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Abstract

Paixão , João Antônio Recio da; Lopes, Hélio Côrtes Vieira; Lewiner,
Thomas. Feature-preserving vector field denoising. Rio de Janeiro,
2010. 43p. Dissertação de Mestrado — Departamento de Matemática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

In recent years, several devices allow to measure real vector fields, leading

to a better understanding of fundamental phenomena such as fluid dynamics or

brain water movements. This gives vector field visualization and analysis new

challenges in many applications in engineering and in medicine. In particular

real data is generally corrupted by noise, puzzling the understanding provided

by visualization tools. This data needs a denoising step as preprocessing,

however usual denoising removes discontinuities and singularities, which are

fundamental for vector field analysis. In this dissertation a novel method for

vector field denoising based on random walks is proposed which preserves

certain discontinuities. It works in a unstructured setting; being fast, simple

to implement, and shows a better performance than the traditional Gaussian

denoising technique. This dissertation also proposes a semi-automatic vector

field denoising methodology, where the user visually controls the filtering scale

by validating topological changes caused by classical vector field filtering.

Keywords
Discrete Vector Field. Denoising. Random Walk. Filtering. Vector

Field Topology.



Resumo

Paixão , João Antônio Recio da; Lopes, Hélio Côrtes Vieira; Lewiner,
Thomas. Remoção de Rúıdo em Campo Vetorial. Rio de Janeiro,
2010. 43p. Dissertação de Mestrado — Departamento de Matemática,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

Nos últimos anos, vários mecanismos permitem medir campos vetoriais

reais, provendo uma compreensão melhor de fenómenos importantes, tais como

dinâmica de fluidos ou movimentos de fluido cerebral. Isso abre um leque de

novos desafios a visualização e análise de campos vetoriais em muitas aplicações

de engenharia e de medicina por exemplo. Em particular, dados reais são ge-

ralmente corrompidos por rúıdo, dificultando a compreensão na hora da visu-

alização. Esta informação necessita de uma etapa de remoção de rúıdo como

pré-processamento, no entanto remoção de rúıdo normalmente remove as des-

continuidades e singularidades, que são fundamentais para a análise do campo

vetorial. Nesta dissertação é proposto um método inovador para remoção de

rúıdo em campo vetorial baseado em caminhadas aleatórias que preservam

certas descontinuidades. O método funciona em um ambiente desestruturado,

sendo rápido, simples de implementar e mostra um desempenho melhor do que

a tradicional técnica Gaussiana de remoção de rúıdo. Esta tese propõe também

uma metodologia semi-automática para remover rúıdo, onde o usuário controla

a escala visual da filtragem, levando em consideração as mudanas topológicas

que ocorrem por causa da filtragem.

Palavras–chave
Campo Vetorial Discreto. Remoção de Rúıdo. Caminhada Aleatória.

Filtragem. Topologia de Campos Vetorial.
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Ninguém educa ninguém, ninguém educa a si
mesmo, os homens se educam entre si, medi-
atizados pelo mundo.

Paulo Freire, educador.



1
Introduction

1.1
Motivation and contributions

Computer simulations of mechanical phenomena heavily rely on vector

field generation, sampling, visualization and analysis. For their validation sev-

eral techniques allow for measuring such vector fields, generating discrete data,

which helps understanding physical behaviors. For example, Particle Image Ve-

locimetry (PIV) is concerned with the quantitative investigation of fluids by

imaging techniques (24) and has been used typically in mechanical engineer-

ing, in particularly modern aerodynamics and hydrodynamics research (29).

The problem is that such real data or even simulation is typically corrup-

ted by noise, which harms further simulation and puzzles the interpretation.

Therefore, the processing of such vector fields typically involves a denoising

step.

Classical denoising approaches rely on local coherences. They further

consider that noise has a vanishing mean, and thus can be cancelled by

averaging a piece of data with its neighbors. This has a smoothing effect which

is widely used to generate scale-spaces of scalar fields such as images. However,

as opposed to scalar physical quantities, for which one expects a globally

smooth behavior in real experiments, vector fields can present rapidly changing

directions. In fact those discontinuities are generally the most interesting part

to analyze: they correspond to interfaces in fluid simulation, structural tissues

when measuring brain water movement, faults and fractures in geophysical

interpretation of soils. The problem is that when applying the classical filters

theses features are generally removed.

We address this problem with our first contribution, in Chapter 3, where

we propose a feature-preserving vector field filter based on random walks (21).

This filter preserves the field’s discontinuities while denoising. Moreover, this

formulation allows for processing unstructured or irregularly sampled fields.

Moreover the filter is intuitive because it has a probabilistic interpretation

from the random walks formulation.
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There is still a persistent issue with such vector field denoising. Such

random walk filters along with other classical convolution filters (37), rely on

the assumption that the information is present in the measured data at a

constant scale compared to the noise. In practice, an optimal filter scale can

be automatically or manually chosen from a scale-space such as a hierarchical

representation of the original data obtained by successive applications of such

convolution filters (15, 4). However, for real vector fields with rapidly varying

noise levels, using a single scale may keep either both noise and information

or neither, leading to a delicate tradeoff.

