and the linear system

⇢
b4x+ b2 = 0
b5x+ b3 = 0

is incompatible.

In this case we have that the general expression of P is P (x, y, z) =
b0 + b1x+ b2y + b3z + b4xy + b5xz, with b2b5 � b3b4 6= 0.

P3 For all real values of x, F
x

is a hyperbola. In this case, b7 = 0 and b6 6= 0.
The general expression of P in this case is P (x, y, z) = b0+ b1x+ b2y+
b3z + b4xy + b5xz + b6yz, with b6 6= 0. Here we distinguish three
non-equivalent subcases by attending to the number of degenerated
hyperbolas that appear. We saw in Lemma 1 that the number of such
hyperbolas coincides with the number of real roots of the polynomial
b4b5x

2 + (b3b4 + b2b5 � b1b6)x+ (b2b3 � b0b6).

P4 For all real values of x, F
x

is a plane. This occurs when all of the
coe�cients are zero. (On this occasion, the resulting space is the whole
space R3.)

P5 There is a real number a such that for all real value of x 6= a, F
x

is empty
and F

a

is a plane. This case appears when b1 6= 0 and b
i

= 0 for all
2  i  7. (There is no restriction on b0.)

P6 There is a real number a such that for all real value of x 6= a, F
x

is a
straight line and F

a

is empty. This case arises when b6 = b7 = 0, at
least one of the coe�cients b4 and b5 is non-null, and the linear system⇢

b4x+ b2 = 0
b5x+ b3 = 0

is compatible, but its solution does not satisfies the

equation b1x+ b0 = 0. Thus, we have that the general expression of P
is P (x, y, z) = b0+b1x+↵b4y+↵�b4z+b4xy+�b4xz whenever b4 6= 0. If
b4 = 0, then we have the expression P (x, y, z) = b0+ b1x+↵b5z+ b5xz.

P7 There is a real number a such that for all real value of x 6= a, F
x

is a hyperbola and F
a

is empty. This cases emerges when b7 6= 0,
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Table 1.2: Possibility tests.

Poss. b0 b1 b2 b3 b4 b5 b6 b7 b7b0 � b6b1 b7b2 � b6b4 b7b3 � b6b5 b5b2 � b4b3 b4b0 � b2b1 b5b0 � b3b1
P1 6= 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P2 0 0 0 0 6= 0 0 0
P3 6= 0 0 0
P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P5 6= 0 0 0 0 0 0 0 0 0 0 0 0 0

0 6= 0 0 6= 0 0
P6 0 0 6= 0 0 0 0 0 0 0 0 6= 0

6= 0 6= 0 6= 0 6= 0
P7 6= 0 6= 0 0 0 0 6= 0

6= 0 0
P8 0 6= 0 0 0 0 0 0 0 0 0

6= 0 6= 0
0 6= 0 6= 0

P9 6= 0 6= 0 0 6= 0
6= 0 6= 0 0

P10 6= 0 0 0 0 0 0 0
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8
<

:

b7x+ b6 = 0
b4x+ b2 = 0
b5x+ b3 = 0

is compatible, but its solution does not satisfies the

equation b1x+ b0 = 0. Thus, we have that there exist real numbers ↵,
�, and � such that P (x, y, z) = b0 + b1x + ↵�b7y + ↵�b7z + �b7xy +
�b7xz+↵b7yz+ b7xyz, with b0+↵b1 6= 0. From this, taking b7 = 1 and
using Lemma 4 (a), we obtain that P (x, y, z) = B0 + B1x+ xyz, with
B0 = 1

abc

(b0 + ↵b1) 6= 0 and B1 = 1
bc

(b1 � ��), is a simplified general
expression of P .

P8 There is a real number a such that for all real value of x 6= a, F
x

is a
straight line and F

a

is a plane. This instance appears when b6 = b7 = 0,
at least one of the coe�cients b4 and b5 is non-null, and the linear system8
<

:

b1x+ b0 = 0
b4x+ b2 = 0
b5 + b3 = 0

is compatible. We thus get that the general expression

of P is P (x, y, z) = ↵�b4+�b4x+↵b4y+↵�b5z+b4xy+�b4yz whenever
b4 6= 0. If b4 6= 0, then P (x, y, z) = ↵�b5 + �b5x+ ↵b5z + b5xz.

P9 There is a real number a such that for all real value of x 6= a, F
x

is
a hyperbola and F

a

is a straight line. This case occurs when b7 6= 0,

and

8
<

:

b4x+ b2 = 0
b5x+ b3 = 0
b7x+ b6 = 0

is incompatible. We thus have that the general

expression of P is P (x, y, z) = b0 + b1x + b2y + b3z + b4xy + b5xz +
b6yz + b7xyz, where b2b7 � b4b6 and b3b7 � b5b6 are non-null. Using
Lemma 4 (a) and taking b7 = 1, this expression becomes P (x, y, z) =
B0+B1x+B2y+B3z+xyz, with B0 =

1
abc

(b0�b1b6�b2b5�b3b4+b4b5b6),
B1 =

1
bc

(b1 � b4b5), B2 =
1
ac

(b2 � b4b6), and B3 =
1
ab

(b3 � b5b6). In this
case we have three subcases depending on the number of real roots of
the polynomial (b1b7�b4b5)x2+(b1b6+b0b7�b3b4�b2b5)x+(b0b6�b2b3).

P10 There is a real number a such that for all real value of x 6= a, F
x

is
a hyperbola and F

a

is a plane. This case arises when b7 6= 0, and8
>><

>>:

b1x+ b0 = 0
b4x+ b2 = 0
b5x+ b3 = 0
b7x+ b6 = 0

is compatible. So, the general expression of P is

P (x, y, z) = ↵�b7+�b7x+↵�b7y+↵�b7z+�b7xy+�b7xz+↵b7yz+b7xyz.
Using Lemma 4 (a) and taking b7 = 1, we obtain the simplified ex-
pression P (x, y, z) = B1x + B2y + xyz, with B1 = 1

bc

(↵� � ��) and
B2 =

1
ac

(� � ↵�).
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Observe that the study of the foliation F
x

allowed us to make a prelimi-
nary classification of the solutions and in most cases we attained to reduce
the number of parameters to be analyzed. Obviously, the possibilities for F

y

and F
z

are exactly the same as for F
x

. The di↵erence lies in the conditions
that each possibility imposes on the coe�cients of P , which can easily ob-
tained by applying the respective coe�cient correspondence listed in Table
3 to each row in Table 1.2.

We can produce a closer classification to the marching cube’s cases if
instead of one only foliation, we consider the combinations of foliations F

x

,
F
y

and F
z

. Combining the tables for F
x

, F
y

, and F
z

, we get the following
list.

C1 (P1, P1, P1). This occurs when b0 6= 0 and the remaining coe�cients
are all null. Thus, the general expression for P is P (x, y, z) = 1.

C2 (P2, P2, P2). This combination emerges when b4 = b5 = b6 = b7 = 0
and at least two of the coe�cients b1, b2 and b3 are not null. So, the
general expression for P is P (x, y, z) = b0 + b1x+ b2y + b3z.

C3 (P2, P2, P3). This happens when b3 and b4 are non-null and b5 = b6 =
b7 = 0. Thus, in general, P (x, y, z) = b0+ b1x+ b2y+ b3z+ b4xy. Since
the polynomial b3b4z + (b0b4 � b1b2) has always only a (real) root, F

z

always contains a only degenerated hyperbola.

C4 (P2, P2, P5). This combination arises when b3 6= 0 and the remain-
ing coe�cients are null. The general expression of P in this case is
P (x, y, z) = z

C5 (P2, P3, P3). This combination appears when the coe�cients b4 and
b5 are non-null, b6 = b7 = 0, and b2b5 � b3b4 is not zero. The general
expression of P in this case is P (x, y, z) = b0 + b1x + b2y + b3z +
b4xy+ b5xz, with b2b5 � b3b4 non-null. Because the polynomial b3b4z�
(b0b4 � b1b2) has always only a (real) root, F

z

always contains only one
degenerated hyperbola.

C6 (P3, P3, P3). This occurs when the coe�cients b4, b5 and b6 are non-
null and b7 = 0. Here, the general expression of P is P (x, y, z) =
b0 + b1x + b2y + b3z + b4xy + b5xz + b6yz. Using Lemma 4 we obtain
a simplified expression P (x, y, z) = B0 + B4xy + B5xz + B6yz, with

B0 =
(b3b4)2+(b1b6)2+(b2b5)2�2b1b3b4b5�2b2b3b�4b5�2b1b2b5b6+4b0b4b5b6

4b4b5b6
, B4 = abb4,

B5 = acb5, and B6 = bcb6. Here we have three subcases: (a) each one of
the foliations F

x

, F
y

, and F
z

contains two degenerated hyperbolas, (b)
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each one of the foliations F
x

, F
y

, and F
z

contains one degenerated hy-
perbolas, (c) none of the foliations F

x

, F
y

, and F
z

contains degenerated
hyperbolas. The subcases (a), (b), and (c) appear when the polyno-
mial B4B5x

2 � B0B6 has two, one, and none real roots, respectively.
(The reader must have noticed that the polynomial B4B5x

2 � B0B6

corresponds to the degenerated hyperbolas of F
x

. The polynomials
corresponding to the foliations F

y

and F
z

are B4B6y
2 � B0B5 and

B5B6y
2 � B0B4, respectively. However, all these polynomials have ex-

actly the same discriminant.)

C7 (P3, P3, P6). This combination appears when b4 = b7 = 0, b6 and b5
are non-null, and there are real numbers ↵ and � such that b1 = ↵�b6,
b2 = ↵b6, b5 = �b6, and b0 6= ↵b3. Thus, the general expression of P is
P (x, y, z) = b0+↵�b6x+↵b6y+b3z+�b6xz+b6yz. In this case both F

x

and F
y

do not contain any degenerated hyperbola. The reason for this
is that the polynomials corresponding to the degenerated hyperbolas
of F

x

and F
y

are b6(b0 �↵b3) and �b6(b0 �↵b3), respectively, and both
are non-null constants.

C8 (P3, P3, P8). This combination emerges when b4 = b7 = 0 and there
are real numbers ↵, � and � such that b0 = ↵�b6, b1 = ↵�b6, b2 =
↵b6, b3 = �b6, and b5 = �b6. Thus, the general expression of P is
P (x, y, z) = ↵�b6 + ↵�b6x+ ↵b6y + �b6z + �b6xz + b6yz. Here, all the
leaves of F

x

and F
y

are degenerated hyperbolas. The reason for this is
that the polynomials corresponding to the degenerated hyperbolas of
F
x

and F
y

have all their coe�cients null.

C9 (P3, P6, P6). This combination occurs when b1 = b4 = b5 = b7 = 0,
b6 6= 0, and there is a real numbers ↵ and � such that b2 = ↵b6,
b3 = �b6, and b0 6= ↵�b6. Thus, the expression of P takes the form
P (x, y, z) = b0 + ↵b6y + �b6z + b6yz, with b0 6= ↵�b6. Since the poly-
nomial corresponding to the degenerated hyperbolas of F

x

is a the
constant b6(b0 � ↵�b6) 6= 0, we can conclude that none leave of F

x

is a
degenerated hyperbola.

C10 (P3, P8, P8). This combination arises when b1 = b4 = b5 = b7 = 0,
b6 6= 0, and there are real numbers ↵ and � such that b2 = ↵b6, b3 =
�b6, and b0 = ↵�b6. So, the general expression of P in this case is
P (x, y, z) = ↵�b6 + ↵b6y + �b6z + b6yz. Obviously, all the leaves of F

x

are degenerated hyperbolas.

C11 (P4, P4, P4). This combination only appears when P ⌘ 0.
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C12 (P7, P7, P7). This combination appears when b7 6= 0 and there exist
real numbers ↵, �, and � such that b1 = ��b7, b2 = ↵�b7, b3 = ↵�b7,
b4 = �b7, b5 = �b7, b6 = ↵b7, and b0 6= ↵��b7. This forces P (x, y, z) =
b0 + ��b7x + ↵�b7y + ↵�b7z + �b7xy + �b7xz + ↵b7yz + b7xyz, with
b0 6= ↵��b7. Using Lemma 4 (a) and putting b7 = 1, we obtain the
simplified expression P (x, y, z) = B0 + xyz, with B0 = 1

abc

(b0 � ↵��).
From this expression it follows immediately that all the foliations F

x

,
F
y

, and F
z

contain exactly one degenerated hyperbola.

C13 (P7, P9, P9). This combination emerges when b7 6= 0 and there exist
real numbers ↵, �, and � such that b2 = ↵�b7, b3 = ↵�b7, b4 = �b7, b5 =
�b7, b6 = ↵b7, b1 6= ��b7, and b0 6= ↵b1. This gives, P (x, y, z) = b0 +
b1x+↵�b7y+↵�b7z+�b7xy+�b7xz+↵b7yz+b7xyz, with b1 6= ��b7, and
b0 6= ↵b1. Using Lemma 4(a) and setting b7 = 1 we obtain the simplified
expression P (x, y, z) = B0 + B1x + xyz, with B0 = 1

abc

(b0 � ↵b1) and
B1 =

1
bc

(b1���). From this expression we can easily see that F
x

always
has two degenerated hyperbolas and F

y

and F
z

only have one.

C14 (P9, P9, P9). This combination arises when b7 6= 0 and at least two
of the numbers b1b7 � b4b5, b2b7 � b4b6, and b3b7 � b5b6 are non-null.
From Lemma 4 (a) and setting b7 = 1, we get the simplified expression
P (x, y, z) = B0+B1x+B2y+B3z+xyz, with B0 =

1
abc

(b0�b1b6�b2b5�
b3b4+2b4b5b6), B1 =

1
bc

(b1� b4b5), B2 =
1
ac

(b2� b4b6), and B3 =
1
ab

(b3�
b5b6). In this case we have six subcases: (a) B1B2B3 < 0, and each
foliation F

x

, F
y

, and F
z

has exactly two degenerated hyperbolas, (b)
B1B2B3 < 0, and each one of the foliations F

x

, F
y

and F
z

has exactly
one degenerated hyperbola, (c) B1B2B3 < 0, and none of the foliations
F
x

, F
y

, and F
z

contains degenerated hyperbolas, (d) B1B2B3 = 0, the
foliation F

x

does not contain degenerated hyperbolas, and each one of
the foliations F

y

, and F
z

contains exactly two degenerated hyperbolas
(e) B1B2B3 = 0, the foliation F

x

contains exactly one degenerated
hyperbola, and each one of the foliations F

y

, and F
z

has exactly two
degenerated hyperbolas (f) B1B2B3 > 0 and each of the foliations F

x

,
F
y

, and F
z

contains exactly two degenerated hyperbolas.

