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Abstract. In this work, we introduce a new algorithm for direct and progressive encoding of isosurfaces extracted
from volumetric data. A binary multi–triangulation is used to represent and adapt the 3D scalar grid. This simplicial
scheme provides geometrical and topological control on the decoded isosurface. The resulting algorithm is an
efficient and flexible isosurface compression scheme.
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Figure 1: Decompression of the Horse model as a 2573 regular sampled data. The first images corresponds to the binary multi–triangulation
refinement, followed by the geometric refinements.

1 Introduction
With technological advances, 3D images become more

accurate, and thus result in larger meshes to handle. The most
common objects produced by 3D data acquisition and sim-
ulation are isosurfaces [2]. For example, medical scan tech-
niques such as Computerized Axial Tomography and Mag-
netic Resonance Imaging measure physical quantities sam-
pled on a semi–regular 3D grid. In addition, Scientific sim-
ulations often resolve Partial Differential Equations through
level set methods [15] which also result in sampled functions
over a 3D grid.

Techniques to manipulate isosurfaces encompass struc-
tured extraction such as Marching Cubes [10, 6], simplicial
extraction [19], smoothing [16], visualization [12] and oth-
ers. However, we will focus here on compression (cf Fig-
ure 1).
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Problem statement. In most of isosurface applications, the
visual result is only a surface extracted from a 3D grid,
which corresponds to the interpolation of the sampled func-
tion around a specific isovalue. For example, the cortex cor-
responds to only a specific x–ray scintillation inside the scan
of the whole head. In that case, when looking only at this
cortex, most of the 3D grid is unused, as the reconstructed
cortex is contained only in a limited part of the head. This
observation motivated us to look for specific techniques to
compress an isosurface by encoding only the portion of the
3D grid necessary to reconstruct it.

The polygonized isosurface could be compressed directly
using a standard mesh compression method [18, 13, 5]. How-
ever, remeshing techniques that enhance the efficiency of the
compression algorithm [7] are difficult to apply for com-
plex isosurface. Moreover, they do not take advantage of the
specificity of the isosurfaces, and thus achieve lower com-
pression ratio (typically 8–16 bits per vertex), whereas spe-
cific techniques such as [17, 8] can achieve less than one bit
per vertex.

http://www.mpi-sb.mpg.de/conferences/vmv04/
http://www.mpi-sb.mpg.de/conferences/vmv04/
http://www.iospress.nl/html/boek1098712965.html


T. Lewiner, H. Lopes, L. Velho and V. Mello 2

Contributions. In this paper we introduce a new method
for compressing of isosurfaces based on a hierarchical sim-
plicial decomposition of volume data. Our method improves
upon the state–of–the–art in many aspects:
We improve the rate/distortion ratio by encoding the iso-
surface preserving its local adjacencies, creating more
correlations for the final arithmetic coder and improving the
prediction.
We provide a very flexible scheme allowing non–regular
sampled data and giving easy control on the topology and/or
the geometric features of the decoded isosurface.
The progressive version of our algorithm allows
smooth progression of the encoding and alternated
geometry/connectivity–improved resolution levels.
Our algorithm allows usage of already compressed isosur-
faces to encode close–by ones on the same 3D grid.
Our algorithm produces rate/distortion curves very close to
octree–based compression when used in a similar way, but
offers other ways of encoding the isosurface.
However, our technique requires more memory than octree–
based methods at execution time.