As our second contribution, this problem is addressed in Chapter 4 where

we propose a topology aware vector field denoising methodology (18) that lets

the user control the topological changes caused by classical vector field filtering

by the use of a suitable interface. The main part of this user interaction provides

local tradeoffs between information and noise. The reconstructed field is then

a smooth combination of different denoising scales.

Instead of preserving the discontinuities, as in our first contribution,

we focus on controlling the topology of the vector field while denoising. In

a variety of applications, in particular fluid dynamics, the field’s singularities

are the main features to be considered (13) and the interpretation is eased by

detecting and identifying its singularities, like sinks, sources and saddles. Such

topological features give a global information of the field which guides the user

to adapt locally the scale filter.

1.2
Related work

In this section we briefly present some of the research literature related

to our two contributions, the random walk and the topology-aware denoising

techniques. We review denoising in general and the specific use of scale-spaces

on vector fields. Then we describe the use of random walks and topology aware

techniques in the literature.

Denoising. Among vector field filtering techniques on structured grids, sev-

eral are specifically dedicated to colored image processing (23). In particular,

color image filters focus on the reduction of impulse noise (34, 27, 17). In

geometry processing several works have been proposed for noise reduction on

surface normals (33, 19, 30, 31). Recently, Westenberg and Erlt (37) proposed

a 2D vector field denoising algorithm that suppress additive noise by threshold-

ing vector wavelet coefficients. Their method is restricted to work only on a

structured grid of points. They compare their method to Gaussian filters, as
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we will do throughout this dissertation. Close to our method, a class of fil-

ters has been introduced as generalized random walks for images (32) and

meshes (30, 31).

Scale-spaces on vector fields. Scale-space techniques have become popular

in computer vision for their capability to represent the multi-scale information

inherently contained in real data. In particular, Bauer and Peikert (1) use scale-

spaces to track vortices in 2D-time dependent computational on fluid dynamics

simulations. Klein and Ertl (13) proposes a strategy to track singularities over

multiples scales in order to evaluate the importance of the critical points to

the analysis and interpretation of the vector field. The methodology developed

in Chapter 4 employs such scale-space representations to let the user choose

locally which scale to utilize for reconstruction.

Random walks. Random walk has many applications nowadays not only in

visual computing but also in genetics, physics, medicine, chemistry, computer

science, just to cite a few. The first work using random walks in computer

vision is in the application of texture discrimination (36), and recently has been

applied to image segmentation (8). In the field of image processing, random

walk has been used to image enhancement (28) and filtering (32). The use

of random walks in geometry processing was recently proposed by Sun et al

(30, 31) for mesh denoising and also for mesh segmentation (14). Chapter 3

is inspired in their work where instead we deal with unstructured 2D vector

fields.

Topology-aware techniques. Turbulent vector fields usually have structures

in different scales which complicates their analysis. A possible solution to this

problem is to analyze the topology of the vector field in order to automatically

simplifying while keeping the most persistent features (35). Another strategy,

proposed in this work, relies on the user knowledge of the vector field,

letting him decide interactively which topological singularities to keep or to

smooth. Such approach has already been proposed in the problem of surface

reconstruction (12, 25).

1.3
Organization

This dissertation is organized as follows. Chapter 2 briefly introduces vec-

tor field topology and its application to discrete vector fields. In Chapter 3 the

notion of random walks is introduced along with its interpretation. We then
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describe how to use these concepts to build the meshless feature-preserving

filter. At the end of the chapter we present the results and implementation

details. In Chapter 4 we describe the methodology for topology-aware denois-

ing, detailing the techniques used in it and how they fit together. Again at

the end, results are presented and analyzed. Finally, Chapter 5 concludes the

dissertation by pointing out some limitations with both denoising techniques

and suggesting improvements to be made.



2
Vector fields concepts

This chapter is a brief overview of vector field topology and how it carries

over to the 2D discrete setting. The notation is defined for both an unstructured

and a structured (grid) discrete vector field. For the structured vector field, we

present two different ways to detect and classify singularities.

2.1
Continuous vector fields

A vector field v on a planar domain D ⊂ R2 is a function assigning to

each point (x, y) ∈ D a 2D vector v(x, y) = (vx(x, y), vy(x, y)). Assuming that

vx and vy are differentiable bivariate functions, then the Jacobian matrix of v

at point (x0, y0) is:

Jv(x0, y0) =

[
∂vx

∂x
(x0, y0) ∂vx

∂y
(x0, y0)

∂vy

∂x
(x0, y0) ∂vy

∂y
(x0, y0)

]
.

A point (x0, y0) ∈ D is singular for v if v(x0, y0) = (0, 0). According to the

Hartman-Grobman theorem (9), a singular point can be partly classified by

looking at the eigenvalues of the Jacobian matrix at that point:

– If the real parts of both eigenvalues are strictly negative, then the singular

point is a sink.

– If the real parts of both eigenvalues are strictly positive, then the singular

point is a source.

– If the real parts of both eigenvalues are non-zero real number with

different signs (one positive and one negative), then the singular point is

a saddle.

– If the real part of one of the eigenvalues is zero, the singularity is of

higher order.
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2.2
Discrete vector fields

In this dissertation we deal with sampled data of a vector field v. Such

data can be either unstructured, dealt with in Chapter 3, or structured (grid),

the focus in Chapter 4.