C15 (P9, P9, P10). This combination appears when b7 6= 0 and there are
real numbers ↵, �, �, and � such that b0 = ↵�b7, b1 = ↵�b7, b2 = ↵�b7,
b3 = �b7, b4 = ↵b7, b5 = �b7, b6 = �b7, and � � �� 6= 0. Thus, the
general expression of P is P (x, y, z) = ↵�b7 + ↵�b7x+ ↵�b7y + �b7z +
↵b7xy+�b7xz+�b7yz+b7xyz, with ���� 6= 0. From Lemma 4 (a) and
taking b7 = 1, we deduce the simplified expression P (x, y, z) = B3z +
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xyz, with B3 =
1
ab

(� � ��). Obviously, all the hyperbolas contained in
any of the foliations F

x

, F
y

, and F
z

, are degenerated.

C16 (P10, P10, P10). This combination appears when b7 6= 0 and there are
real numbers ↵, � and � such that b0 = ↵�b7, b1 = ↵��b7, b2 = ↵�b7,
b3 = �b7, b4 = ↵b7, b5 = ��b7, and b6 = �b7. Thus, the general
expression of P is P (x, y, z) = ↵�b7+↵��b7x+↵�b7y+ �b7z+↵b7xy+
��b7xz + �b7yz + b7xyz. Using Lemma 4 (a) and putting b7 = 1, we
obtain the simplified expression P (x, y, z) = xyz. This clearly forces
any hyperbola contained in any of the foliations F

x

, F
y

, and F
z

to be
degenerated.

All the other combinations are impossible since they have opposite nullity
test on some of the entries of Table 1.2.

1.3 The complete classification

The list above allows us to exhibit the more simple representative for each
class of our classification. As the following theorem shows, we have infinite
of such classes — only one for each combination di↵erent to (P3, P3, P3)
and (P9, P9, P9), three for the combination (P3, P3, P3), and infinite for
the combination (P9, P9, P9).

Theorem 1. Let S be the solution of the linear interpolation equation. Then,
S is equivalent to one and only one solution of the following equations:

C1 Empty set.

C2 (P2, P2, P2), x+ y + z = 0.

C3 (P2, P2, P3), xy + z = 0.

C4 (P2, P2, P5), z = 0.

C5 (P2, P3, P3), xy + xz + z = 0.

C6(a) (P3, P3, P3), xy + yz + xz � 1 = 0.

C6(b) (P3, P3, P3), xy + yz + xz = 0.

C6(c) (P3, P3, P3)(c), xy + yz + xz + 1 = 0.

C7 (P3, P3, P6), xz + yz + 1 = 0.
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C8 (P3, P3, P8), xz + yz = 0.

C9 (P3, P6, P6), yz + 1 = 0.

C10 (P3, P8, P8), yz = 0.

C11 R3

C12 (P7, P7, P7), xyz + 1 = 0.

C13 (P7, P9, P9), xyz � x+ 1 = 0.

C14(a) (P9, P9, P9), xyz � x� y� z +B0 = 0, with B0 2 R. (There is an
equivalence class for each non-negative real value of B0.)

C14(b) (P9, P9, P9), xyz � y � z = 0.

C14(c) (P9, P9, P9), xyz � y � z + 1 = 0.

C14(d) (P9, P9, P9), xyz + x+ y+ z +B0 = 0, with B0 2 R. (There is an
equivalence class for each non-negative real value of B0.)

C15 (P9, P9, P10), xyz � z = 0.

C16 (P10, P10, P10), xyz = 0.

Proof. The proof of each item consists in taking the simplified expression
of P given in the list above and finding an equivalence '(x, y, z) = (ax +
d, by + e, cz + f) such that P � ' coincides with the expression P 0 presented
in the statement of this theorem. To achieve this, we set each coe�cient
of P � ' equal to its corresponding in P 0 and solve the resulting system of
linear equations to determine values for the parameters a, b, c, d, e, and f . To
illustrate the procedure, we shall do in detail the case of (P2, P2, P2). The
remaining cases are purely analogous.

In view of the list of combination, we have that the expression for the
solutions whose combination of foliations is (P2, P2, P2) is P (x, y, z) = b0 +
b1x + b2y + b3z = 0, where b1, b2 and b3 are non-null. Thus, P � '(x, y, z) =
(b0 + cb1 + eb2 + fb3) + ab1x + bb2y + cb3z. Since the expression of P 0 is
P 0(x, y, z) = x + y + z, we obtain the system: ab1 = 1, bb2 = 1, cb3 = 1,
and b0 + cb1 + eb2 + fb3 = 0, which has infinite solutions. Therefore, the
respective solutions of P (x, y, z) = 0 and P 0(x, y, z) = 0 are equivalent.

The existence of infinitely many equivalence classes is due to the fact
the combination (P9, P9, P9) contains two general solutions depending on
a real parameter B0, namely (C14(a)): xyz � x � y � z + B0 = 0, and
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(C14(d)): xyz + x + y + z + B0 = 0. We conclude this section by showing
that, although the solutions of these equations corresponding to di↵erent
non-negative values of the parameter B0 are non-equivalent in the sense we
defined at the beginning of the chapter, all them are grouped into a quite
small number of classes of di↵eomorphic solutions.

Theorem 2. 1. Let S and S 0 be the solutions of the equation xyz � x �
y � z + B0 = 0 obtained from two di↵erent non-negative values of B0.
If these values are together in one of the regions B0 < 2, B0 = 2, and
B0 > 2, then S and S 0 are difeomorphic.

2. Let S and S 0 be the solutions of the equation xyz + x+ y + z +B0 = 0
obtained from two di↵erent non-negative values of B0. Then, S and S 0

are di↵eomorphic.

The proof of this theorem is an immediate consequence of the following
result of Morse Theory (see [26]).

Definition 1. Let F : R3 ! R be a C1-function.

1. The point p 2 R3 is said to be a critical point of F if F
x

(p) = F
y

(p) =
F
z

(p) = 0. If p is a critical point of F , then F (p) is called critical value
of F .

2. The Hessian matrix H(F, p) of F at the point p is defined by:

H(F, p) =

0

@
F
xx

(p) F
xy

(p) F
xz

(p)
F
yx

(p) F
yy

(p) F
yz

(p)
F
zx

(p) F
zy

(p) F
zz

(p)

1

A .

3. A critical point p of F for which H(F, p) is invertible is called non-
degenerated. If all the critical points of F are non-degenerated, we say
that F is a Morse function.

Lemma 5. Let a < b be real numbers such that the interval [a, b] does not
contains critical values of F . Then the surfaces F�1({a}) and F�1({b}) are
di↵eomorphic.

Proof. (of the Theorem 2)

1. Consider the function F (x, y, z) = xyz � x� y � z. It is easy to verify
that the critical points of F are (1, 1, 1) and (�1,�1,�1), which are
non-degenerated. Since the regular values of F are -2 and 2, the result
follows immediately from Lemma 5.
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2. Consider the function F (x, y, z) = xyz+x+y+z. It can be easily seem
that F has no critical points and hence has no critical values. Using
again Lemma 5, we obtain the result.

As we mentioned before, Theorem 1 was obtained previously by Nielson
his work [2]. However, the main contributions of the chapter lie in the ap-
proach via foliations which provides some geometrical insight to the question.
As we shall see later, the intuition we gain here will be of great importance
in the treatment of the problem in dimension four.

1.4 Intersections of general solutions with a
cube

The following list presentes some illustrative examples of the intersections
of each general solution of the equation f(x, y, z) = 0 with the cube [0, 1]3.
This provides some intuition of the configurations of marching cubes.

C1 This combination only returns the empty cube.

C2 x+ y + z = 0

C3 xy + z = 0
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C4 This combination only returns the cube with a filled face.

C5 xy + xz + z = 0

C6(a) xy + yz + xz � 1 = 0
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C6(b) xy + yz + xz = 0

C6(c) xy + yz + xz + 1 = 0
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C7 xz + yz + 1 = 0

C8 xz + yz = 0
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C9 yz + 1 = 0

C10 yz = 0
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C11 This combination only yields the filled cube.

C12 xyz + 1 = 0

C13 xyz � x+ 1 = 0

C14(a) xyz � x� y � z +B0 = 0, |B0| < 2
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C14(a) xyz � x� y � z +B0 = 0, |B0| = 2

C14(a) xyz � x� y � z +B0 = 0, |B0| > 2
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C14(b) xyz � y � z = 0

C14(c) xyz � x� y + 1 = 0

Instituto de Matemática Pura e Aplicada 28 March 10, 2013



Jyrko Correa-Morris Marching Cubes

C14(d) xyz + x+ y + z +B0 = 0, B0 2 R

C15 xyz � z = 0
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C16 xyz = 0
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CHAPTER 2

Computing the intersections with the cube [0, 1]3

The main goal of this chapter is to construct the tiling table for our algorithm.
Each triangulation in such a table corresponds to the portion of a solution
of the interpolation equation contained in the cube [0, 1]3. So, to achieve our
purpose, the first step is to investigate which are all the possible truncated
surfaces that the members of each class of solutions of the linear interpolation
equation are able to produce inside the cube [0, 1]3.

2.1 Foliating the portion of surface within the
cube

2.1.1 Analyzing the possibilities for each foliation

We begin this section by giving a simple general fact.

Lemma 6. Let r be a straight line in R3. Any solution S of the equation

b0 + b1x+ b2y + b3y + b4xy + b5xz + b6yz + b7xyz = 0 (2.1)

intersects r at most thrice.

Proof. The points on r have the form (x0 + at, y0 + bt, z0 + ct), t 2 R, where
(x0, y0, z0) is a point on r, and (a, b, c) is a supporting vector of r. Putting
x = x0+at, y = y0+bt, and z = z0+ct in Equation (2.1), we get a polynomial
in parameter t, which has at most degree three. Since such a polynomial has
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at most three roots, we can conclude that S and r have no more than three
common points.

Corollary 4. Any solution S of Equation (2.1) intersects the edges of the
cube [0, 1]3 at most once.

We now focus on classifying all the possible foliations of the portion of S
contained in [0, 1] by attending to the form of the curve S \ {✓ = x}\ [0, 1]3,
for each x 2 [0, 1]. From now on we denote {✓ = x} \ [0, 1]3 by ⌧

x

. To our
purpose, it su�ces to consider the classification of the bi-dimensional case
to describe the foliation {S \ ⌧

x

}
x2[0,1]. Notice also that the continuity of S

and the previous corollary ensure that the double-orthogonal projection of
S onto [0, 1]

x

(i.e., first project S onto [0, 1]
x

⇥ [0, 1]
y

, and then project the
result onto [0, 1]

x

) is either a closed subinterval containing one of the ending
points of [0, 1] or an union of two disjoint closed subintervals, each of them
containing one of the ending points of [0, 1].

Recall that the classification in [0, 1]2 is the following.

+ +

++

(A)
+ �

++

(B)
� �

++

(C)
� +

�+

(D)

0 0

00

(E)
0 +

++

(F)
0 0

++

(G)
0 �

0+

(H)

0 +

0+

(I)
+ 0

�+

(J)
+ 0

+�

(K)
� +

�+

(L)

0 0

0+

(M)
0 0

�+

(N)
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Having disposed of these preliminary steps, we are ready to give the
following classification.

Table 2.1: Non-degenerated truncated foliations

P2 P3 P4 P5 P6 P7 P8 P9 P10
I1 yes yes yes yes yes yes yes yes yes
I2 yes yes yes yes yes yes yes yes yes
I3 yes yes yes yes yes yes yes yes yes
I4 yes yes yes yes yes yes yes yes yes
I5 yes yes yes yes yes yes yes yes yes
I6 yes yes yes yes yes yes yes yes yes
I7 yes yes yes yes yes yes yes yes yes
I8 yes yes yes yes yes yes yes yes yes
I9 no yes yes yes no yes no yes yes
I10 no yes yes yes no yes no yes yes
I11 no yes yes yes no yes no yes yes
I12 no yes yes yes no yes no yes yes
I13 no yes yes yes no yes no yes yes
I14 no yes yes yes no yes no yes yes
I15 no yes yes yes no yes no yes yes
I16 no yes yes yes no yes no yes yes
I17 no yes yes yes no yes no yes yes
I18 no yes yes yes no yes no yes yes
I19 no yes yes yes no yes no yes yes
I20 no yes yes yes no yes no yes yes
I21 no yes yes yes no yes no yes yes
I22 no yes yes yes no yes no yes yes
I23 no no yes no no no no no no
I33 no no no no no no no yes no
I34 no no no no no no no yes no
I35 no no no no no no no yes no
I36 no no no no no no no yes no
I37 no no no no no no no yes no
I38 no no no no no no no yes no
I39 no no no no no no no yes no
I40 no no no no no no no yes no
I42 no no no no no no no yes no
I43 no no no no no no no yes no
I44 no no no no no no no yes no
I45 no no no no no no no yes no
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I46 no no no no no no no yes no

P2
T
[0, 1]3 Since P2 assures that all the leaves of F

x

are straight lines, we
have the following truncated foliations:

I1 For all x 2 [0, 1], ⌧
x

matches configuration (B).

. . .

I2 For all x 2 [0, 1], ⌧
x

matches configuration (C).

. . .

I3 There is 0 < a < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, 1], ⌧
x

matches configuration (C);

• If ⌧
a

matches configuration (J).

. . . . . .

I4 There is 0 < a < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (F ).

. . . . . .

I5 There are 0 < a < b < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, 1], ⌧
x

matches configuration (A).

• ⌧
a

matches configuration (J);

• ⌧
b

matches configuration (F ).

. . . . . . . . .

I6 There are 0 < a < b < 1 such that:
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• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (A);

• if x 2 (b, 1], ⌧
x

matches configuration (B);

• ⌧
a

and ⌧
b

match configuration (F ).

. . . . . . . . .

I7 There are 0 < a < b < c < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (A);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, 1], ⌧
x

matches configuration (C);

• ⌧
a

and ⌧
b

match configuration (F );

• ⌧
c

matches configuration (J).

I8 There are 0 < a < b < c < d < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, d), ⌧
x

matches configuration (B);

• if x 2 (d, 1], ⌧
x

matches configuration (C);

• if ⌧
a

and ⌧
d

match configuration (J);

• ⌧
b

and ⌧
c

match configuration (F ).

P3
T
[0, 1]3 As we have identified a single (connected) arc of hyperbola with a
segment of straight line and P3 guarantees that all the leaves of F

x

are
hyperbolas, we get, in addition to the previous, the following truncated
foliations:

I9 For all x 2 [0, 1], ⌧
x

matches configuration (D).

I10 There is 0 < a < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, 1], ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (K).

I11 There are 0 < a < b < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);
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• if x 2 (b, 1], ⌧
x

matches configuration (D);

• if ⌧
a

matches configuration (J);

• ⌧
b

matches configuration (K).

I12 There is 0 < a < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (D);

• if x 2 (a, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (I).

I13 There are 0 < a < b < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (D);

• if x 2 (b, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (K);

• ⌧
b

matches configuration (I).

I14 There are 0 < a < b < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (A);

• if x 2 (b, 1], ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (F ).

• ⌧
b

matches configuration (I).

I15 There are 0 < a < b < c < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, 1], ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (J);

• ⌧
b

matches configuration (F );

• ⌧
c

matches configuration (I).