2 Related work
Isosurface compression state–of–the–art includes differ-

ent techniques based mainly on octrees for the encoding of
the isosurface localization and connectivity. The isosurface
geometry is generally encoded as a displacement, and then
quantized. All of them are restricted to regular sampled data
and differs mainly in the compression strategy for the octree.
All of those which encode the geometry do it as the last step
of the compression.
[14] encodes the voxels containing the isosurface by their
position index inside the octree. Then the geometry of the
isosurface vertices is encoded as a vertex displacement along
one of 6 predefined axis.
[21] encodes only the information used by the Marching
Cubes method for polygonizing the isosurface, i.e., the in-
dices of each edge of the grid crossing the isosurface, and
the vertex displacement along those edges. The isosurface
connectivity is encoded by the cube class in the original 256–
lookup table of the Marching Cubes algorithm.
[17] encodes directly the 3D image through an arithmetic en-
coder using context in all 3 dimensions of the image. The ge-
ometry is coded as a displacement with predictor. This tech-
nique improves its efficiency when encoding of the isosur-
face corresponding to a second isovalue, as what remains to
encode is mainly the geometry. This feature can be very use-
ful in medical applications, where the contrast of measure
planes varies inside the grid.
[3] encodes the voxels containing the isosurface as a global
octree and encodes the sign of each grid point that appears
in the octree. This allows a progressive transmission, which
ends when the vowel size guarantees a small enough geo-
metric distortion. There is no specific geometry encoding.

[8] encodes the connectivity in a similar way, improving the
compression with an arithmetic encoder acting on the whole
grid (instead of plane separated encoding for [3]). When the
octree progression ends, the geometry can be further refined
by quantizing the isosurface vertices displacement. To main-
tain a small amount of vertices to encode, they use the Dual
Contouring method [6].

3 Overview

Paper outline. We chose a simplicial representation of the
3D data: the Binary Multi–Triangulation (BMT) [11] (cf sec-
tion 4 Adaptive Simplicial Decompositions). This structure can
represent regularly sampled data with the same amount of
grid points as the classical octree representation, but it can
also adapt to non–regular data. It also provides simple con-
trols on the isosurface topology and geometry that can be
used for adaptive encoding of the surface. To enhance the
rate/distortion curves and separate our results from the initial
3D data, our encoding strategy accompanies the isosurface,
maintaining the neighbourhood relation during the compres-
sion (cf section 5 Method and design). This enhances the per-
formance of the arithmetic coder used for the final compres-
sion.

Definitions. The 3D scalar data is given as a tetrahedral
mesh, where each vertex or sample point is associated with a
sample of the scalar function called its isovalue. In particular,
when the sample points are regularly spaced on a 3D grid,
this mesh can be automatically generated by the subdivision
of a cube.

Assuming that we want to obtain the isosurface corre-
sponding to the isovalue α, we say that a vertex of the 3D
data is qualified of positive if its isovalue is greater than α,
and of negative otherwise. An edge of the tetrahedral mesh
is crossing when it has one of its vertices if positive, and the
other one is negative. A triangle or a tetrahedron is crossing
when it contains a crossing edge. The tubular neighbourhood
of the isosurface is the set of all the crossing tetrahedrons.

The isosurface is polygonized by computing a triangle or
quadrangle for each crossing tetrahedron, according to the
look–up table of [19].

4 Adaptive Simplicial Decompositions

The multiresolution structure used in our method is a Reg-
ular Binary Multi–Triangulation (RBMT) [11]. This struc-
ture is constructed using Stellar operators on edges and has
very good adaptation properties. Using this structure we are
able to compute adaptive simplicial decompositions of iso-
surface embeddings defined by a scalar field. The result-
ing decomposition is a hierarchy of conforming tetrahe-
dral meshes. In this section we will give a brief descrip-
tion of the Stellar operators on edges and the binary multi–
triangulations.
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(a) Stellar Operators

Stellar theory studies the equivalencies between simpli-
cial complexes and defines topological operators that change
a manifold structure while maintaining the integrity of its
combinatorial description [9].

The stellar subdivision operation inserts a vertex into an
r–simplex of an n–dimensional simplicial complex. This
type of operation is also called split. Its inverse is called weld.

One important result from Stellar theory states that stel-
lar operators on edges are sufficient to map any two equiv-
alent combinatorial manifolds [1]. Edge–split and Edge–
weld will be the basic operators to construct Binary Multi–
Triangulations.