2.2.1
Unstructured vector fields

Given a set of L unstructured points P = {p1,p2, . . . ,pL}, where each

point pi ∈ Ω ⊂ R2 and the associated vector vi(pi) ∈ R2, denote the set

of vectors {v1,v2, . . . ,vL} by V (see Figure 2.1). A vector field is a map

F : Ω ⊂ R2 → R2 that associates to each point p ∈ Ω a vector F(p). Since the

vector field does not have any structure, the first preprocessing step, before we

can process it, is to define a graph G.

pj
lij

piR
vj

vi

Figure 2.1: The support region and the induced graph

The nodes of G. There is a bijective mapping F from the nodes of graphG to

the set of input points P , which associates each node ni on G the corresponding

point pi on P , i.e., F (ni) = pi and F−1(pi) = ni.

The links of G. The connectivity between the nodes of G depends on a model

parameter R, which represents the radii of balls centered at each point of P ,

the nodes that correspond to points that are inside the ball centered at pi are

adjacent to ni (see Figure 2.1). From now on, the graph defined for a given

radius R will be denoted by GR. More precisely, to define the links of GR, the

following rule is adopted:

“Node ni is adjacent to node nj through a link lij if and only if

||pi − pj|| < R.”
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The first neighborhood of a node ni, denoted by N(ni), is the set of all adjacent

nodes of ni on GR.

Interpolation. When needed, we can interpolate the values in-between the

sample points using SPH like interpolation (7) such as:∑
‖pi−p‖≤R

WR(‖pi − p‖) · vi

2.2.2
Vector fields on a grid

Now we will suppose that we have the values of vector field v at the

points (xi, yj) of a regular grid of size M×N . We will denote vi,j = (vxi,j, v
y
i,j) =

v(xi, yj), for i = 1, . . . ,M and j = 1, . . . , N .

Interpolation. In the grid we can also interpolate the values in-between the

sample points. The simplest such interpolation is the bilinear interpolation,

which can be written considering a grid cells as a unit square:

bi,j : [0, 1]2 → R2 ,

bi,j(x, y) = vi,j · (1− x)(1− y) + vi+1,j · x(1− y)

+ vi,j+1 · (1− x)y + vi+1,j+1 · xy.

(2-1)

When the vector field is given on a grid we can easily detect and classify

its singularities, as we will see in the next section.

2.3
Detection and classification of singularities

Two classical approaches for the detection of critical points on a regular

2D grid are described and explicitly showed. The first one searches where the

interpolation of the vector field vanishes. The second one computes the winding

numbers.

2.3.1
Singularities of the interpolation

In the bilinear interpolation case, the detection boils down to solving

the system of quadratic equations bi,j(x, y) = (0, 0), where bi,j is defined in

Equation (2-1). This can be explicitly solved by computing the roots of a
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polynomial in y:

( −vx01 v
y
00 + vx01 v

y
10 + vx11 v

y
00 − vx11 v

y
10+

+vx00 v
y
01 − vx00 v

y
11 − vx10 v

y
01 + vx10 v

y
11 ) · y2

+ ( 2 vx01 v
y
00 − 2 vx00 v

y
01 − vx11 v

y
00−

−vx01 v
y
10 + vx10 v

y
01 + vx00 v

y
11 ) · y

+ vx00 v
y
01 − vx01 v

y
00

To obtain the value of the x coordinate of the singular point we use the

following expression:

x =
(vy00 − v

y
01) · y − vy00

(vy00 − v
y
10 − v

y
01 + vy11) · y − vy00 + vy10

.

Sometimes this system degenerates to a lower degree polynomial. It can then

have zero, one or two solutions. Each of them must be tested to lie in the

quadrilateral. This method is the simplest way to detect first-order vector field

singularities.

2.3.2
Winding numbers

The winding number counts the number of turns the vector fields achieves

along a given closed curve Γ. It can be computed from the angular component

of the vector field θ(v(p)) at point p ∈ Γ by:

wΓ(v(p)) =
1

2π

∮
Γ

dθ(v(p))

The winding number is zero if the region inside Γ does not contain critical

points. If Γ contains a single saddle, then wΓ(v) = −1. If it contains a single

sink or source, it will be +1.

The winding number is computed for each cell of the discrete grid using

for Γ the square that bounds the cell. With the linear interpolation on the

edges, we get the contribution of edge (x0, y0)→ (x1, y0) to the above integral

explicitly:

w00→10 = arctan

(
vx00

2 − vx00 v
x
10 − v

y
00 v

y
10 + vy00

2

vy10 v
x
00 − v

y
00 v

x
10

)

− arctan

(
vx00 v

x
10 − vx10

2 + vy00 v
y
10 − v

y
10

2

vy10 v
x
00 − v

y
00 v

x
10

)

Summing over the four edges gives the desired winding number.
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2.3.3
Singularity classification

To classify the singularities, as we mention in Section 2.1, one must look

at the Jacobian matrix. Here we provide the explicit Jacobian matrix of the

bilinear interpolation b00:vx11 y − vx00 ȳ + vx10 ȳ − vx01 y ; vx11 x− vx00 x̄− vx10 x+ vx01 x̄

vy11 y − v
y
00 ȳ + vy10 ȳ − v

y
01 y ; vy11 x− v

y
00 x̄− v

y
10 x+ vy01 x̄

 ,

where x̄ = 1 − x and ȳ = 1 − y. The eigenvalues are directly computed using

the trace and determinant of the matrix.