I16 There are 0 < a < b < c < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (A);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, 1], ⌧
x

matches configuration (D);

• ⌧
a

and ⌧
b

match configuration (F );

• ⌧
c

matches configuration (K).
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I17 There are 0 < a < b < c < d < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, d), tau
x

matches configuration (B);

• if x 2 (d, 1], tau
x

matches configuration (D);

• ⌧
a

matches configuration (J);

• ⌧
b

and ⌧
c

match configuration (F );

• ⌧
d

matches configuration (K).

I18 There are 0 < a < b < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (D);

• if x 2 (a, b), ⌧
x

matches configuration (A);

• if x 2 (b, 1], ⌧
x

matches configuration (D);

• ⌧
a

and ⌧
b

match configuration (F ).

I19 There are 0 < a < b < c < d < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (B);

• if x 2 (a, b), ⌧
x

matches configuration (D);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, d), ⌧
x

matches configuration (B);

• if x 2 (d, 1], ⌧
x

matches configuration (D);

• ⌧
a

and ⌧
d

match configuration (K);

• ⌧
b

matches configuration (I);

• ⌧
c

matches configuration (F ).

I20 There are 0 < a < b < c < d < 1 such that:

• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (D);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, 1], ⌧
x

matches configuration (B);

• ⌧
a

matches configuration (J);

• ⌧
b

matches configuration (K);

• ⌧
c

matches configuration (I);

• ⌧
d

matches configuration (F ).

I21 There are 0 < a < b < c < d < e < 1 such that:
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• if x 2 [0, a), ⌧
x

matches configuration (C);

• if x 2 (a, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (D);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, e), ⌧
x

matches configuration (B);

• if x 2 (e, 1], ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (J);

• ⌧
b

and ⌧
e

match configuration (K);

• ⌧
c

matches configuration (I);

• ⌧
d

matches configuration (F ).

P4
T
[0, 1]3 This possibility asserts that all the leaves of F

x

are planes. So,
we only have a possible truncated foliation:

I22 For all x 2 [0, 1], ⌧
x

has configuration (E).

P5
T
[0, 1]3 This possibility states that all the leaves of F

x

are empty, except
for one of them which is a plane. Hence, the only two new truncated
foliation that this possibility o↵ers are:

I23 For all x 2 [0, 1], x 6= a, ⌧
x

presents configuration (A), and ⌧
a

has
configuration (E).

I24 For all x 2 [0, 1], ⌧
x

has configuration (G).

P6
T
[0, 1]3 This possibility states that all the leaves of F

x

are straight lines,
except for one of them which is empty. Since the surface has an asymp-
totic behavior respect this leave, this possibility contributes with no
truncated foliations besides those obtained from P2.

P7
T
[0, 1]3 This possibility declares that all the leaves of F

x

are hyperbo-
las, except for one of them which is empty. Due to the fact that the
surface behaves asymptotically in relation to this leave, this possibility
contributes with no truncated foliations beside those obtained from P3.

P8
T
[0, 1]3 In the case of this possibility, all the leaves of F

x

are straight
lines, excepting by one of then which is a plane. So, apart from the
truncated foliations obtained from P2, this possibility only contributes
with the following degenerated cases:

I25 For all x 2 [0, 1], x 6= a, ⌧
x

has configuration (B). ⌧
a

presents
configuration (E).
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I26 For all x 2 [0, 1], x 6= a, ⌧
x

presents configuration (C). ⌧
a

has
configuration (E).

I27 There is 0 < b < 1, b 6= a 2 (0, 1) such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, 1], ⌧
x

matches configuration (B);

• ⌧
a

matches configuration (E);

• ⌧
b

matches configuration (J).

I28 There are 0 < a < b < 1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, 1), ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (E);

• ⌧
b

matches configuration (F ).

I29 There are 0 < b < a < c < 1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (E);

• ⌧
b

matches configuration (J);

• ⌧
c

matches configuration (F ).

I30 There are 0 < a < b < c < 1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, 1], ⌧
x

matches configuration (B);

• ⌧
a

matches configuration (E);

• ⌧
b

and ⌧
c

match configuration (F ).

I31 There are 0 < b < c < d < 1 and a 2 (0, c)
S
(d, 1), a 6= b, such

that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, 1], ⌧
x

matches configuration (B);

• ⌧
a

matches configuration (E);

• ⌧
b

matches configuration (J);

• ⌧
c

and ⌧
d

match configuration (F ).
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I32 There are 0 < b < c < d < e < 1 and a 2 (0, c)
S
(d, 1), a 6= b, e,

such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, e), ⌧
x

matches configuration (B);

• if x 2 (e, 1], ⌧
x

matches configuration (C);

• ⌧
a

matches configuration (E);

• ⌧
b

and ⌧
e

match configuration (J);

• ⌧
c

and ⌧
d

match configuration (F ).

P9
T
[0, 1]3 In this possibility, all the leaves of F

x

are hyperbolas, excepting
by one of them which is a straight line. In view of this, in addition to
the truncated foliations provided by P3, we have the following:

I33 For all x 2 [0, 1], x 6= a, ⌧
x

matches configuration (D). ⌧
a

matches
configuration (H).

I34 There are 0 < b < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (K).

I35 There are 0 < b < c < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, 1], x 6= a, ⌧
x

matches configuration (D)

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (J);

• ⌧
c

matches configuration (K).

I36 There are 0 < a < b < 1 such that:

• if x 2 [0, b), x 6= a, ⌧
x

matches configuration (D);

• if x 2 (b, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (I).

I37 There are 0 < b < a < c < 1 such that:
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• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), x 6= a, ⌧
x

matches configuration (D);

• if x 2 (c, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (K);

• ⌧
c

matches configuration (I).

I38 There are 0 < b < c < a < d < 1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), x 6= a, ⌧
x

matches configuration (D);

• if x 2 (d, 1], ⌧
x

matches configuration (A);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (J);

• ⌧
c

matches configuration (K);

• ⌧
d

matches configuration (I).

I39 There are 0 < b < c < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (F );

• ⌧
c

matches configuration (I).

I40 There are 0 < b < c < d < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, 1], x 6= a ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (J);

• ⌧
c

matches configuration (F );

• ⌧
d

matches configuration (I).

I41 There are 0 < b < c < d < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (A);
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• if x 2 (c, d), ⌧
x

matches configuration (B);

• if x 2 (d, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

and ⌧
c

match configuration (F );

• ⌧
d

matches configuration (K).

I42 There are 0 < b < c < d < e < a  1 such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, e), ⌧
x

matches configuration (B);

• if x 2 (e, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (J);

• ⌧
c

and ⌧
d

match configuration (F );

• ⌧
e

matches configuration (K).

I43 There are 0 < a < b < c < 1 such that:

• if x 2 [0, b], x 6= a, ⌧
x

matches configuration (D);

• if x 2 (b, c), ⌧
x

matches configuration (A);

• if x 2 (c, 1], ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

and ⌧
c

match configuration (I).

I44 There are 0 < b < c < d < e < 1, a 2 (b, c)
S
(e, 1] such that:

• if x 2 [0, b), ⌧
x

matches configuration (B);

• if x 2 (b, c), ⌧
x

matches configuration (D);

• if x 2 (c, d), ⌧
x

matches configuration (A);

• if x 2 (d, e), ⌧
x

matches configuration (B);

• if x 2 (e, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

and ⌧
e

matches configuration (K);

• ⌧
c

matches configuration (I);

• ⌧
a

matches configuration (F ).

I45 There are 0 < b < c < d < e < f < 1, a 2 (c, d)
S
(f, 1] such that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);
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• if x 2 (c, d), x 6= a, ⌧
x

matches configuration (D);

• if x 2 (d, e), ⌧
x

matches configuration (A);

• if x 2 (e, f), ⌧
x

matches configuration (B);

• if x 2 (f, 1], x 6= a, ⌧
x

matches configuration (D);

• ⌧
a

matches configuration (H);

• ⌧
b

matches configuration (J);

• ⌧
c

and ⌧
f

match configuration (K);

• ⌧
d

matches configuration (I);

• ⌧
e

matches configuration (F ).

I46 There are 0 < b < c < d < e < f < g < 1, a 2 (c, d)
S
(e, f) such

that:

• if x 2 [0, b), ⌧
x

matches configuration (C);

• if x 2 (b, c), ⌧
x

matches configuration (B);

• if x 2 (c, d), ⌧
x

matches configuration (D);

• if x 2 (d, e), ⌧
x

matches configuration (A);

• if x 2 (e, f), ⌧
x

matches configuration (D);

• if x 2 (f, g), ⌧
x

matches configuration (B);

• if x 2 (g, 1], ⌧
x

matches configuration (C);

• ⌧
a

matches configuration (H);

• ⌧
b

and ⌧
g

match configuration (J);

• ⌧
c

and ⌧
f

match configuration (K);

• ⌧
d

and ⌧
e

match configuration (F ).

P10
T
[0, 1]3 This possibility asserts that all the leaves of F

x

are hyperbolas,
excepting by one of them which is a plane. Thus, beside the truncated
foliations provided by P3, we obtain the various degenerated ones.
Replacing ⌧

a

matches configuration (B) by ⌧
a

matches configuration
(E) in each the statement of each of the truncated foliation presented
in the analysis of P9, we get the firsts fourteen of P10. In addition, we
have:

I61 For all x 2 [0, 1], ⌧
x

matches configuration (L).

I62 For all x 2 [0, 1], ⌧
x

matches configuration (M).

I63 For all x 2 [0, 1], ⌧
x

matches configuration (N).
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2.1.2 Analyzing the combinations of foliation

The purpose of this section is to illustrates how obtain all the possible com-
binations (I

i

, I
j

, I
k

) of truncated foliations. To achieve this, we shall rely on
the results previously obtained for combinations of entire foliations. In our
analysis we will assume that the coordinate “x” varies from front to back,
the “y” varies from left to right, and the “z” varies from bottom to top.

(P2, P2, P2) In this case, the general equation becomes b0+b1x+b2y+b3z =
0, b1, b2, b3 6= 0, and hence any solution of this equation is a plane.

Let us begin by assuming that I1 appears in the combination; for
instance, consider that the truncation of F

x

leads to I1. This means
the for all value of x 2 [0, 1], the surface intersects exactly a vertical and
an horizontal edges of the square ⌧

x

. To simplify the analysis, suppose
that the surface intersects the bottom and the right edges of ⌧

x

. (To
fix ideas, we always assume that along this section.) Thus, when we
analyze the truncation of F

y

, two situations may occur: (a) the surface
intersects ⌧0 (y = 0!) at a bottom vertex, and (b) the surface does
not intersect ⌧0. In the case of (a), the truncation of F

y

either is I1
or I3 depending on whether the surface contains the diagonal of the
bottom face of the cube or not. If the truncation of F

y

is I1, then the
truncation of F

z

either is I1 or I4, depending on whether the surface
contains the point (0,1,1) or not; but if the truncation of F

y

is I3,
then using a similar argument we can conclude that the truncation
of F

z

either is I3 or I5. We thus get the combinations (I1, I1, I1),
(I1, I1, I4), (I1, I3, I3), and (I1, I3, I5). Now, in the case of (b), the
truncation of F

y

either is I4 or I5, depending on whether the surface
contains the point (1, 1, 0) or not. If the truncation of F

y

is I4, then
the truncation of F

z

either is I1 or I4 according to whether the point
(0,1,1) lies in the surface or not. Now, if F

y

is I5, then in view of the
same statement we can deduce that the truncation of F

z

either is I3 or
I5. Thus, we obtain three new combinations: (I1, I3, I4), (I1, I4, I4),
and (I1, I5, I5).

Suppose now that the truncation of F
x

is I2. In this case it is not
di�cult to see that both the truncation of F

y

and the truncation of F
z

are I2. This contributes with a single combination, namely (I2, I2, I2).

Consider that the truncation of F
x

is I3. There is no restriction of
generality in assuming that in the squares ⌧

x

with configuration (B),
the surface intersects the bottom and the right edges; and in the squares
⌧
x

with configuration (C), the surface intersects the vertical edges. It
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is not di�cult to see that the truncation of F
y

uniquely admits the
possibilities I1 and I3 according to whether the point (0, 1, 0) belongs
to the surface or not. If the truncation of F

y

is I1, then the possibilities
for F

z

are I3 and I5 and hence no new combinations are obtained. If
the truncation of F

y

is I3, then depending on whether the point (1, 1, 1)
is in the surface or not, we get that the truncation of F

z

is I3 and I5,
respectively. We thus get two new combinations, namely (I3, I3, I3)
and (I3, I3, I5).

Consider now that the truncation of F
x

is I4. There is no loss of
generality in assuming that the squares ⌧

x

with combination (B) are
intersected by the surface at the bottom a right edges. Thus, the family
of squares ⌧

x

, x 2 [0, 1] is such that the firsts squares are intersected at
the bottom and right edges, then appears a square that is intersected
by the surface at a unique point, namely the point corresponding to
y = 1 and z = 0, and the remaining squares have intersection empty
with the surface. From this, it is not hard to see that the truncation of
F
y

to be either I1 or I4. Doing a similar reasoning, we can deduce in
both cases the truncation of F

z

either is I1 or I4. Thus, the only new
combination we obtain this time is: (I4, I4, I4).

Let the truncation of F
x

be I5. Assume, without loss of generality,
that in the squares ⌧

x

with configuration (B), the surface intersects the
bottom and the right edges; and in the squares ⌧

x

with configuration
(C), the surface intersects the vertical edges. In this way we obtain
that the family of squares ⌧

x

, x 2 [0, 1], is such that the firsts squares
are intersected by the surface at the vertical edges, these are followed
by squares intersected by the surfaces at the bottom and right edges,
then we find a square uniquely intersected at the point corresponding
to y = 1 and z = 0, and the final squares have no intersection with the
surface. Thus, we can verify without much of e↵ort that the truncation
F
y

can only be I1. This implies that the truncation of F
z

either is I3
or I5, depending on whether the surface contains the point (0, 1, 1) or
not. This gives no new combinations.

Finally, using the fact that the solutions of the equation b0+b1x+b2y+
b3z = 0, b1, b2, b3 6= 0, is plane, we can deduce without much of e↵ort
that there is no combination containing any of the truncations I6� I8.
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2.2 The configurations of the cube

In this section we list all the possible cases with null vertices and their re-
spective solutions. It is known from [11] that the number of cases when null
vertices are allowed is 147. Here we ratify this result. The cases without null
vertices are fifteen and were exhibited in [3]. To avoid unnecesary repetions,
we omit them in our presentation, however we begin the enumeration of our
cases in 15 to indicate that those are the firts of the list.
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+

0

+

-

Case 116
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+
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+
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0

+

0

0
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-

0

+

0

0

+

Case 130

0
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+

0

+

0
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Case 131

0

0

+

0

+

0
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0
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0

-

0
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0

Case 133

0

0

+

0

+

0

-

0

Case 134

0

0

-

0

+

0

+

0

Case 135

0

0

+

0

0

+

0
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Case 136

0

0

+

0

0

+

0

-
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0

0

0

0

+

+

0

0

Case 138

0

0

0

0

+

-

0

0
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0

0

0

0

+

0

+

0

Case 140
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0

0

0

0

+

0

-

0

Case 141
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+

0

+

0

0

0

Case 142
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0
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0
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0

0

0

Case 143

0

0

0

0

0

+

0

0

Case 144
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+

+

-

-

+

+

+

Case 145

0

0

0

0

0

0

0

0

Case 146

2.3 The Marching Cubes algorithm: an ad-
vancement

In this section, we introduce an improvement of the algorithm proposed
by Nielson in [2], which in turn constitutes an improvement of the origi-
nal Marching Cubes method. The implementation of our algorithm is based
on that proposed by Lewiner et al. [3].