(b) Binary Multi–Triangulation

The Binary Multi–Triangulation (BMT) is a multiresolu-
tion structure based on stellar subdivision on edges. When-
ever a stellar subdivision happens on an edge e, all simplices
containing e are split in two. Accordingly, a sequence of
stellar subdivision induces a binary tree structure in the sim-
plices; and binary trees often leads to simpler algorithms.

In order to define a BMT, we need some preliminary def-
initions. We follow closely the definitions of [4]. A partially
ordered set (poset) (C,<) is a set C with an antisymmet-
ric and transitive relation < defined on its elements. Given
c, c′ ∈ C, notation c ≺ c′ means c < c′ and there in no
c′′ ∈ C such that c < c′′ < c′. An element c ∈ C, such
that for all c′ ∈ C, c ≤ c′, is called a minimal element in
C. If there is a unique minimal element c ∈ C, then c is
called the minimum of C. Analogously are defined maximal
and maximum elements.

Definition 1 A binary multi–triangulation is a poset (T , <),
where T is a finite set of combinatorial k–manifolds (named
triangulations) and the order < satisfies:

1. For all T, T ′ ∈ T : T ≺ T ′ if, and only if, T ′ is
obtained from T by splitting one edge of T , called a
refinement edge of T .

2. There is minimum and maximum k–manifolds in T ,
called base triangulation and full triangulation, re-
spectively.

Every two triangulations in T are stellar equivalent. In fact,
a BMT is a lattice and thus can be thought of as a directed
acyclic graph (DAG), with one source (T 0) and one drain
(TN ) whose arrows corresponds to stellar subdivisions of
refinement edges. From an algorithmic perspective the key
idea is to use the above mentioned binary tree structure in
the simplices to encode the DAG.

(c) Adaptation Properties and Regularity

The adaptability of the BMT comes from the possibility
to refine and coarsify the simplicial complex locally and, at
the same time, maintain the dependencies inside the partial
order relation.

Non–local transitions. The stellar operators split and weld
implement just “local” transitions in the DAG, that is, if
T and T ′ are the triangulations before and after split be
performed, respectively, then T ≺ T ′. In our application, we
want to impose regularity to the multiresolution structure,
i.e. to ensure that adjacent triangles differ at most by one
resolution level. To do so, it is necessary to make non–local
transitions in the DAG, i.e. to propagate the local stellar
operations to neighbouring elements. This corresponds to
groups of transition in the DAG.

For example, Figure 2 illustrates a sequence of refine-
ments are used to adapt the triangulation to the blue line. In
order to preserve gradual transition between resolution lev-
els, local refinements around the blue line propagates inside
the mesh (in this example, far away from the blue line), as
what happens to the bottom left part when we move from T 3

to T 8.

Regular BMT. With this condition, the resulting structure
is called a regular binary multi–triangulation (RBMT). The
RBMT uses non–local transitions in such a way to enforce
that adjacent simplices with higher dimension differ at most
by one resolution level. This type of structure is also called
a restricted hierarchy [20]. The non–local transitions are im-
plemented by restricted refinement and simplification proce-
dures that use the split and weld operators, respectively.

Geometry control. Adaptive decomposition is achieved by
performing restricted refinement and simplification based on
some adaptation criteria. In the case of isosurface representa-
tion the adaptation criteria aims at refining around a tubular
neighbourhood of the isocurve. For example on Figure 2, the
RBMT is created by non–local split of each edge crossing
the blue line. The decision to split a crossing refinement edge
can depend on the local geometry of the curve, for example
on the curvature as on Figure 3.

(a) curvature (b) distortion

Figure 3: A RBMT adapted according to (a) the curvature and (b)
the distortion.
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T. Lewiner, H. Lopes, L. Velho and V. Mello 4

(a) T 1 (b) T 3 (c) T 8 (d) T 12 (e) T 19

Figure 2: RBMT adapted to the blue line: refinements in the upper–right part of the square propagates to the lower–left part.