These tools are used in Chapter 4 to display to the user the topological

changes such as the creation, destruction, or change of type of a singularity at

a fixed grid point.



3
Denoising by random walks

In this chapter the feature preserving filter for vector fields based on

random walks, our first contribution, is presented (21). In Section 3.1 the

concepts of random walks in graphs are discussed in the context of Markov

processes. Then in Section 3.2 these concepts are applied to build the filter.

In Section 3.3 implementation details are discussed together with a brief

suggestion on how the parameters can be chosen and the results are discussed

at the end. This chapter follows the notation presented by Sun et al. (30).

3.1
Random walk

Random walk (RW) was one of the first chance-processes studied in the

theory of probability and has gained a lot of attention in several areas in visual

computing. The name random walk is used because one may think of it as being

a model for an individual walking on a straight line who at each point of time

either takes one step to the right with probability p or one step to the left with

probability 1− p, for example.

Given a graph and a starting node, one selects one of its neighbor at

random and moves to this neighbor then selects a neighbor of this node at

random and moves to it and so on. This sequence of nodes selected randomly

this way is a random walk on the graph. In Section 3.2 we see that the denoising

method to be proposed applies random walks on a graph whose nodes are the

base points of the vector field, and whose links represents the neighborhood

relation between them. To do such random walk, a probability has to be

assigned to each edge on the graph and this represents the chance to move

from a vertex to its adjacent neighbor through an edge. In fact a Random

walk on graph is a very special case of a Markov process (16).

A Markov process is a sequence of possibly dependent random variables

(X1, X2, X3, . . .) identified by increasing values of their index, commonly time.

Its main property is that any prediction of the next value of the sequence (Xn),

knowing the preceding states (X1, X2, X3, . . . , Xn−1), may be based only on the

last state Xn−1. That is, the future value of such a variable is independent of
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its past history: P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1) =

P (Xn+1 = xn+1|Xn = xn).

When a Markov process is a sequence of discrete-valued variables it is

called a Markov chain (20). The possible values of Xn are called the state

space I, which is a countable set and can be either finite or infinite. In this

dissertation, the state space I is finite and has L possible values. In the

denoising method proposed here, L will represent the number of points in

the input set.

A transition probability from state i to state j at the step n, where

i, j ∈ I, is equal to P (Xn+1 = j|Xn = i) and is denoted by pi,j(n). A Markov

chain is stationary when the transition probability does not depend on n, that

means: P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i).

The transition probability matrix Π(n) ∈ RL×L is the matrix whose the

entry at the ith row and jth column is pi,j(n). Observe that each of its rows

sums one. The probability that the Markov chain reaches the state i at the

nth time step is equal to P (Xn = i) and is denoted by pi(n). The probability

distribution of the Markov chain over all states at time n is represented by the

vector P (n) = [p1(n), . . . , pL(n)]. Note that
∑L

i=1 pi(n) = 1.

Given an initial probability distribution, denoted by P (0), the distribu-

tion of the Markov chain in the first step is P (1) = P (0)Π(1), and in the

second step is P (2) = P (1)Π(2) = P (0)Π(1)Π(2). So, after n steps, the dis-

tribution of the Markov chain is P (n) = P (0)Πn where Πn = Π(1) · · ·Π(n)

is the n-step transition probability matrix. The entry at the ith row and jth

column of Πn is the probability of moving from state i to the state j after n

steps, and is denoted by pni,j. Observe that if the Markov chain is stationary,

Π(1) = Π(2) = · · · = Π(n), so Πn = (Π(1))n.

3.2
Feature-preserving filtering

3.2.1
Problem description

Following the notation for unstructured vector fields from Chapter 2 we

supposed that the vectors vi ∈ V are sampled from an unknown map F and

corrupted by an additive random noise. The problem is to develop a method

that suppress the noise from the samples and maintains the relevant features

of the vector field.
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3.2.2
Random walk filter

The basic principle used in previous work (28, 30, 31), translated to a

graph setting, is that the probability for moving from one node to its neighbor

on the graph depends on how similar they are. Suppose that a single virtual

particle i is located at every node ni ∈ GR, and that each particle i knows not

only the position pi but also the vector vi. At each step of the random walk the

particle moves from nj to one of its neighbors or stays at its current position.

After the application of n steps of these random walks, the L particles are

redistributed on the graph according to the transition matrix Πn. Such matrix

induces a weighted average filter to be applied to each vector vi ∈ V . The

random walk filter computes, for each node ni of the graph GR, a new vector

vi, denoted by v′i, and is computed according to:

v′i =
∑
j∈I

pni,jvj, (3-1)

where I = {1, 2, . . . , L} and pni,j is the probability of moving from state i to

the state j after n steps, which is the entry at the ith row and jth column of

Πn. The main question now is how to define the similarity functions for the

transition matrices.