2.3.1 General description of Marching Cubes method

The Marching Cubes method yields a triangle mesh of the preimage f�1(c)
of the real value c by the scalar function f : R3 ! R which is sampled over a
cuberille grid. The method processes one cube at a time, tiling in each case
the portion of the surface contained in the current cube. Each vertex v has
either assigned a positive or negative sign accordingly to the sign of f(v)� c,
which leads to 28 = 256 possible configurations of a cube.

The purpose of the algorithm is to produce a surface homeomorphic to
F�1(c), where F matches with f at the vertices of the cuberille, and is
trilinear within each cube of the grid. To avoid cracks, the method performs
topological tests on ambiguous faces of a cube. The same test should be done
on the contiguous cube in order to attain a coherent transition from a cube
to the other.

The usual test to solve face ambiguities was introduced by Nielson et
al. [4] and consists of verifying which of the two pairs of diagonally-opposed
vertices of the cube has the same sign as the middle point of the cube. The
resolution of face ambiguities assures the no presence of cracks. However,
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to accomplish an appropriate solution in the afore-mentioned sense, we also
need to solve internal ambiguities. In this regard, Lewiner et al. introduced
a plausible technique based on an extended lookup table and an enhanced
analysis of each cube [3].

2.3.2 Our algorithm

As we mentioned before, our algorithm is an improvement of the version
presented by Lewiner et al. in [3]. This algorithm is mainly based on three
tables: the configuration table, the test table, and the tiling table. The
configuration table has 256 entries, each one of them represented as an 8-bit
word in the following way: the ith bit is equal to 1 (resp. 0) if f(v

i

)� c > 0
(resp. < 0), where v

i

is the ith vertex of the cube. The labels for the vertices,
edges, and faces of the cube are respectively the followings.

54

0 1

6

2

7

3

0

10

123

4 5
6

7

8 9
11

0
1

3
4

5

6

The 256 entries of this table are grouped into 15 equivalence classes that
result of the action of the direct product of the group of symmetries of the
cube and group of permutations of the set {0, 1}. We refer to these classes
as cases. The test table contains the information about the topological tests
which are eventually performed on the faces and on the interior of a cube in
which is present some kind of ambiguity. The table also stores the label of
each face to be tested, and maps the results of those tests to the corresponding
subcase. The solution of each subcase corresponds to one of the entries of
lookup table presented by Nielson in [2].

Broadly speaking, the algorithm works as following:
For each cube of the grid,

1. Determine the case number and the configuration number.

2. Lookup which test should be performed for this configuration.

3. Determine the corresponding subcase based on the result of the test.

4. Lookup the tiling of the configuration for this subcase.

Our algorithm expands this by adding the possibility of assigning the
value 0 to any vertex of the cube. Lewiner’s algorithm, as well as all the
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versions of the original algorithm, assumes that the surface never passes
through a vertex of the cube. A reason to do this is that when f is a
truly real-valued function, the probability of the isosurface passing through
a vertice of the grid is zero. However, when the function takes value in a
countably set, the isosurface may touch many vertices of the grid with non-
zero probability. So, taking into consideration the fact that in preactices we
often find interger-valued isosurface leads to a much more robust algorithm
with an extensive lookup table. The configuration table has 38 = 6561 entries
represented as 8-trit words in which a bit corresponding to the ith vertex v

i

of the cube is 0, 1, 2 if f(v
i

)� c is zero, positive, and negative, respectively.
In this case the group of equivalences produces 147 orbits instead of 15.

The test table does not require to be modified. Vertices with zeros does
not lead to new internal ambiguities. This is formalized in the following
lemma.

Lemma 7. 1. Let C be a signed square in which at least a vertex is zero.
Then, C does not present ambiguity.

2. Let C be a signed cube in which at least a vertex is zero. Then, C does
not present internal ambiguity.

Proof. The proof follows from the fact that if two vertices can be connected
through a tunnel, let us assume without restriction of generality that they
are positive, then it is impossible to connect them by a sequence of positive
or null vertices. Let us call this kind of sequence of admissible path, for
short. Assume that A0 and A1 are two the endding points of an internal
diagonal of the cube with positive sign. Let A2 be a null vertice of the cube.
Notice that in dimension two A2 is adjancent to both vertices A0 and A1, and
consequently it is always possible to connect these vertices by an admissible
path. Now, in dimention three, A2 is adjacent to only one of the vertices A0

and A1. To fix ideas, let us say that there is an edge of the cube connecting
A2 and A0. If there is no admissible path connecteing A0 and A1, then we
have one of the following configurations:

+�

0 �

�

+

+�

0 �
�

�

+

The reader can easily verify its own or with the aid of the list of solutions
given at the end of the previous chapter that none of the possible solutions
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of these configurations presents a tunnel.

The solution of each case and subcase correspond with some of the entries
of the list exhibited in the last section of the previous chapter.
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CHAPTER 3

Linear Interpolation in R4: A coarse classification

Here we proceed in a similar manner as we did in Chapter 1. Our main goal
is to give a complete classification of the solutions of the linear interpolation
equation:

P (x, y, z, t) =b0 + b1x+ b2y + b3z + b4t+ b5xy + b6xz + b7xt+ b8yz + b9yt

+ b10zt+ b11xyz + b12xyt+ b13xzt+ b14yzt+ b15xyzt = 0,
(3.1)

where all coe�cients are real numbers. The equivalences are defined as
algebraic isomorphisms � : R4 ! R4 given by � = ��', where '(x, y, z, t) =
(ax+ e, by+ f, cz+ g, dt+h) (a, b, c, d 6= 0) is a diagonal isomorphism, and �
is a permutation of the set {x, y, z, t}. We said that two solutions S and S 0

of Equation (3.1) obtained from the polynomials P and P 0, respectively, are
equivalent if and only if there exists an equivalence � such that P 0 = CP ��,
for some real constant C.

Let P �'(x, y, z, t) = B0+B1x+B2y+ b3z+B4t+B5xy+B6xz+B7xt+
B8yz + B9yt + B10zt + B11xyz + B12xyt + B13xzt + B14yzt + B15xyzt. We
have the following relations:
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B0 = b0 + b1e+ b2f + b3g + b4h+ b5ef + b6eg + b7eh+ b8fg + b9fh+

b10gh+ b11efg + b12efh+ b13egh+ b14fgh+ b15efgh. (3.2)

B1 = a(b1 + b5f + b6g + b7h+ b11fg + b12fh+ b13gh+ b15fgh. (3.3)

B2 = b(b2 + b5e+ b8g + b9h+ b11eg + b12eh+ b14gh+ b15egh). (3.4)

B3 = c(b3 + b6e+ b8fb10h+ b11ef + b13eh+ b14fh+ b15efh). (3.5)

B4 = d(b4 + b7e+ b9f + b10g + b12ef + b13eg + b14fg + b15efg). (3.6)

B5 = ab(b5 + b11g + b12h+ b15gh). (3.7)

B6 = ac(b6 + b11f + b13h+ b15fh). (3.8)

B7 = ad(b7 + b12f + b13g + b15fg). (3.9)

B8 = bc(b8 + b11e+ b14h+ b15eh). (3.10)

B9 = bd(b9 + b12e+ b14g + b15eg). (3.11)

B10 = cd(b10 + b13e+ b14f + b15ef). (3.12)

B11 = abc(b11 + b15h). (3.13)

B12 = abd(b12 + b15g). (3.14)

B13 = acd(b13 + b15f). (3.15)

B14 = bcd(b14 + b15e). (3.16)

B15 = abcdb15. (3.17)

Also as we noted earlier, the sequence of coe�cients of P � � is a permu-
tation of the sequence of coe�cients of P . The following table contains the
case of the generator permutations �

xy

, �
xz

, �
xt

, �
yz

, �
yt

, and �
zt

.

Table 3.1: Coe�cient permutations.

P b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15
P � �

xy

b0 b2 b1 b3 b4 b5 b8 b9 b6 b7 b10 b11 b12 b14 b13 b15
P � �

xz

b0 b3 b2 b1 b4 b8 b6 b10 b5 b9 b7 b11 b14 b13 b12 b15
P � �

xt

b0 b4 b2 b3 b1 b9 b10 b7 b8 b5 b6 b14 b12 b13 b11 b15
P � �

yz

b0 b1 b3 b2 b4 b6 b5 b7 b8 b10 b9 b11 b13 b12 b14 b15
P � �

yt

b0 b1 b4 b3 b2 b7 b6 b5 b10 b9 b8 b13 b12 b11 b14 b15
P � �

zt

b0 b1 b2 b4 b3 b5 b7 b6 b9 b8 b10 b12 b11 b13 b14 b15
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3.1 The invariants

Next, we annunciate some important basic results which constitute the anal-
ogous of Lemmas 1-4 in dimension 4. To avoid tedious repetitions, we omite
the proofs.

Lemma 8. Let S be a solution of the equation P (x, y, z, t) = 0. The in-
tersection of S with an arbitrary hiperplane normal to a principal axe is a
solution of the tree-dimensional case.

Lemma 9. All the leaves of the foliation F
✓

, except at most for three, are
equally classified as a solution of a three-dimensional case.

Lemma 10. the foliations F
✓

and '(F
✓

) are equally distributed.

Corollary 5. The distribution of the foliation F
✓

of S is an invariant.

Corollary 6. The combination of distributions of the four foliations of S is
an invariant.

3.2 A bit of algebra

The goal of this section is to analyze the solutions of a linear system whose
coe�cients are polynomials of degree 1. In other words, we wish to know
whether a system

⇢
(A+Bx) + Y (C +Dx) = 0
(E + Fx) + Y (G+Hx) = 0

(3.18)

in the variable Y is compatible or not by attending not only to Y , but the
values of the parameter x. The results that we shall present in this section
play a main role in the analysis that we will perform in the next section.

By virtue of the Kronecker-Capelli’s Theorem, we can assert that this
system is compatible if and only if the matrixes

�(x) =

✓
C +Dx
G+Hx

◆
and e�(x) =

✓
A+Bx C +Dx
E + Fx G+Hx

◆
=

�
�(x) �(x)

�

have the same rank.
For each value of x, the rank�(x) is either 0 or 1. Since all non-identically

null coe�cient of �(x) vanishes at most once, we have the following alterna-
tives for rank�(x):
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1. rank�(x) = 0, for all x 2 R. This happens if and only if C = D = G =
H = 0

2. rank�(x) = 1, for all x 2 R� {x0}, and rank�(x0) is 0. This occurs if
and only if x0 satisfies both equations C + xD = 0 and G + xH = 0.
This amounts to say that at least one of the coe�cients D and H is
non-null, and there is ↵ 2 R such that (C,D) = ↵(G,H).

3. rank�(x) = 1, for all x 2 R. This alternative arises if and only if there
is no real value satisfying simultaneously the equations C+xD = 0 and
G + xH = 0. This equivals to say that at least one of the coe�cients
C and G is non-null, and for all ↵ 2 R, (C,D) 6= ↵(G,H).

Suppose that rank�(x) = 0 for all x 2 R. The ranke�(x) can be:

(a) 0, for all value of x 2 R. In this case A = B = F = I = 0, and System
(3.18) is compatible for all real value of x.

(b) 1, for all x 2 R � {x1}, and ranke�(x1) = 0. In this case there exists
� 2 R such that A = �B and F = �I, and System (3.18) is only
compatible for x = x1.

(c) 1, for all x 2 R. This situation emerges when none of the conditions
above holds, and in this case System (3.18) is incompatible for any real
value of x.

Now assume that rank�(x) = 1 for all x 2 R� {x0}, and rank�(x0) = 0.
This gives the following possibilities for ranke�(x):

(a) ranke�(x) = 1 for all x 2 R � {x0}, and ranke�(x0) = 0. This happens
if and only if there exists a real number � such that �(x) = ��(x). In
this case System (3.18) is compatible for all real value of x.

(b) ranke�(x) = 1 for all x 2 R. This situation appears if and only �(x)
is constant, and there exists a non-constant linear function g(x) such
that �(x) = g(x)�(x). In this case System (3.18) is compatible for all
x 2 R� {x0}, and incompatible for x = x0.

(c) ranke�(x) = 2 for all x 2 R � {x0}, and ranke�(x0) = 1. This situation
emerges if and only if the coe�cients of �(x) do not vanish at the same
time. In this case the system (3.18) is incompatible for any value of x.
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(d) ranke�(x) = 2 for all x 2 R � {x0, x1}, x0 6= x1, and ranke�(x0) =
ranke�(x1) = 1. This occurs if and only if the coe�cients of �(x) vanish
at x1 and the coe�cients of �(x) do it at x0. In this case System (3.18)
is uniquely compatible for x = x1.

Finally, consider that rank�(x) = 1 for all x 2 R. The possibilities for
ranke�(x) are the following:

(a) ranke�(x) = 1 for all x 2 R. This situation arises when there exists a
real constant � such that �(x) = ��(x). In this case System (3.18) is
compatible for all real value of x.

(b) ranke�(x) = 2 for all x 2 R. This occurs if and only if for any linear
function g(x), �(x) 6= �(x). In this case System (3.18) is incompatible
for all real value of x.

(c) ranke�(x) = 2, for all x 2 R � {x0}, and ranke�(x0) = 1. This occurs if
and only if the coe�cients of �(x) vanish at x0. In this case System
(3.18) is only compatible for x = 0.

Summarizing, we have that System (3.18) is:

1. compatible for any real value of x: rank�(x) = 0 for all x 2 R, situation
(a); rank�(x) = 1 for all x 2 R� {x0}, situation (a); rank�(x) = 1 for
all x 2 R, situation (a).

2. compatible for any real value of x, except for a unique value: rank�(x) =
1 for all x 2 R� {x0}, situation (b).

3. compatible for a unique value of x: rank�(x) = 0 for all x 2 R, situa-
tion (b); rank�(x) = 1 for all x 2 R�{x0}, situation (d); rank�(x) = 1
for all x 2 R, situation (c).

4. incompatible for any real value of x: rank�(x) = 0 for all x 2 R, situa-
tion (c); rank�(x) = 1 for all x 2 R�{x0}, situation (c); rank�(x) = 1
for all x 2 R, situation (b).