Topology control. Similarly, the topology of the isosurface
can be easily controlled during simplification of a vertex w
(welds): if the refined edge e is crossed at most once (be-
low or above the welded vertex w), the topology of the iso-
surface will not change during the weld. This is a sufficient
condition. To obtain a necessary one, we compute, when the
surface crosses e twice, the Euler characteristic χ of the iso-
surface in the star of w. The simplification is allowed only if
χ = 1.

5 Method and design
The techniques we are now to introduce allow both pro-

gressive and direct encoding. Moreover, the encoding of this
neighbourhood can be done uniformly (i.e., the tetrahedrons
forming the tubular neighbourhood of the isosurface have
constant size) or adaptively (i.e. the size of the tetrahedrons
varies according to the surface).

This section is organized as follows. We will introduce
our method for encoding the tubular neighbourhood of the
isosurface first uniformly and then adaptively. These meth-
ods can be used to encode the base level for the progression,
or to encode the entire isosurface at single rate. Then, we
will detail our techniques to encode the refinements, used
for the progressive compression. Again, this process can be
done uniformly or adaptively. Finally, we will explain the
geometry encoding, and how to reuse the compressed data
of one isosurface to encode other near–by ones on the same
scalar data.

(a) Base level

Our main idea is to encode the tubular neighbourhood go-
ing along with the isosurface, from one crossing tetrahedron
to an adjacent one in the tubular neighbourhood. The algo-
rithm encodes first the localization of an unvisited crossing
tetrahedron t0, and the signs of its vertices. From this initial
tetrahedron, it traverses the isosurface in a depth–first–search
(DFS) way, encoding the sign of each unvisited vertex en-
countered. When the traversal is done, it continues on the
next connected component. Such traversal defines naturally
an ordering on the sample points of the tubular neighbour-
hood. Notice that only the points of the tubular neighbour-
hood are encoded, leaving our algorithm almost independent
of the initial 3D data size.

Figure 4 illustrates the idea by the use of an isocurve.
We have the RBMT of the 2D grid, spatially adapted to the
isocurve. Once the initial triangle is detected, we encode in a
certain sequence only the scalar value of the vertices on the
tubular neighbourhood of the curve.

Localization. The location of a tetrahedron can be encoded
using the hierarchy of the RBMT, which acts as Binary Space
Partition. The top of the hierarchy, i.e., the minimum triangu-
lation, contains only a few tetrahedrons: 6 for a regular grid.
Then knowing the level l of the tetrahedron to encode, it can
be localized using a sequence of Left and Right symbols.
The signs of its vertices are then encoded and all of them are
marked as visited; the initial tetrahedron t0 is also marked as
visited.

t0 t1

e0

v1

v
−1

v0

v
−2

v2 v3

v5

v7

v4

v6

Figure 4: Base level compression: the traversal goes from t0 to t1
through gate f0, and encode the sample point v1.

Uniform encoding. Once the signs of the vertices of the
initial tetrahedron t0 have been encoded, its crossing faces
are known to the decoder. One of them is chosen to be the
first gate f0. Such choice is done by the use of the canonical
face ordering of t0 induced by the RBMT [11] (cf Figure 4).
Then, the tetrahedron t1 (6= t0) incident to the gate f0 is also
crossing. The sign of its vertex v1 opposite to f0 is encoded,
and both t1 and v1 are marked as visited. The algorithm then
continues the same way starting as t1.

Actually, a gate is valid only when t1 has not been visited,
and the sign of the vertex v1 is encoded only when it has
not been marked. When more than one gate is valid, then
the algorithm pushes t0 onto a stack. When there are no
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valid gates starting at t0, the stack is popped. The traversal
stops when there is no valid gate and the stack is empty. The
algorithm will then look for other connected components.

This guarantees to encode exactly one sign bit per sample
point, with an overhead of a few bits per connected compo-
nents, used for the localization procedure.