3.2.3
Similarity functions for vector fields

The idea to define the transition matrix Π(n) is based on the fact that

the larger the ”difference” between two vectors is, the less similar they are.

Sun et al. (30) suggest a set of similarity functions whose independent variable

is the norm d of the difference between the normals of adjacent faces, like for

example s(d) = 1
C
e−αd

2
, where α ∈ (0,∞) is a scale parameter and C is a

normalization constant. When α is small, only faces with very close normals

are considered similar. Thus, using such kind of similarity function, one has

the property that the larger the difference between the normal vectors is, the

smaller is the probability one should use to move a particle between the nodes.

This function s is adopted in all examples of this dissertation.

A specific measure of similarity to cope with vector fields, inspired by

Eibl and Brundle (6), is suggested here. For their vector field segmentation,

they proposed three different measures for two given pairs of point/vector

fi = (pi,vi), fj = (pj,vj):

– Squared Euclidean distance → d2
1 = ||pi − pj||2+ ||vi − vj||2



Feature-preserving vector field denoising 21

– Mahanalobis distance → d2
2 = (fi − fj)Σ

−1(fi − fj)
T , where Σ is the

covariance matrix of the coordinates of fk’s.

– Weighted additive distances → Given weights wp, wθ, wr and wβ, d2
3 =

wp‖pi−pj‖2 +wθ(∠(vi,vj))
2 +wr(‖vi‖−‖vj‖)2 +wβ(∠(pj−pi),

1
2
(vj +

vi))
2, where ∠(·, ·) is the angle between two vectors. Those weights

balance the effects of each distances: the Euclidean distance from the

base points, the vectors angle and norm difference and the difference of

the points segment with the vector average direction.

After several experiments, we decided to adopt the weighted additive

distances. The transition probability to move the particle from the node ni to

the node nj at the nth step is given by:

pi,j(n) =


1
C
e−αd

2
i,j if nj ∈ N(ni),

0 otherwise,

(3-2)

where d2
i,j is the weighted additive distance between (pi,vi) and (pj,vj) and

the value of the normalization constant is

C =
∑

nj∈N(ni)

e−αd
2

.

3.3
Implementation and results

3.3.1
Implementation

There are two ways to implement Equation (3-1). One is what Sun et

al. (30) called the batch scheme, and the alternative one is what they called

the progressive scheme. In the batch scheme the entries pni,j are computed

by growing the neighborhood of the nodes, and computing for each step all

transition probabilities, and use them at the end to compute the weighted

average. In the progressive scheme, the algorithm runs step by step. It traverses

only the first neighbors of the spot vertex and computes the probabilities for

its neighbors. In the dissertation we use the progressive scheme, since it shows

to be faster than the batch one in the majority of the experiments and the

denoising requires only a few iterations. Moreover, the steps forms a scale-

space, a notion we will intensively use in the next chapter.
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Figure 3.1: A simple discontinuous vector field (left) with gaussian noise added
(center left). The gaussian filter (center right) blurs the interface, while the
random walk (right) preserves it.

3.3.2
Parameters of the method

Besides the radius R used to construct the connections between the nodes

of the graph, and the number n of steps for the random walk, there are more

four parameters, the ones for the weighted additive distances: wp, wθ, wr and

wβ.

A suggestion for the weight wp is 1/(2R2), in order to give more weights

to the points closer to each other in the ball of radius R. Notice that the term

wp||pi − pj||22 naturally incorporates the distance between the base points,

which is a nice advantage when the set of input points are unstructured.

To fix parameter wθ independently of the experiment, we optimize it for an

average configuration: when the angles (∠(vi,vj)) are uniformly distributed
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in the interval [0, π]. Then one can set as default wθ to be the variance of this

distribution, i.e. wθ = π/12. Finally, if σ2 is the variance of the lengths of the

vector, then a suggestion for the value of wr is 100/(2σ2), since in this case it is

considering the gaussian distribution with variance equal to the total variance

over ten. Since the application is on denoising, as default the weight wβ is set

to zero, because it usually destroys the interface of discontinuity of the vector

field if it exists.

3.3.3
Results

We tested our denoising method on three kind of models: a simple

noisy discontinuity test, where we expect the random walk to outperform

the gaussian filter, measured vector field of physical systems and simulation

models. For all examples of this section, we choose the parameters according to

the suggestions presented in the previous section. We compare our method to a

gaussian filter, which corresponds to a particular case by setting wp = (2R2)−1,

and wθ = wr = wβ = 0. For all examples, we set n = 2 for both filtering

methods.

Synthetic data This simple discontinuity test is constructed using a syn-

thetic vector field:

v(x, y) =

{
(2, 1) if 10y < (x+ 1)2,

(1,−1) otherwise.

The samples are created by evaluating this map on 900 base points that are

randomly generated using a stratified distribution in the grid [−3, 3]× [−3, 3]

(5). To each component of the sampled vectors we add an independent and

identically distributed random gaussian noise with mean 0 and standard

deviation equals to 0.05. Figure 3.1 shows that the gaussian filter blurs the

interface, while the random walk nicely preserves it.

Simulation data We also checked our method on a simulation of shear bands

in granular flows (3). The vectors on this example are placed on a 50×50 grid.