3.3 Foliation in 4D: a coarse classification

Having disposed of these preliminary steps, we are now able to introduce the
detailed list of all possibilities for F

x

. The characterization of each possibility
is based on the factorization

P (x, y, z, t) =(b0 + b1x) + (b2 + b5x)y + (b3 + b6x)z + (b4 + b7x)t

+ (b8 + b11x)yz + (b9 + b12)yt+ (b10 + b13)zt+ (b14 + b15x)yzt,
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which, in order to use the classification of the three-dimensional case, we
rewrite in the three following forms:

[(b0 + b1x) + y(b2 + b5x)] + [(b3 + b6x) + y(b8 + b11x)]z + [(b4 + b7x)

+ y(b9 + b12x)]t+ [(b10 + b13x) + y(b14 + b15x)]zt.

[(b0 + b1x) + z(b3 + b6x)] + [(b2 + b5x) + z(b8 + b11x)]y + [(b4 + b7x)

+ z(b10 + b13x)]t+ [(b9 + b12x) + z(b14 + b15x)]yt.

[(b0 + b1x) + t(b4 + b7x)] + [(b2 + b5x) + t(b9 + b12x)]y + [(b3 + b6x)

+ t(b10 + b13x)]z + [(b8 + b11x) + t(b14 + b15x)]yz.

Each possibility is described by attending to the classification of its leaves
as solutions of the three-dimensional case and using the result presented in
the previous section. Because the analysis of all cases is very extensive, we
shall exibit the first cases in order to illustrates the procedure. The remaining
ones can be found in Appendix.

Predominance of C1

P1 All the leaves being C1. This only occurs when b0 6= 0, and all remaining
coe�cients are null.

P2 All the leaves being C1, except for one of them which is C11. This case
appears when b1 6= 0, and for all i � 2, b

i

= 0. (There is no restriction
on b0.)

Predominance of C2

P3 All the leaves being C2. This case emerges when b8 = b9 = b10 = b11 =
b12 = b13 = b14 = b15 = 0, and at least two of the conditions (a) b2 6= 0
and b5 = 0, (b) b3 6= 0 and b6 = 0, and (c) b4 6= 0 and b11 = 0 are
satisfied.

P4 All the leaves being C2, except for one of them which is C1. This occurs
when b8 = b9 = b10 = b11 = b12 = b13 = b14 = b15 = 0, and there
exists a value x0 such that b2 + b5x0 = b3 + b6x0 = b4 + b7x0 = 0, but
b0 + b1x0 6= 0.

P5 All the leaves being C2, except for one of them which is C11. This occurs
when b8 = b9 = b10 = b11 = b12 = b13 = b14 = b15 = 0, and there exists
a value x0 such that b0 + b1x0 = b2 + b5x0 = b3 + b6x0 = b4 + b7x0 = 0.
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Predominance of C3

P6 All the leaves being C3. This case appears when b7 = b9 = b10 = b11 =
b12 = b13 = b14 = b15 = 0, and b4 and b8 are non-null.

P7 All the leaves being C3, except for one of them which is C2. b7 = b9 =
b10 = b12 = b13 = b14 = b15 = 0, b4 6= 0, and there exists an only value
x0 such that b8 + b11x0 = 0, and either b2 + b5x0 6= 0 or b3 + b6x0 6= 0.

P8 All the leaves being C3, except for one of them which is C4. This occurs
when b7 = b9 = b10 = b12 = b13 = b14 = b15 = 0, b4 6= 0, and there exists
a unique value x0 such that b2 + b5x0 = b3 + b6x0 = b8 + b11x0 = 0.

P9 All the leaves being C3, except for one of them which is C9. This
possibility emerges when b4 = b7 = b9 = b10 = b11 = b12 = b13 =
b14 = b15 = 0, b8 6= 0, and there exists an only value x0 such that
b4 + b7x0 = 0, and the equations b6x0 + Xb8 = 0 and (b2 + b5x0) +
Xb8 = 0 have respective solutions which do not satisfy the equations
(b0+b1x0)+X(b2+b5x0) = 0 and (b0+b1x0)+Xb6x0 = 0, respectively.

P10 All the leaves being C3, except for one of them which is C10. This
possibility emerges when b9 = b10 = b11 = b12 = b13 = b14 = b15 = 0,
b8 6= 0, and there exists an only value x0 such that b4 + b7x0 = 0, and
the equations b6x0+Xb8 = 0 and (b2+ b5x0)+Xb8 = 0 have respective
solutions which satisfy the equations (b0+ b1x0)+X(b2+ b5x0) = 0 and
(b0 + b1x0) +Xb6x0 = 0, respectively.

P11 All the leaves being C3, except for two of them of which one is C4 and
the other is C9. This occurs when b9 = b10 = b12 = b13 = b14 = b15 = 0,
and there exist di↵erent values x0 and x1 such that: (a) b4 + b7x0 6= 0,
and b2 + b5x0 = b3 + b6x0 = b8 + b11x0 = 0, and (b) b8 + b11x1 6= 0,
b4 + b7x1 = 0, and the equations (b3 + b6x1) + X(b8 + b11x1) = 0 and
(b2 + b5x1) +X(b8 + b11x1) = 0 have respective solutions which do not
satisfy the equations (b0 + b1x1) +X(b2 + b5x1) = 0 and (b0 + b1x1) +
X(b3 + b6x1) = 0, respectively.

P12 All the leaves being C3, except for two of them of which one is C4
and the other is C10. This possibility emerges when b9 = b10 = b12 =
b13 = b14 = b15 = 0, and there exist di↵erent values x0 and x1 such
that: (a) b4 + b7x0 6= 0, and b2 + b5x0 = b3 + b6x0 = b8 + b11x0 = 0,
and (b) b8 + b11x1 6= 0, b4 + b7x1 = 0, and the equations (b3 + b6x1) +
X(b8 + b11x1) = 0 and (b2 + b5x1) +X(b8 + b11x1) = 0 have respective
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solutions which satisfy the equations (b0+ b1x1)+X(b2+ b5x1) = 0 and
(b0 + b1x1) +X(b3 + b6x1) = 0, respectively.

P13 All the leaves being C3, except for two of them of which one is C2 and
the other is C9. This occurs when b9 = b10 = b12 = b13 = b14 = b15 = 0,
and there exist distinct values x0 and x1 such that: (a) b4 + b7x0 6= 0,
b8 + b11x0 = 0, and either b2 + b5x0 6= 0 or b3 + b6x0 6= 0, and (b)
b8 + b11x1 6= 0, b4 + b7x1 = 0, and the equations (b3 + b6x1) +X(b8 +
b11x1) = 0 and (b2+ b5x1)+X(b8+ b11x1) = 0 have respective solutions
which do not satisfy the equations (b0 + b1x1) +X(b2 + b5x1) = 0 and
(b0 + b1x1) +X(b3 + b6x1) = 0, respectively.

P14 All the leaves being C3, except for two of them, one of which is C2
and the other is C9. This case appears when b9 = b10 = b12 = b13 =
b14 = b15 = 0, and there exist distinct values x0 and x1 such that: (a)
b4 + b7x0 6= 0, b8 + b11x0 = 0, and either b2 + b5x0 6= 0 or b3 + b6x0 6= 0,
and (b) b8 + b11x1 6= 0, b4 + b7x1 = 0, and the equations (b3 + b6x1) +
X(b8 + b11x1) = 0 and (b2 + b5x1) +X(b8 + b11x1) = 0 have respective
solutions which satisfy the equations (b0+ b1x1)+X(b2+ b5x1) = 0 and
(b0 + b1x1) +X(b3 + b6x1) = 0, respectively.

3.4 A primary marching hypercubes algo-
rithm

This section introduces a basic algorithm to solve the problem in di-
mension four.

3.4.1 General description

The algorithm we present here is restricted to configurations not pre-
senting null vertices nor internal ambiguities. Roughly speaking, the
algorithm proceeds as following:

For each hypercube of the grid,

1. Determine the case number and configuration.

2. Lookup which test should be performed for this configuration.

3. Determine the corresponding subcase based on the result of the
test.
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4. Lookup the tiling of the configuration for this subcase.

The algorithm is mainly based on three tables: the configuration table,
the test table, and the tiling table. The configuration table stores the
216 = 65536 possible configurations for a hypercube in a matrix whose
entries are words of 16 bits, one for each vertex of the hypercube. Each
bit can be 0 or 1 accordingly to the sign of f at the corresponding ver-
tex. In this case the group of symmetries and the group of permutations
of the set {0, 1} lead to 222 orbits. We refer to these orbits as cases.
In other words, a clase is a collection of equivalent hypercube config-
urations. The test table stores for each case the test to be performed
to resolve topological ambiguity in each configuration. This table also
maps the result of each test into the corresponding subcase. The tiling
table stores the solution for each subcase. For this primary algorithm,
the hypercubes are tiled by triangles that form tetrahedra. For visu-
alization purposes, the vertices of the triangle are either middle points
of the edges of the hypercube or a middle point of a three-dimensional
face of the hypercube. The input of the algorithm is a four-dimensional
signed grid over which the scalar field f was sampled; and the output
is a triangulated surface homeomorphic to F�1(c), where F matches f
at the vertex of G and is 4-linear within each hypercube.

3.4.2 Constructing the first and second tables

The configuration table is constructed by using GAP (Groups, Algo-
rithms, and Programming), a free software containing numerical pack-
ages for computacional group theory [27].

The first step is to create the shapeGroup, colorGroup, and coloring-
Group for dimension four and two colors. Here the word colors is used
to mean the signs of the vertices of the hypercube.

n:=4;; // 4 dimensions

k:=2;; // 2 classes (+,-)

shapeGroup := WreathProductProductAction(SymmetricGroup(2),

SymmetricGroup(n));;

colorGroup := Group (PermList (Reversed ([1..k])));;

coloringGroup := DirectProduct (shapeGroup, colorGroup);;

Once the result is obtained, we build projection operators to extract
these groups back from their direct product.
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shapeProjection := Projection (coloringGroup, 1);;

colorProjection := Projection (coloringGroup, 2);;

The next step is to obtain the list of colors and colorings, taking the
result from GAP.

numVerts := 2^n;;

coloredVerts := ListWithIdenticalEntries (numVerts, [1..k]);

[ [1..2], [1..2], [1..2], [1..2], [1..2], [1..2], [1..2], [1..2],

[1..2], [1..2], [1..2], [1..2], [1..2], [1..2], [1..2], [1..2] ]

colorings:= Cartesian (coloredVerts);

Now, we use the function below to produce the action of the group
element on a coloring.

action := \textbf{function} (coloring, groupElement)

\textbf{local} shapePerm, shuffled, result;

shapePerm := Image (shapeProjection, groupElement);

colorPerm := Image (colorProjection, groupElement);

shuffled := Permuted (coloring, shapePerm);

result := On Tuples (shuffled, colorPerm);

\textbf{return} result;

\textbf{end};;

Finally, we use gap to obtain the orbits of the previous action.

orbits := OrbitsDomain (coloringGroup, colorings, action);

To construct the second table we store the label of the ambiguous bi-
dimensional faces of each configuration and considered all the possible
combinations of signs for such faces. This leads to a huge table which
is shortened when the tiling table is created in the following way: if for
some combination of signs of the ambigue faces of a given configuration
we are not able to exibit a solution, then this combination of signs is
removed from the table.
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3.4.3 Constructing the third table

To construct the tiling table we splite the hypercube into its 8 three-
dimensional faces and used the Lewiner’s algorithm (see Chapter 3,
Section 1) to obtain a tiling of each one of these faces. We denote the
ith three-dimensional face of the hypercube by F

i

. The respective cor-
respondences between the vertices, edges, and faces of each F

i

and the
vertices, edges, and faces of the three-dimensional cube are detailed in
Tables 3.2, 3.3, and 3.4, respectively. Once the solution of each of the
eigth three-dimentional faces is produced, we concatenate them remov-
ing repeated triangles. It is worthy to mention that in some cases the
tetrahedralization is not complete becuase connections between ver-
tices belonging to di↵erent three-dimensional faces have not yet been
exploited.

Table 3.2: Correspondence between vertices.

0 1 2 3 4 5 6 7
F1 0 1 9 8 2 3 11 10
F2 4 5 13 12 6 7 15 14
F3 4 0 8 12 6 2 10 14
F4 1 5 13 9 3 7 15 11
F5 4 5 13 12 0 1 9 8
F6 2 3 11 10 6 7 15 14
F7 8 9 13 12 10 11 15 14
F8 0 1 5 4 2 3 7 6

Table 3.3: Correspondence between edges.

0 1 2 3 4 5 6 7 8 9 10 11 12
F1 0 17 8 16 2 18 10 19 3 1 9 11 32
F2 4 21 12 20 6 22 14 23 7 5 13 15 33
F3 24 16 28 20 25 19 29 23 7 3 11 15 34
F4 26 21 30 17 27 22 31 18 1 5 13 9 35
F5 4 21 12 20 0 17 8 16 24 26 30 28 36
F6 2 18 10 19 6 22 14 23 25 27 31 29 37
F7 8 30 9 28 10 31 14 29 11 9 13 15 38
F8 0 26 4 24 2 27 6 25 3 1 5 7 39

Instituto de Matemática Pura e Aplicada 66 March 10, 2013



Jyrko Correa-Morris Marching Cubes

Table 3.4: Correspondence between faces.

0 1 2 3 4 5
F1 6 2 5 1 3 4
F2 12 7 11 8 9 10
F3 16 1 15 8 13 14
F4 20 7 19 2 17 18
F5 22 17 21 13 9 3
F6 24 18 23 14 4 10
F7 5 19 11 15 21 23
F8 6 20 12 16 22 24

3.4.4 The hypercube’s cases

In this section we show the tiling for the configuration 0 of each case.

Case 0 Case 1 Case 2 Case 3

Case 4 Case 5 Case 6 Case 7
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Case 8 Case 9 Case 10 Case 11

Case 12 Case 13 Case 14 Case 15

Case 16 Case 17 Case 18 Case 19

Case 20 Case 21 Case 22 Case 23

Case 24 Case 25 Case 26 Case 27
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Case 28 Case 29 Case 30 Case 31

Case 32 Case 33 Case 34 Case 35

Case 36 Case 37 Case 38 Case 39

Case 40 Case 41 Case 42 Case 43

Case 44 Case 45 Case 46 Case 47
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Case 48 Case 49 Case 50 Case 51

Case 52 Case 53 Case 54 Case 55

Case 56 Case 57 Case 58 Case 59

Case 60 Case 61 Case 62 Case 63

Case 64 Case 65 Case 66 Case 67
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Case 68 Case 69 Case 70 Case 71

Case 72 Case 73 Case 74 Case 75

Case 76 Case 77 Case 78 Case 79

Case 80 Case 81 Case 82 Case 83

Case 84 Case 85 Case 86 Case 87
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Case 88 Case 89 Case 90 Case 91

Case 92 Case 93 Case 94 Case 95

Case 96 Case 97 Case 98 Case 99

Case 100 Case 101 Case 102 Case 103

Case 104 Case 105 Case 106 Case 107
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Case 108 Case 109 Case 110 Case 111

Case 112 Case 113 Case 114 Case 115

Case 116 Case 117 Case 118 Case 119

Case 120 Case 121 Case 122 Case 123

Case 124 Case 125 Case 126 Case 127

Instituto de Matemática Pura e Aplicada 73 March 10, 2013



Jyrko Correa-Morris Marching Cubes

Case 128 Case 129 Case 130 Case 131

Case 132 Case 133 Case 134 Case 135

Case 136 Case 137 Case 138 Case 139

Case 140 Case 141 Case 142 Case 143

Case 144 Case 145 Case 146 Case 147
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Case 148 Case 149 Case 150 Case 151

Case 152 Case 153 Case 154 Case 155

Case 156 Case 157 Case 158 Case 159

Case 160 Case 161 Case 162 Case 163

Case 164 Case 165 Case 166 Case 167
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Case 168 Case 169 Case 170 Case 171

Case 172 Case 173 Case 174 Case 175

Case 176 Case 177 Case 178 Case 179

Case 180 Case 181 Case 182 Case 183

Case 184 Case 185 Case 186 Case 187

Instituto de Matemática Pura e Aplicada 76 March 10, 2013



Jyrko Correa-Morris Marching Cubes

Case 188 Case 189 Case 190 Case 191

Case 192 Case 193 Case 194 Case 195

Case 196 Case 197 Case 198 Case 199

Case 200 Case 201 Case 202 Case 203

Case 204 Case 205 Case 206 Case 207
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Case 208 Case 209 Case 210 Case 211

Case 212 Case 213 Case 214 Case 215

Case 216 Case 217 Case 218 Case 219

Case 220 Case 221
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Concluding Remarks and Future Works

This thesis presented two new algorithms for constructing isosurface in
dimensions three and four which have as guiding philosophy the march-
ing cubes methodology with our proposal of analysis through foliations.
To achieve e�cient algorithms, we needed to study the topology of the
isosurfaces associated to n-linear functions, for n = 3, 4. In dimension
three, we were able to present a complete classification of such isosur-
faces, which was extremely useful to determine all possible cases for the
improved algorithm. This contribution solves the problem in dimen-
sion three, at least from the point of view of robustness. Improvements
to the algorithm in order to accelerate the execution time are always
welcome

In four dimensions the situation is somewhat di↵erent. We took the first
steps in this open field using foliations. We show a partial classification
of the isohypersurface and introduce a primary algorithm which we
plan to expand and improve in a short time. The principal drawback
of the algorithm in the current form lies in the way that the tiling table
was constructed. For each configuration of signs of the hypercube, we
obtain the solution of each one of its three-dimensional faces by using
the Lewiner’s version of the marching cubes algorithm. The solution
for the hypercube is given by concatenating these partial solutions,
eliminating at the same time recurrent triangles. In some occasions
this way produces an incomplete tetrahedralization of the solution.

To solve this problem, our major challenge is to obtain a complete
classification of the solution of the equation f(x, y, z, t) = 0, where f is
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a fourth-linear function. We have obtained the basic classification by
attending to the foliation that the solution produces when is intersected
with planes perpendicular to a given axis. By studying how the possible
foliations can be combined together in a same solution, we will have
the complete classification.

With the classification at hand, we would have a representative solution
for each marching hypercube case and thereby we will able to produce
a correct tetrahedralization for it.
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Appendix

Predominance of C4

P15 All the leaves being C4. This possibility arises when for all i � 2, i 6= 4,
b
i

= 0. (There is no restriction on b0 and b1).

P16 All the leaves being C4, except for one which is C1. This case emerges
when b0 and b7 are non-null, there is no restriction on b4 and b1, all
remaining coe�cients are null, and the system b0 + b1x = b4 + b7x = 0
is incompatible.

P17 All the leaves being C4, except for one which is C11. This case emerges
when b1 and b7 are non-null, there is no restriction on b0 and b4, all
remaining coe�cients are null, and the system b0 + b1x = b4 + b7x = 0
is compatible.

Predominance of C5

P18 All the leaves being C5. This case arises when b10 = b11 = b12 = b13 =
b14 = b15 = 0, b8 and b9 are non-null, and the system

⇢
(b3 + b6x) +Xb8 = 0
(b4 + b7x) +Xb9 = 0

is incompatible for any value of x.
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P19 All the leaves being C5, except for one of them which is C7. This
case arises when b10 = b11 = b12 = b13 = b14 = b15 = 0, b8 and
b9 are non-null, and there exists a value x0 such that the system⇢

(b3 + b6x0) +Xb8 = 0
(b4 + b7x0) +Xb9 = 0

is compatible, but its solution does not sat-

isfy the equation (b0 + b1x0) +X(b2 + b5x0).

P20 All the leaves being C5, except for one of them which is C8. This
case arises when b10 = b11 = b12 = b13 = b14 = b15 = 0, b8 and
b9 are non-null, and there exists a value x0 such that the system8
<

:

(b3 + b6x0) +Xb8 = 0
(b4 + b7x0) +Xb9 = 0

(b0 + b1x0) +X(b2 + b5x0) = 0
is compatible.

P21 All the leaves being C5, except for one of them which is C3. This
occurs when b10 = b11 = b13 = b14 = b15 = 0, b8 and b12 are non null, the

system

⇢
(b3 + b6x) +Xb8 = 0

(b4 + b7x) +X(b9 + b12x0) = 0
is incompatible for any value

of x, and the system

⇢
(b3 + b6x0) +Xb8 = 0

(b4 + b7x0) +X(b9 + b12) = 0
is incompatible,

where x0 is the solution of the equation b9 + b12x = 0.

P22 All the leaves being C5, except for one of them which is C9. This
occurs when b10 = b11 = b13 = b14 = b15 = 0, b8 and b12 are non

null, the system

⇢
(b3 + b6x) +Xb8 = 0

(b4 + b7x) +X(b9 + b12) = 0
is incompatible for

each x di↵erent from the solution x0 of the equation b9 + b12x = 0, and

the system

⇢
(b3 + b6x0) +Xb8 = 0

(b4 + b7x0) +X(b9 + b12) = 0
is compatible. It is also

required that the respective solutions of the previous systems do not
satisfy the equations (b0 + b1x0) +X(b2 + b5x0) = 0 and (b0 + b1x0) +
X(b3 + b6x0) = 0, respectively.

P23 All the leaves being C5, except for one of them which is C9. This
occurs when b10 = b11 = b13 = b14 = b15 = 0, b8 and b12 are non

null, the system

⇢
(b3 + b6x) +Xb8 = 0

(b4 + b7x) +X(b9 + b12) = 0
is incompatible for

each x di↵erent from the solution x0 of the equation b9 + b12x = 0,

and the system

8
<

:

(b3 + b6x0) +Xb8 = 0
(b4 + b7x0) +X(b9 + b12) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is compatible. It is

also required that the solution of the first system satisfy the equations
(b0 + b1x0) +X(b2 + b5x0) = 0.
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P24 All the leaves being C5, except for two of them which are C3. This
occurs when b10 = b13 = b14 = b15 = 0, b11 and b12 are non null,

the system

⇢
(b3 + b6x) +X(b8 + b11x) = 0
(b4 + b7x) +X(b9 + b12) = 0

is incompatible for any

value of x, and there exist distinct values x0 and x1 such that: (a)
b8+b11x0 = 0, but b3+b6x0 6= 0; and (b) b9+b12x1 = 0, but b4+b7x1 6= 0.

P25 All the leaves being C5, except for one of them which is C2. This
occurs when b10 = b13 = b14 = b15 = 0, b11 and b12 are non null, the

system

⇢
(b3 + b6x) +X(b8 + b11x) = 0
(b4 + b7x) +X(b9 + b12) = 0

is incompatible for any value

of x, and there exists a value x0 such that b8 + b11x0 = b9 + b12x0 = 0,
but b3 + b6x0 and b4 + b7x0 are non-null.

P26 All the leaves being C5, except for two of them, one of which is C3 and
the other is C9. This occurs when b10 = b13 = b14 = b15 = 0, b7, b11
and b12 are non null, and there are di↵erent values x0 and x1 such that:
(a) b4 + b7x0 = b9 + b12x0 = 0, and the systems

⇢
(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0

and ⇢
(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0

are incompatible; and (b) b8 + b11x1 = 0, but b3 + b6x1 6= 0.

P27 All the leaves being C5, except for two of them, one of which is C3 and
the other is C10. This case arises when b10 = b13 = b14 = b15 = 0, b7,
b11 and b12 are non null, and there are di↵erent values x0 and x1 such
that: (a) b4 + b7x0 = b9 + b12x0 = 0, and the systems

⇢
(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0

and ⇢
(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0

are compatible; and (b) b8 + b11x1 = 0, but b3 + b6x1 6= 0.

P28 All the leaves being C5, except for two of them which are C9. This
occurs when b10 = b13 = b14 = b15 = 0, b6, b7, b11 and b12 are non
null, and there are di↵erent values x0 and x1 such that: (a) b4+ b7x0 =
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b9 + b12x0 = 0, and the systems

⇢
(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0

and

⇢
(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0

are incompatible; and (b) b3+

b6x1 = b8 + b11x1 = 0, and the systems
⇢

(b0 + b1x1) +X(b2 + b5x1) = 0
(b3 + b6x1) +X(b8 + b11x1) = 0

and ⇢
(b0 + b1x1) +X(b4 + b7x1) = 0
(b2 + b5x1) +X(b9 + b12x1) = 0

are incompatible.

P29 All the leaves being C5, except for two of them which are C10. This
possibility appears when b10 = b13 = b14 = b15 = 0, b6, b7, b11 and b12
are non null, and there are di↵erent values x0 and x1 such that: (a)
b4 + b7x0 = b9 + b12x0 = 0, and the systems

⇢
(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0

and ⇢
(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0

are compatible; and (b) b3 + b6x1 = b8 + b11x1 = 0, and the systems

⇢
(b0 + b1x1) +X(b2 + b5x1) = 0
(b3 + b6x1) +X(b8 + b11x1) = 0

and ⇢
(b0 + b1x1) +X(b4 + b7x1) = 0
(b2 + b5x1) +X(b9 + b12x1) = 0

are compatible.

P30 All the leaves being C5, except for two of them, one of which is C9
and the other is C10. This possibility emerges when b10 = b13 = b14 =
b15 = 0, b6, b7, b11 and b12 are non null, and there are di↵erent values
x0 and x1 such that: (a) b4 + b7x0 = b9 + b12x0 = 0, and the systems

⇢
(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0
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and ⇢
(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0

are incompatible; and (b) b3 + b6x1 = b8 + b11x1 = 0, and the systems

⇢
(b0 + b1x1) +X(b2 + b5x1) = 0
(b3 + b6x1) +X(b8 + b11x1) = 0

and ⇢
(b0 + b1x1) +X(b4 + b7x1) = 0
(b2 + b5x1) +X(b9 + b12x1) = 0

are compatible.

P31 All the leaves being C5, except for one of them which is C1. This case
arises when b10 = b13 = b14 = b15 = 0, b6, b7, b11 and b12 are non null,
and there are di↵erent values x0 such that b2 + b5x0 = b3 + b6x0 =
b4 + b7x0 = b8 + b11x0 = b9 + b12x0 = 0, but b0 + b1x0 6= 0.

P32 All the leaves being C5, except for one of them which is C11. This
possibility emerges when b10 = b13 = b14 = b15 = 0, b6, b7, b11 and b12
are non null, and there are di↵erent values x0 such that b0 + b1x0 =
b2 + b5x0 = b3 + b6x0 = b4 + b7x0 = b8 + b11x0 = b9 + b12x0 = 0.

Predominance of C6

P33 All the leaves being C6. This only occurs when b11 = b12 = b13 = b14 =
b15 = 0, and b8, b9 and b10 are non-null.

P34 All the leaves being C6, except for one of them which is C5. This
possibility appears when b12 = b13 = b14 = b15 = 0, b9, b10 and b11 are

non-null, and the system

⇢
(b2 + b5x0) +Xb9 = 0
(b3 + b6x0) +Xb10 = 0

is incompatible,

where x0 is the solution of the equation b8 + b11x = 0.

P35 All the leaves being C6, except for two of them which are C5. This
occurs when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null, and the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

and ⇢
(b2 + b5x1) +X(b8 + b11x1) = 0

(b4 + b7x1) +Xb10 = 0
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are incompatible, where x0 and x1 are the solutions of the equations
b8 + b11x = 0 and b9 + b12x = 0, respectively. It is required that x0 and
x1 be di↵erent.

P36 All the leaves being C6, except for three of them which are C5. This
happens when b14 = b15 = 0, b11, b12 and b13 are non-null, and the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

,

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

and ⇢
(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

are incompatible, where x0, x1 and x2 are the solutions of the equations
b8+b11x = 0, b9+b12x = 0 and b10+b13x = 0, respectively. It is required
that x0, x1 and x2 be pairwise di↵erent.

P37 All the leaves being C6, except for one of them which is C3. This
possibility arises when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null,
and the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0

(b3 + b6x0) +Xb10 = 0

and ⇢
(b2 + b5x0) +X(b8 + b11x0) = 0

(b4 + b7x0) +Xb10 = 0

are incompatible, where x0 is the solution of the system b8 + b11x =
b9 + b12x = 0.

P38 All the leaves being C6, except for one of them which is C2. This
happens when b14 = b15 = 0, b11, b12 and b13 are non-null, and the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

,

⇢
(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

and ⇢
(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
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are incompatible, where x0 is the solution of the system
8
<

:

b8 + b11x = 0
b9 + b12x = 0
b10 + b13x = 0

.

P39 All the leaves being C6, except for two of them, one of which is C3 and
the other is C5. This happens when b14 = b15 = 0, b11, b12 and b13 are
non-null, and the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

,

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

and ⇢
(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0

are incompatible, where x0 and x1 are the solutions of the equation
b8 + b11x = 0 and the system b9 + b12x = b10 + b13x = 0, respectively.
It is required that x0 and x1 be di↵erent.

P40 All the leaves being C6, except for one of them which is C7. This pos-
sibility appears when b12 = b13 = b14 = b15 = 0, b9, b10 and b11 are non-

null, and if b8+b11x0 = 0, then the system

⇢
(b2 + b5x0) +Xb9 = 0
(b3 + b6x0) +Xb10 = 0

is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +
X(b4 + b7x0) = 0.

P41 All the leaves being C6, except for one of them which is C7. This
possibility appears when b12 = b13 = b14 = b15 = 0, b9, b10 and b11 are
non-null, and if b8 + b11x0 = 0, then the system

8
<

:

(b2 + b5x0) +Xb9 = 0
(b3 + b6x0) +Xb10 = 0

(b0 + b1x0) +X(b4 + b7x0) = 0

is compatible.