The top picture of Figure 3.2 shows the equilibrium state of the mobility of

grains in a dense granular system under shear, which almost half of the rows are

moving one way, half moving the other way, with the shear band being formed

at the very center. At this center area, the velocity is randomly distributed

and its module is almost zero, resulting in a shear band. In this figure, for

visualization purpose, the size of the vectors are the same, the colors are used
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to represent their norm. In this example, the samples are originally with an

unknown noise. The middle and the right pictures shows the filtered vector

field by the gaussian and by the random walks method. The gaussian filter

almost removes the shear band, while the random walk stresses it.

We finally checked our method on simulation models of a two-dimensional

landslide and its impact into a water body (10), such data is available from

SPHERIC (11). First our method is tested on an landslide measured by PIV

methods (Figure 3.3) and then it is again tested on a SPH simulation data

(Figure 3.4). We can see on both cases that the random walk matches the

global behavior, sketched on Figure 3.4.

Measured data We perform a second test of our approach on a real data

acquired from a PIV device. The top picture of Figure 3.5 shows the original

data on Ω = [−1, 1] × [−1, 1] with 15607 points. This sampled velocity field

corresponds to a flow of water that is continuously injected vertically on

the bottom right corner. The resulted vector fields after applying a gaussian

and a random walk filter are illustrated, respectively, by the middle and the

bottom pictures on Figure 3.5. On one hand, we see that the gaussian is more

successful than the Random walk in removing the noise, however it destroys

the singularities on the right near the wall. On the other hand, the random

walk preserves the features but is unable to fully remove the noise on the left.

There’s a delicate tradeoff between noise and information in this data set which

will be addressed in next chapter.
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Figure 3.2: A shear band simulation of a granular flow (top): the gaussian filter
(middle) removes the shear band, while the random walk (bottom) stresses it.
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Figure 3.3: Landslide in 5 steps (each block): PIV measure (top left), simulated
SPH vector field (top right). The bottom left and right pictures show the
random walks and the gaussian filtered vector fields, respectively. The gaussian
method oversimplifies the model.
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Figure 3.4: Sketched model of the landslide of Figure 3.3 (top left) that
corresponds to the vector field on the top right rendered with a third of the
samples. The bottom left and right pictures show the random walks and the
gaussian filtered vector fields, respectively.
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Figure 3.5: A PIV model of a fluid flow (left), filtered by a gaussian filter
(middle) and by our random walk (right): while the gaussian removes the
noise, it destroys the singularities on the right near the wall, the random walk
preserves them but is unable to fully remove the noise on the left



4
Topology aware denoising

In this chapter our topology aware denoising technique will be detailed.

This is a joint work with R. Nascimento (18). Instead of concerning ourselves

with preserving the discontinuities of the vector fields as in the previous

chapter, here we look at preserving singularities. There are four components

in the methodology: generating the scale-space, detecting singularities in

the scale-space, giving this information to the user, and finally reconstruct

the desired vector field. A simple example to illustrate each component is

presented in Section 4.1. Then the scale-space generation and reconstruction

are presented in Section 4.2 and 4.3 respectively. At the end, in Section 4.4,

the results are shown.

4.1
Methodology overview

The basic idea of our methodology is to let the user locally select the

noise scale to remove, defining a scale parameter s(x, y) at each point. We

start by generating a scale-space from the original vector field and let the user

choose a central scale s0. In order to avoid the arduous task of defining the scale

parameter s(x, y) sample by sample, we display to the user the singularities

that appear or disappear at different scales nearby s0. When the user selects

a topological change at a singular point (x0, y0), we define s(x0, y0) to be the

closest scale to s0 that reverts the change. Finally, we return the reconstructed

vector field as a smooth mixture of different scales of the scale-space.

Before entering in detail for each step, let’s illustrate our technique on

the example of Figure 4.1. This field contains some relatively clean parts at the

bottom, and noisy parts at the top. The singular points at the bottom should

be retained, almost all the singularities at the top should be cleaned, except

for a sink that many streamlines point to.
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Figure 4.1: An artificial vector field represented by its streamlines (left) with
its singularities marked (right).

Scale-space. In this example, we use a simple gaussian filter to generate a

scale-space (see Figure 4.2). Our method can build on any denoising scale-

space, as exemplified in Section 4.2 using isotropic or anisotropic filters.

Singularity detection. All the vector fields of the scale-space are available

to the user at any time. We display the singularities of the field in each

scale. There are different methods to detect singularities and our technique is

independent of a specific choice of detection. As it can been seen in Figure 4.2,

even though the field is still noisy at scale s0 = 10, the meaningful singularity

shown in the bottom left of Figure 4.1 was lost in the denoising process. The

top part of the field is still noisy, needing more filtering.

Figure 4.2: The vector fields at scale s0 = 10 of its gaussian scale-space (left)
with its singularities marked (right).
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Figure 4.3: Our interface shows to the user the topological changes in nearby
scales, here from 5 to 15 (left). The user then selects which topological changes
he wants to revert (in purple on the right image).

Interface. In order to allow the user to denoise more of the top part while

denoise less of the bottom to keep the meaningful singularity, we display to

the user the topological changes at s0 = 10 (see Figure 4.3). The user then

selects which topological changes he wants to revert by a simple click.