P42 All the leaves being C6, except for two of them, one of which is C5
and the other is C7. This occurs when b13 = b14 = b15 = 0, b10, b11

and b12 are non-null, the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0

(b3 + b6x0) +Xb10 = 0
is
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compatible, but its solution does not satisfy the equation (b0 + b1x0) +

X(b4 + b7x0) = 0, and the system

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0

(b4 + b7x1) +Xb10 = 0
is incompatible, where x0 and x1 are the solutions of the equations
b8 + b11x = 0 and b9 + b12x = 0, respectively. It is required that x0 and
x1 be di↵erent.

P43 All the leaves being C6, except for two of them, one of which is C5
and the other is C8. This occurs when b13 = b14 = b15 = 0, b10, b11

and b12 are non-null, the system

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

(b0 + b1x0) +X(b4 + b7x0) = 0

is compatible, and the system

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0

(b4 + b7x1) +Xb10 = 0
is

incompatible, where x0 and x1 are the solutions of the equations b8 +
b11x = 0 and b9 + b12x = 0, respectively. It is required that x0 and x1

be di↵erent.

P44 All the leaves being C6, except for two of them, one of which is C7
and the other is C8. This occurs when b13 = b14 = b15 = 0, b10, b11

and b12 are non-null, the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0

(b3 + b6x0) +Xb10 = 0
is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +

X(b4 + b7x0) = 0, and the system

8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +Xb10 = 0

(b0 + b1x1) +X(b3 + b6x1) = 0
is compatible, where x0 and x1 are the solutions of the equations b8 +
b11x = 0 and b9 + b12x = 0, respectively. It is required that x0 and x1

be di↵erent.

P45 All the leaves being C6, except for two of them which are C7. This
happens when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null, the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

and ⇢
(b2 + b5x1) +X(b8 + b11x1) = 0

(b4 + b7x1) +Xb10 = 0

are compatible, but its respective solutions do not satisfy the equations
(b0 + b1x0) + X(b4 + b7x0) = 0 and (b0 + b1x1) + X(b3 + b6x1) = 0,
respectively. Here x0 and x1 are di↵erent values of x such that b8 +
b11x0 = 0 and b9 + b12x1 = 0.
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P46 All the leaves being C6, except for two of them which are C7. This
happens when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null, the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

and ⇢
(b2 + b5x1) +X(b8 + b11x1) = 0

(b4 + b7x1) +Xb10 = 0

are compatible, but its respective solutions do not satisfy the equations
(b0 + b1x0) + X(b4 + b7x0) = 0 and (b0 + b1x1) + X(b3 + b6x1) = 0,
respectively. Here x0 and x1 are di↵erent values of x such that b8 +
b11x0 = 0 and b9 + b12x1 = 0.

P47 All the leaves being C6, except for two of them which are C8. This
possibility emerges when b13 = b14 = b15 = 0, b10, b11 and b12 are
non-null, the systems

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

(b0 + b1x0) +X(b4 + b7x0) = 0

and 8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +Xb10 = 0

(b0 + b1x1) +X(b3 + b6x1) = 0

are compatible. Here x0 and x1 are di↵erent values of x such that
b8 + b11x0 = 0 and b9 + b12x1 = 0.

P48 All the leaves being C6, except for three of them, two of which are C5
and the other is C7. This happens when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

, and
⇢

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

are incompatible, and the system
⇢

(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

is compatible, but its solution does

not satisfy the equation (b0 + b1x2) + X(b2 + b5x2) = 0. Here x0, x1

and x2 are the solutions of the equations b8 + b11x = 0, b9 + b12x = 0
and b10 + b13x = 0, respectively. It is required that x0, x1 and x2 be
pairwise di↵erent.
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P49 All the leaves being C6, except for three of them, two of which are C5
and the other is C8. This happens when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

, and
⇢

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

are incompatible, and the system
8
<

:

(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0
(b0 + b1x2) +X(b2 + b5x2) = 0

is compatible. Here x0, x1 and x2

are the solutions of the equations b8 + b11x = 0, b9 + b12x = 0 and
b10+b13x = 0, respectively. It is required that x0, x1 and x2 be pairwise
di↵erent.

P50 All the leaves being C6, except for three of them, two of which are C7
and the other is C5. This possibility emerges when b14 = b15 = 0, b11,

b12 and b13 are non-null, the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is incompatible, and the systems

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

and

⇢
(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

are compatible, but its respec-

tive solution do not satisfy the equations (b0+ b1x1)+X(b3+ b6x1) = 0
and (b0 + b1x2) + X(b2 + b5x2) = 0, respectively. Here x0, x1 and x2

satisfy b8 + b11x0 = 0, b9 + b12x1 = 0 and b10 + b13x2 = 0. It is required
that x0, x1 and x2 be pairwise di↵erent.

P51 All the leaves being C6, except for three of them, two of which are C8
and the other is C5. This possibility emerges when b14 = b15 = 0, b11,

b12 and b13 are non-null, the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is incompatible, and the systems

8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0
(b0 + b1x1) +X(b3 + b6x1) = 0

and

8
<

:

(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0
(b0 + b1x2) +X(b2 + b5x2) = 0

are compatible. Here x0, x1

and x2 satisfy b8 + b11x0 = 0, b9 + b12x1 = 0 and b10 + b13x2 = 0. It is
required that x0, x1 and x2 be pairwise di↵erent.

P52 All the leaves being C6, except for three of them which are C5, C7, and
C8, respectively. This possibility arises when b14 = b15 = 0, b11, b12 and
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b13 are non-null, the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is in-

compatible, and the systems

8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0
(b0 + b1x1) +X(b3 + b6x1) = 0

and

⇢
(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

are compatible, but the solution of

the latter does not satisfy the equation (b0 + b1x2) +X(b2 + b5x2) = 0.
Here x0, x1 and x2 satisfy b8+b11x0 = 0, b9+b12x1 = 0 and b10+b13x2 =
0. It is required that x0, x1 and x2 be pairwise di↵erent.

P53 All the leaves being C6, except for three of them which are C7. This
possibility arises when b14 = b15 = 0, b11, b12 and b13 are non-null, the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

,

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

and ⇢
(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

are compatible, but its respective solutions fail to satisfy the equations
(b0 + b1x1) + X(b4 + b7x1) = 0, (b0 + b1x1) + X(b3 + b6x1) = 0, and
(b0 + b1x2) +X(b2 + b5x2) = 0, respectively. Here x0, x1 and x2 satisfy
b8 + b11x0 = 0, b9 + b12x1 = 0 and b10 + b13x2 = 0. It is required that
x0, x1 and x2 be pairwise di↵erent.

P54 All the leaves being C6, except for three of them which are C8. This
occurs when b14 = b15 = 0, b11, b12 and b13 are non-null, the systems

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x1) +X(b4 + b7x1) = 0

,

8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0
(b0 + b1x1) +X(b3 + b6x1) = 0

and 8
<

:

(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0
(b0 + b1x2) +X(b2 + b5x2) = 0
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are compatible. Here x0, x1 and x2 satisfy b8+b11x0 = 0, b9+b12x1 = 0
and b10 + b13x2 = 0. It is required that x0, x1 and x2 be pairwise
di↵erent.

P55 All the leaves being C6, except for three of them, two of which are C7
and the other is C8. This possibility appears when b14 = b15 = 0, b11,

b12 and b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

and

⇢
(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

are compatible, but its respec-

tive solutions do not satisfy the equations (b0+b1x1)+X(b4+b7x1) = 0
and (b0 + b1x1) + X(b3 + b6x1) = 0, respectively, and the system8
<

:

(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0
(b0 + b1x2) +X(b2 + b5x2) = 0

is compatible. Here x0, x1 and x2

satisfy b8 + b11x0 = 0, b9 + b12x1 = 0 and b10 + b13x2 = 0. It is required
that x0, x1 and x2 be pairwise di↵erent.

P56 All the leaves being C6, except for three of them, two of which are C8
and the other is C7. This occurs when b14 = b15 = 0, b11, b12 and b13

are non-null, the systems

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x1) +X(b4 + b7x1) = 0

and

8
<

:

(b2 + b5x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0
(b0 + b1x1) +X(b3 + b6x1) = 0

,

and ⇢
(b3 + b6x2) +X(b8 + b11x2) = 0
(b4 + b7x2) +X(b9 + b12x2) = 0

are compatible, but the solution of the latter fails to satisfy the equation
(b0+b1x2)+X(b2+b5x2) = 0. Here x0, x1 and x2 satisfy b8+b11x0 = 0,
b9 + b12x1 = 0 and b10 + b13x2 = 0. It is required that x0, x1 and x2 be
pairwise di↵erent.

P57 All the leaves being C6, except for one of them which is C9. This
occurs when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null, and the
systems ⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0
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and ⇢
(b2 + b5x0) +X(b8 + b11x0) = 0

(b4 + b7x) +Xb10 = 0

are compatible, but its respective solutions fail to satisfy equations (b0+
b1x0)+X(b4+b7x0) = 0 and (b0+b1x0)+X(b3+b6x0) = 0, respectively.
Here x0 is the solutions of the system b8 + b11x = b9 + b12x = 0.

P58 All the leaves being C6, except for one of them which is C10. This
occurs when b13 = b14 = b15 = 0, b10, b11 and b12 are non-null, and the
systems 8

<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +Xb10 = 0

(b0 + b1x0) +X(b4 + b7x0) = 0

and 8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x) +Xb10 = 0

(b0 + b1x0) +X(b3 + b6x0) = 0

are compatible, where x0 is the solutions of the system b8 + b11x =
b9 + b12x = 0.

P59 All the leaves being C6, except for one of them which is C1. This only
occurs when b14 = b15 = 0, b11, b12, and b13 are non-null, and there
exists x0 such that b2 + b5x0 = b3 + b6x0 = b4 + b7x0 = b5 + b9x0 =
b8 + b11x0 = b9 + b12x0 = b10 + b13x0 = 0, but b0 + b1x0 6= 0.

P60 All the leaves being C6, except for one of them which is C11. This
only occurs when b14 = b15 = 0, b11, b12, and b13 are non-null, and there
exists x0 such that b0 + b1x0 = b2 + b5x0 = b3 + b6x0 = b4 + b7x0 =
b5 + b9x0 = b8 + b11x0 = b9 + b12x0 = b10 + b13x0 = 0.

61 All the leaves being C6, except for two of them, one of which is C3
and the other C7. This happens when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

and
⇢

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

are incompatible, and the system
⇢

(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0

is compatible, but its solution does

not satisfy the equation (b0 + b1x1) +X(b2 + b5x1) = 0, where x0 and
x1 are the solutions of the systems b8 + b11x = b9 + b12x = 0 and
b10 + b13x = 0, respectively. It is required that x0 6= x1.
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62 All the leaves being C6, except for two of them, one of which is C3 and the
other is C8. This possibility appears when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

and
⇢

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

are incompatible, and the system
8
<

:

(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0
(b0 + b1x1) +X(b2 + b5x1) = 0

is compatible, where x0 and x1 are

the solutions of the systems b8+b11x = b9+b12x = 0 and b10+b13x = 0,
respectively. It is required that x0 6= x1.

63 All the leaves being C6, except for two of them, one of which is C5 and the
other is C7. This possibility emerges when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

and
⇢

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

are compatible, but its respective

solutions fail to satisfy the equations (b0 + b1x0) + X(b4 + b7x0) =
0 and (b0 + b1x0) + X(b3 + b6x0) = 0, respectively, and the system⇢

(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0

is incompatible, where x0 and x1

are the solutions of the systems b8+b11x = b9+b12x = 0 and b10+b13x =
0, respectively. It is required that x0 6= x1.

64 All the leaves being C6, except for two of them, one of which is C5
and the other is C8. This occurs when b14 = b15 = 0, b11, b12 and

b13 are non-null, the systems

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b4 + b7x0) = 0

and

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

are compatible, and the system

⇢
(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0

is incompatible, where x0 and x1

are the solutions of the systems b8+b11x = b9+b12x = 0 and b10+b13x =
0, respectively. It is required that x0 6= x1.

65 All the leaves being C6, except for two of them, one of which is C8 and
the other is C9. This happens when b14 = b15 = 0, b11, b12 and b13 are
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non-null, the systems
⇢

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

,

⇢
(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

and 8
<

:

(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0
(b0 + b1x1) +X(b2 + b5x1) = 0

are compatible, but the solutions of the two first do not satisfy the
equations (b0+b1x0)+X(b4+b7x0) = 0 and (b0+b1x0)+X(b3+b6x0) = 0,
respectively, where x0 and x1 are the solutions of the systems b8+b11x =
b9+b12x = 0 and b10+b13x = 0, respectively. It is required that x0 6= x1.

66 All the leaves being C6, except for two of them, one of which is C7 and
the other is C10. This occurs when b14 = b15 = 0, b11, b12 and b13 are

non-null, the systems

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b4 + b7x0) = 0

and

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

and ⇢
(b3 + b6x1) +X(b8 + b11x1) = 0
(b4 + b7x1) +X(b9 + b12x1) = 0

are compatible, but the solution of the latter fails to satisfy the equation
(b0+ b1x1)+X(b2+ b5x1) = 0, where x0 and x1 are the solutions of the
systems b8 + b11x = b9 + b12x = 0 and b10 + b13x = 0, respectively. It is
required that x0 6= x1.

Predominance of C7

67 All the leaves being C7. This possibility appears when b8 = b11 = b12 =
b13 = b14 = b15 = 0, b9 and b10 are non-null, and for all value x0 of x the

system

⇢
(b2 + b5x0) +Xb9 = 0
(b3 + b6x0) +Xb10 = 0

is compatible, but its solution does

not satisfy the equation (b0 + b1x0) +X(b4 + b7x0) = 0.
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68 All the leaves being C7, except for one of them which is C3. This pos-
sibility arises when b8 = b11 = b12 = b14 = b15 = 0, b9, b10 and b13
are non-null, for all value x0 of x, except for a value x1, the sys-

tem

⇢
(b2 + b5x0) +Xb9 = 0

(b3 + b6x0) +X(b10 + b13x0) = 0
is compatible, but its solu-

tion does not satisfy the equation (b0 + b1x0) +X(b4 + b7x0) = 0, and
b10 + b13x1 = 0 and b3 + b6x1 6= 0.

69 All the leaves being C7, except for two of them which are C3. This
possibility arises when b8 = b11 = b14 = b15 = 0, b9, b10, b12 and b13 are
non-null, for all value x0 of x, except for two distinct values x1 and x2,

the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is compatible, but its

solution does not satisfy the equation (b0 + b1x0) +X(b4 + b7x0) = 0,
and b9+b12x2 = b10+b13x1 = 0 and b3+b6x1 and b4+b7x2 are non-null.

70 All the leaves being C7, except for one of them which is C2. This pos-
sibility arises when b8 = b11 = b14 = b15 = 0, b9, b10, b12 and b13
are non-null, for all value x0 of x, except for one value x1, the sys-

tem

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is compatible, but its solu-

tion does not satisfy the equation (b0 + b1x0) +X(b4 + b7x0) = 0, and
b9 + b12x1 = b10 + b13x1 = 0 and b3 + b6x1 and b4 + b7x1 are non-null.