Reconstruction. Each user selection defines a scale at the chosen point as the

closest scale to s0 = 10 that reverts the topological change. This gives a sparse

sampling of the per-point scale parameter, which is smoothly interpolated

to the whole domain. Our scheme supports different interpolations, and we

provide two examples in Section 4.3. From this interpolation we can reconstruct

an adaptively denoised vector field (see Figure 4.4).

Figure 4.4: We finally interpolate the scales indicated by the user into a smooth
function (left) which defines the reconstructed vector field (right).
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4.2
Progressive filters and scale-space generation

The scale-space representation of the vector field is a collection of

progressively denoised versions of the vector fields such as the one generated

by the progressive method of Section 3.3. Each version is associated to an

increasing scale parameter s. We denote v̄(s, x, y) the vector value of the field

at scale s and point (x, y). The fundamental example of a scale-space on

continuous vector fields is the gaussian scale-space, obtained by convolving

with a gaussian kernel of increasing variance: Gσ(x, y) = exp(− x2+y2

2σ2 ):

v̄(s, x, y) = v(x, y) ∗Gs(x, y) (13).

In the discrete setting, this convolving approach fits into the more general

framework of random walks from Chapter 3, which ensures nice scale-space

properties from local convolution masks. The scale parameter is then the

number of convolutions applied or the number of steps in the random walk.

We exemplify our editing interface using two types of similarity functions to

generate the space-scale: the gaussian Gσ and the feature preserving similarity

function from the previous chapter:

Aσ,τ (x, y,v) = exp

(
− x2 + y2

2σ2

)
exp

(
− ||v||

2

2τ 2

)
,

which takes into account the direction of the vector field and better preserves

discontinuities. The scale-space is then directly generated by the repeated

application of a 3× 3 mask with the above kernels.

4.3
Reconstruction

The singularities selected by the user provides a sampling of the scale

function s(x, y) on the domain. To reconstruct the whole vector field, we

interpolate this sampling. Then denoting v̄i,j(s) the vector field sample at

scale s, we define the reconstructed vector field ṽ at grid point (xi, yj) by:

ṽi,j = v̄i,j(s(xi, yj)) .

Virtually any interpolation scheme works, although with different result-

ing qualities. If the interpolation is not smooth enough, the rapid changes in

the scale parameter may create artifacts in the reconstructed field. Moreover,

the interpolation must maintain the scale in a neighborhood of the singularity

to preserve it. We implemented two methods for the interpolation of s that

gave satisfactory results: radial basis functions (RBF), with gaussian basis,
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and kernel Shepard interpolation (2) with gaussian kernel.

The RBF interpolation of s(x, y) from the scales of the used selected

singularities sk at (xk, yk) is obtained by a least-squares minimization on the

coefficients αk of

min
{αk}

∑
k

‖srbf (xk, yk)− sk‖2 , where (4-1)

srbf (x, y) =
∑
k

αkGσ (x− xk, y − yk) . (4-2)

The kernel Shepard method modifies the original Shepard interpola-

tion (26) by using kernels instead of the Euclidean distance:

sks(x, y) =
1∑

k

Gσ(x−xk, y−yk)
·
∑
k

Gσ(x−xk, y−yk) · sk .

A important property of this method is that the image is limited to

[mink sk,maxk sk].

4.4
Results

In this section we present our experimental results on synthetic, simulated

and measured vector fields. Since we work with relatively small 2D vector fields

stored in regular lattices compared to the computing power of actual hardware,

the interface responds in real-time to user interactions, except for the initial

scale-space generation (see Table 4.1). In all the experiments presented here,

the singularities detected by the winding number method and the bilinear one

were the same, although they may differ in very particular cases.

Table 4.1: Timings, in milliseconds, for each step of the edition.

Data Fig Size Filter Singularity Scale Reconstruction
type (ms) type (ms) select type solve eval

Analytic 7 2500 Gσ 18.9 wΓ 98.0 7.3 KS 0.1
Granular 8 2500 Aσ,τ 587.5 wΓ 110.8 8.3 RBF 0.8 0.9
PIV 1 1 15624 Gσ 135.0 b=0 947.6 65.6 RBF 0.1 7.6
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Figure 4.5: Experiments on an analytic vector field (top left) artificially
corrupted by non-gaussian noise (top right). The user can choose between
singularities that disappeared before scale s0 (in blue) or singularities that
could be smoothed out at scale s > s0 (in red) (middle left). From the
user selection (middle right), we reconstruct the vector field maintaining the
selected scale in a small (bottom left) or larger radius (bottom right).
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Synthetic data. We first validate our approach on a synthetic vector field,

corrupted by an artificial, non-gaussian noise (see Figure 4.5). We can denoise

adaptively the vector field, recovering the original singularities. We use gaus-

sian scale-space with a kernel Shepard interpolation. Observe that, varying the

σ of the kernel used in the reconstruction, we can carry larger portion of the

fields at the selected scale.

Figure 4.6: On a vector field from a simulated shear band granular system (left)
40 steps of denoising recovers the granular bands but loses one of the main
vortices (middle). Selecting that vortex in our interface allow for a denoised
reconstruction with the main singularities (right).