71 All the leaves being C7, except for one of them which is C8. This possi-
bility emerges when b8 = b11 = b12 = b13 = b14 = b15 = 0, b9 and b10 are

non-null, and for all value x0 of x the system

⇢
(b2 + b5x0) +Xb9 = 0
(b3 + b6x0) +Xb10 = 0

is compatible, but only for one value, the solution of system satisfies
the equation (b0 + b1x0) +X(b4 + b7x0) = 0.

72 All the leaves being C7, except for one of them which is C9. This happens
when b8 = b11 = b12 = b14 = b15 = 0, b9, b10 and b13 are non-null,

for all value x0 of x the system

⇢
(b2 + b5x0) +Xb9 = 0

(b3 + b6x0) +X(b10 + b13x0) = 0
is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +
X(b4 + b7x0) = 0, and there exists a value x1 such that b3 + b6x1 =

b10 + b13x1 = 0, and the system

⇢
(b0 + b1x1) +X(b2 + b5x1) = 0

(b4 + b7x1) +Xb9 = 0
is

incompatible.

73 All the leaves being C7, except for one of them which is C10. This
occurs when b8 = b11 = b12 = b14 = b15 = 0, b9, b10 and b13 are non-null,
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for all value x0 of x the system

⇢
(b2 + b5x0) +Xb9 = 0

(b3 + b6x0) +X(b10 + b13x0) = 0
is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +
X(b4 + b7x0) = 0, and there exists a value x1 such that b3 + b6x1 =

b10 + b13x1 = 0, and the system

⇢
(b0 + b1x1) +X(b2 + b5x1) = 0

(b4 + b7x1) +Xb9 = 0
is

compatible.

74 All the leaves being C7, except for one of them which is C4. This occurs
when b8 = b11 = b14 = b15 = 0, b9 and b10 are non-null, for all value x0

of x the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is compatible, but

its solution does not satisfy the equation (b0+b1x0)+X(b4+b7x0) = 0,
and there exists a value x1 such that b2+b5x1 = b3+b6x1 = b9+b12x1 =
b10 + b13x1 = 0 and b4 + b7x1 6= 0.

75 All the leaves being C7, except for one of them which is C1. This pos-
sibility arises when b8 = b11 = b14 = b15 = 0, b9 and b10 are non-null,

for all value x0 of x the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +
X(b4 + b7x0) = 0, and there exists a value x1 such that b2 + b5x1 =
b3 + b6x1 = b4 + b7x1 = b9 + b12x1 = b10 + b13x1 = 0 and b0 + b1x1 6= 0.

76 All the leaves being C7, except for one of them which is C11. This
possibility arises when b8 = b11 = b14 = b15 = 0, b9 and b10 are non-null,

for all value x0 of x the system

⇢
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

is

compatible, but its solution does not satisfy the equation (b0 + b1x0) +
X(b4 + b7x0) = 0, and there exists a value x1 such that b0 + b1x1 =
b2 + b5x1 = b3 + b6x1 = b4 + b7x1 = b9 + b12x1 = b10 + b13x1 = 0.

Predominance of C8

77 All the leaves being C8. This possibility appears when b8 = b11 = b12 =
b13 = b14 = b15 = 0, b9 and b10 are non-null, and for all value x0 of x

the system

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b4 + b7x0) = 0

is compatible.

78 All the leaves being C8, except for one of them which is C10. This
possibility emerges when b8 = b11 = b12 = b14 = b15 = 0, b9, b10 and b13
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are non-null, for all value x0 of x the system
8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b4 + b7x0) = 0

is compatible, and there exists a value x1 such that b3 + b6x1 = b10 +

b13x1 = 0 and the system

⇢
(b0 + b1x1) +X(b2 + b5x1) = 0
(b4 + b7x1) +X(b9 + b12x0) = 0

is com-

patible.

79 All the leaves being C8, except for one of them which is C11. This pos-
sibility arises when b8 = b11 = b14 = b15 = 0, b9, b10, b12 and b13 are non-

null, for all value x0 of x the system

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b4 + b7x0) = 0

is compatible, and there exists a value x1 such that b0 + b1x1 = b2 +
b5x1 = b3 + b6x1 = b4 + b7x1 = b9 + b12x1 = b10 + b13x1 = 0.

80 All the leaves being C9. This possibility appears when b2 = b5 = b8 =
b9 = b11 = b12 = b13 = b14 = b15 = 0, b10 6= 0, and for all value x0 of x

the system

⇢
(b4 + b7x0) +X(b10) = 0

(b0 + b1x0) +X(b3 + b6x0) = 0
is incompatible.

Predominance of C9

81 All the leaves being C9, except for one which is C2. This possibility
appears when b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0, b10 6= 0,

and for all value x0 of x the system

⇢
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is incompatible, except for a value x1 such that b10 + b13x1 = 0 and
b3 + b6x1 and b4 + b7x1 are non-null.

82 All the leaves being C9, except for one which is C4. This happens when
b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0, b10 6= 0, and

for all value x0 of x the system

⇢
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is

incompatible, except for a value x1 such that b10 + b13x1 = 0 and only
one of the numbers b3 + b6x1 and b4 + b7x1 is non-null.

83 All the leaves being C9, except for one which is C4. This occurs when
b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0, b10 6= 0, and for all value
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x0 of x the system

⇢
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is incompatible,

except for a value x1 such that b3 + b6x1 = b4 + b7x1 = b10 + b13x1 = 0
and b0 + b1x1 is non-null.

84 All the leaves being C9, except for one which is C11. This occurs when
b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0, b10 6= 0, and for all value

x0 of x the system

⇢
(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is incompatible,

except for a value x1 such that b0 + b1x1 = b3 + b6x1 = b4 + b7x1 =
b10 + b13x1 = 0.

Predominance of C10

85 All the leaves being C10. This happens when b2 = b5 = b8 = b9 = b11 =
b12 = b13 = b14 = b15 = 0, b10 6= 0, and for all value x0 of x the system⇢

(b4 + b7x0) +Xb10 = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is compatible.

86 All the leaves being C10, except for one of them which is C2. This
possibility emerges when b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0,
b10, b13 6= 0, for all value x0 of x, except for a value x1, the system⇢

(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is compatible, and b10 + b13x1 = 0

and b3 + b6x1 and b4 + b7x1 are non-null.

87 All the leaves being C10, except for one of them which is C1. This
possibility arises when b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0,
b10, b13 6= 0, for all value x0 of x, except for a value x1, the system⇢

(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is compatible, and b3+b6x1 = b4+

b7x1 = b10 + b13x1 = 0 and b0 + b1x1 is non-null.

88 All the leaves being C10, except for one of them which is C11. This
possibility arises when b2 = b5 = b8 = b9 = b11 = b12 = b14 = b15 = 0,
b10, b13 6= 0, for all value x0 of x, except for a value x1, the system⇢

(b4 + b7x0) +X(b10 + b13x0) = 0
(b0 + b1x0) +X(b3 + b6x0) = 0

is compatible, and b0+b1x1 = b3+

b6x1 = b4 + b7x1 = b10 + b13x1 = 0.
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Predominance of C11

89 All the leaves being C11. This only occurs when all coe�cients are null.

Predominance of C12

90 All the leaves being C12. This possibility emerges when b15 = 0, b14 6= 0,
and for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +Xb14 = 0
,

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

(b9 + b12x0) +Xb14 = 0
,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

(b8 + b11x0) +Xb14 = 0

are compatible, but its respective solutions do not satisfy the equations
(b0 + b1x0) + X(b2 + b5x0) = 0, (b0 + b1x0) + X(b3 + b6x0) = 0, and
(b0 + b1x0) +X(b4 + b7x0) = 0, respectively.

91 All the leaves being C12, except for one of them which is C1. This
possibility emerges when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

,

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are compatible, but its respective solutions do not satisfy the equations
(b0 + b1x0) + X(b2 + b5x0) = 0, (b0 + b1x0) + X(b3 + b6x0) = 0, and
(b0 + b1x0) +X(b4 + b7x0) = 0, respectively, and there exists a value x1

such that b14 + b15x1 = 0 and b0 + b1x1 6= 0.
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Predominance of C13

92 All the leaves being C13. This possibility arises when b15 = 0, b14 6= 0,

and for all value x0 of x, the system

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +Xb14 = 0
is compatible, but its solution does not satisfy the equation (b0+b1x0)+

X(b2+b5x0) = 0, and the systems

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

(b9 + b12x0) +Xb14 = 0
,

and

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

(b8 + b11x0) +Xb14 = 0
are incompatible.

93 All the leaves being C13, except for one of them which is C1. This
happens when b15 6= 0, for all value x0 of x, the system

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

is compatible, but its solution does not satisfy the equation (b0+b1x0)+

X(b2+b5x0) = 0, and the systems

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,

and

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are incompatible, and there

exists a value x1 such that b2+b5x1 = b3+b6x1 = b4+b7x1 = b8+b11x1 =
b9 + b12x1 = b10 + b13x1 = b14 + b15x1 = 0, but b0 + b1x1 6= 0.

94 All the leaves being C13, except for one of them which is C4. This occurs
when b15 6= 0, for all value x0 of x, the system

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

is compatible, but its solution does not satisfy the equation (b0+b1x0)+

X(b2+b5x0) = 0, and the systems

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,
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and

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are incompatible, and there

exists a value x1 such that b3 + b6x1 = b4 + b7x1 = b8 + b11x1 =
b9 + b12x1 = b10 + b13x1 = b14 + b15x1 = 0, but b0 + b1x1 and b2 + b5x1

are non-null.

95 All the leaves being C13, except for one of them which is C7. This occurs
when b15 6= 0, for all value x0 of x, the system

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

is compatible, but its solution does not satisfy the equation (b0+b1x0)+

X(b2+b5x0) = 0, and the systems

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,

and

8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are incompatible, and there

exists a value x1 such that b10 + b13x1 = b14 + b15x1 = 0, but b8 + b11x1

and b9 + b12x1 are non-null.

96 All the leaves being C13, except for one of them which is C3. This
possibility appears when b15 6= 0, for all value x0 of x, the system8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

is compatible, but its solution does

not satisfy the equation (b0+b1x0)+X(b2+b5x0) = 0, and the systems

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are incompatible, and there exists a value x1 such that b8 + b11x1 =
b9 + b12x1 = b14 + b15x1 = 0, and b10 + b13x1 and b2 + b5x1 are non-null.
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97 All the leaves being C13, except for one of them which is C3. This
possibility appears when b15 6= 0, for all value x0 of x, the system8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

is compatible, but its solution does

not satisfy the equation (b0+b1x0)+X(b2+b5x0) = 0, and the systems
8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

are incompatible, and there exists a value x1 such that b2 + b5x1 =
b8 + b11x1 = b9 + b12x1 = b14 + b15x1 = 0, b10 + b13x1 is non-null, and

the system

⇢
(b0 + b1x1) +X(b3 + b6x1) = 0
(b4 + b7x1) +X(b10 + b13x1) = 0

is incompatible.

Predominance of C14

98 All the leaves being C14. This happens when b15 = 0, b14 6= 0, and for
all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +Xb14 = 0
,

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

(b9 + b12x0) +Xb14 = 0
,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

(b8 + b11x0) +Xb14 = 0

are incompatible

99 All the leaves being C14, except for one of them which is C6. This occurs
when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +X(b14 + x0b15) = 0
,
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8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + x0b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + x0b15) = 0

are incompatible, and there exists a value x1 such that b14 + x1b15 = 0,
but b8 + x1b11, b9 + x1b12, and b10 + x1b13 are non-null.

100 All the leaves being C14, except for one of them which is C5. This
possibility appears when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +X(b14 + x0b15) = 0
,

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + x0b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + x0b15) = 0

are incompatible, and there exists a value x1 such that b8 + x1b11 =
b9 + x1b12 = b14 + x1b15 = 0, b10 + x1b13 is non-null, and the systems
obtained by removing the thirst equation in the two latter systems
above are incompatible.

101 All the leaves being C14, except for one of them which is C2. This
possibility emerges when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +X(b14 + x0b15) = 0
,

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + x0b15) = 0

,

and 8
<

:

(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + x0b15) = 0
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are incompatible, and there exists a value x1 such that b8 + x1b11 =
b9 + x1b12 = b10 + x1b13 = b14 + x1b15 = 0, and the systems obtained by
removing the thirst equation in the systems above are incompatible.

Predominance of C15

102 All the leaves being C15. This possibility appears when b15 = 0, b14 6= 0,

for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +Xb14 = 0

and

8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

(b9 + b12x0) +Xb14 = 0
are incompatible, and the sys-

tem

8
>><

>>:

(b0 + b1x0) +X(b4 + b7x0) = 0
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

(b8 + b11x0) +Xb14 = 0

is compatible.

103 All the leaves being C15, except for one of them which is C8. This
occurs when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0

and 8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

are incompatible, the system

8
>><

>>:

(b0 + b1x0) +X(b4 + b7x0) = 0
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

is

compatible, and there exists a value x1 such that b8 + b11x1 = b14 +
b15x1 = 0, but b9 + b12x1 and b10 + b13x1 are non-null.

104 All the leaves being C15, except for one of them which is C3. This
occurs when b15 6= 0, for all value x0 of x, the systems

8
<

:

(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0
(b10 + b13x0) +X(b14 + b15) = 0
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and 8
<

:

(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15) = 0

are incompatible, the system

8
>><

>>:

(b0 + b1x0) +X(b4 + b7x0) = 0
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15) = 0

is

compatible, and there exists a value x1 such that b9 + b12x1 = b10 +
b13x1 = b14 + b15x1 = 0, but b8 + b11x1 is non-null.

Predominance of C16

105 All the leaves being C16. This possibility appears when b15 = 0, b14 6= 0,
and for all value x0 of x, the systems

8
>><

>>:

(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +Xb14 = 0

and 8
>><

>>:

(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0

(b9 + b12x0) +Xb14 = 0

,

and 8
>><

>>:

(b0 + b1x0) +X(b4 + b7x0) = 0
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0

(b8 + b11x0) +Xb14 = 0

are compatible.

106 All the leaves being C16. This possibility appears when b15 = 0, b14 6= 0,
for all value x0 of x, the systems

8
>><

>>:

(b0 + b1x0) +X(b2 + b5x0) = 0
(b3 + b6x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b9 + b12x0) = 0

(b10 + b13x0) +X(b14 + b15x0) = 0
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and 8
>><

>>:

(b0 + b1x0) +X(b3 + b6x0) = 0
(b2 + b5x0) +X(b8 + b11x0) = 0
(b4 + b7x0) +X(b10 + b13x0) = 0
(b9 + b12x0) +X(b14 + b15x0) = 0

,

and 8
>><

>>:

(b0 + b1x0) +X(b4 + b7x0) = 0
(b2 + b5x0) +X(b9 + b12x0) = 0
(b3 + b6x0) +X(b10 + b13x0) = 0
(b8 + b11x0) +X(b14 + b15x0) = 0

are compatible, and there exists a value x1 such that b14 + b15x1 = 0.
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