Simulation data. We then experimented on a vector field of 2500 samples

issued by a granular simulation (3). The shearing of the granular system

generates five main vortices between the shear bands, which are clearly visible

in Figure 4.6 besides the noise. We use an anisotropic filter to generate the

scale-space, requiring around s = 40 steps to denoise the granular bands at

the top and bottom. However, this smoothens out one of the main vortices.

Selecting it in our interface allows to reconstruct a clean vector field with the

main singularities, using here the RBF interpolation.

Figure 4.7: Topology-aware denoising of a measured fluid velocity field: (left)
original field, (middle) gaussian denoising, (right) gaussian denoising pre-
serving topological singularities selected through our interface.
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Measured data. We finally experimented our method on real measured

vector field of 15624 samples, acquired through PIV imaging. The experiments

of Figure 4.7 and Figure 4.8 are measured from a wall-jet setup, where water

is injected from the left of the image and kicks on the wall on the right. The

images correspond to the top half of the jet. The water injection is stronger

in the experiment of Figure 4.7 as compared to the one of Figure 4.8. In both

cases, the top left part of the image is very noisy since there is less water,

while the right part is turbulent. This leads to several important singularities

on the right part of the field to disappear before the singularities caused by

the noise. In the reconstructed vector field, those singularities are recovered.

We used a gaussian scale-space for this experiment. While denoising this PIV

data set with the Random Walk filter in Chapter 3, we saw how tricky it was

since the information on the right side was considered noise and remove before

the true noise on the left. Here, with our proposed methodology, we were able

to get around the problem by selecting the right scales and reconstructing the

desired field.
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Figure 4.8: Denoising a vector field (top left) measured by a PIV device on
a wall-jet experiment: the scale-space at steps 30 and 100 (middle images)
smoothens out the important singularities, at the right part of the image, while
keeping some singularities related to the noise at the left part of the image.
Selecting singularities at the right of the image better recovers the behavior of
the fluid (bottom right).



5
Conclusion

Random walk filter. This dissertation first proposes a vector field denoising

technique based on random walks, whose main characteristic is the preservation

of coherent discontinuities while removing noise under the vanishing-mean per

continuous region model. Initially, the vectors are updated through weighted

averaging of the neighboring vectors, with the weights being determined by

probabilities of random walk steps between each face and its neighbors. Theses

probabilities in turn depend on the differences in a feature such as vector

magnitude and direction or a combination of the two. To do so, a suitable

similarity function with weighted additive distance for the point/vector pair

was proposed.

We then show several applications of the method to PIV images, SPH

and granular flows simulation data. These experiments presented a visual

comparison between our approach and gaussian filtering. In the majority of

the results, the random walk filter method outperforms the gaussian filtering

by preserving the field’s main features. In the PIV data set, the random walk

filter was unable to deal with the fact that the information present was not at

a constant scale compared to the noise. To address this problem we developed

the topology-aware denoising methodology in Chapter 4.

Topology-aware denoising. To circumvent the problem mentioned above, we

proposed a methodology to denoise vector fields taking advantage of the user

knowledge of the data. With the singularity detection detailed in Chapter 2,

our interface displays topological changes throughout the scale space generated

by successive filters to give the user global information of the field. As a

consequence, the user can easily adapt the local filtering scale in order to

preserve important information while aggressively removing noise. The result

is generated by is to smoothly interpolating the field. The method supports

different techniques for singularity detection, scale function interpolation, and

scale-space generation.
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Discussion and future work

Random walk filter. While our algorithm is effective for feature-preserving

vector field denoising, it is still has certain problems that other filters also

possess. The tuning of parameters is a weak point of the random walk filter,

where it can have from 2 to 4 parameters to adjust when filtering. Even though

suggestions were made in this dissertation for each parameter, this is clearly

data-dependent. One example is that we have to interactively determine the

number iterations. Using a small number of iterations fails to fully remove the

noise the vector field, while too many causes too much smoothing. Future work

is needed to find an automatic method of determining the optimal number of

iterations.

Also when trying to preserve a certain feature such as a discontinuity

another problem arises; the random walk filter might destroy or displace

another feature such as a singularity. We address a part of this problem with

the topology-aware methodology by giving the user direct control.

Topology-aware denoising. The methodology proposed has a few shortcom-

ings with the topology detections. First of all the current detection of singu-

larities is only done locally and the reconstruction is done on a local base.

Therefore, it does not handle non-local singularities such as a closed orbit.

Also the methodology does not include the tracking of the singularities and

only displays topological changes, which would have improve the robustness of

the method and the visualization for the user.

Unlike the random walk filter, the methodology only works on a struc-

tured grid, while many recent vector field datasets are unstructured to bet-

ter take into account errors in the measure-point localization. In the future

we plan on implementing the techniques for singularity detection and classi-

fication to unstructured vector fields with a interpolation such as the SPH

interpolation (22).

Finally, as mentioned above, large-scale denoising may displace the

location of the singularity and it is very problematic since in this case our

interface displays two very close topological changes, which are not relevant.

In the future, a study of the behavior of critical points in vector field, at first,

under gaussian filtering would be imperative. This will allow us to design filters

to minimize the dislocation of the singularities.
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