Adaptive encoding. The above algorithm can be easily
modified to encode the isosurface described with crossing
tetrahedrons of different levels. In that case, the algorithm
also encodes the level of the current tetrahedron (t1) during
the traversal. The decoder will read the required level for t1
and refine or simplify it if necessary. The RBMT actually al-
lows only a difference of one level between adjacent tetrahe-
drons (cf section 4 Adaptive Simplicial Decompositions). There-
fore, the decoder will have to refine or simplify an unvisited
tetrahedron at most once, and the encoder will manage only
3 symbols: = when the levels match, > or < when the lev-
els differ. The encoding of the signs is done similarly to the
uniform one.

This guarantees to encode exactly one bit per sample
point of the tubular neighbourhood, plus one symbol of
{=, <, >} per tetrahedron of the tubular neighbourhood,
with an overhead of a few bits per connected components,
used for the localization procedure.

(b) Progressive refinement

The refinement methods allow to progressively adapt the
tubular neighbourhood to the isosurface, using each time
smaller tetrahedrons. The algorithm can simply encode the
signs of the new vertices created by the refinements for all
tetrahedrons on the tubular neighbourhood, or it can first
specify which tetrahedrons to refine and then send the sign
of their corresponding new vertices.

v

v0

v1e

Figure 5: A subdivision can extend the tubular neighbourhood of
the isocontour. The sign of v is the one of v1 and v2.

Uniform refinement. The uniform refinement simply re-
fine first all the tetrahedrons of the tubular neighbourhood,
and then en/decode the signs of the vertices created by the
subdivision inside the former tubular neighbourhood. The or-
der of such vertices are induced by the DFS traversal used on
the base level en/decoding.

When subdividing a tetrahedron crossing the isosurface,
the configuration of its sub–tetrahedrons is determined by
the sign of the new vertex introduced on the subdivision
edge. This sign is encoded during the compression. But this
subdivision can locally extend the tubular neighbourhood (cf
Figure 5). This case occurs when a non–crossing subdivision
edge gives rise to two crossing sub–edges. In that case, the
vertices opposite to this edge will be included in the tubular
neighbourhood, but their signs need not to be encoded as
they can be deduced by the decoder from the border of the
tubular neighbourhood they belong to.

Adaptive refinement. Our method allows an adaptive re-
finement progression, creating smaller tetrahedrons where
the isosurface is more complex, and leaving bigger tetrahe-
drons where it is simple. For each refinement edge in the
tubular neighbourhood, we encode the Refine and Keep
code. When a Keep symbol is encoded, the refinement edge
will not be considered in future refinements, keeping it as a
leaf on the hierarchy.

The refinement edges of the tubular neighbourhood are
collected in the order of the base mesh encoding. As a sub-
division propagates through the RBMT in order to main-
tain its smooth transitions, a subdivision of one refinement
edge e of the tubular neighbourhood implies subdivisions of
other refinement edges, in particular when e has a high level
of subdivision. Therefore, for adaptive refinement, we sort
the collected refinement edges according to their level in the
RBMT, in order to encode fewer subdivision codes.

(c) Final geometry encoding

Once the complete tubular neighbourhood is encoded, the
position of each vertex v of the isosurface as polygonized
by [19] is a priori the middle point of a crossing edge of e
of the RBMT. This can be improved by sending the scalar
value at the endpoints of e. This is cheaper than sending the
coordinate of the vertex v along the edge e, as there are more
crossing edges than useful RBMT grid points (the situation is
different in [8] as there are fewer crossing cubes than vertices
in the octree). Moreover, this scalar value can be used to
encode other isosurface generated with a different isovalue.

(d) Close–by isosurface encoding

Once an isosurface S corresponding to an isovalue αS has
been decoded, the decoder knows its whole tubular neigh-
bourhood. It can be useful to encode also isosurfaces S′ cor-
responding to isovalues αS′ close to αS , especially for med-
ical applications where the contrast of the 3D data is not well
defined. S′ can be easily encoded with the refinement tech-
niques by sending first the isovalue αS′ and considering all
tetrahedrons crossing S as leaves.

6 Results
[8] use the dual marching method [6] to reduce the

amount of geometry to encode (only one vertex per cross-
ing cube), which force the geometry to be sent at the end.
However, our method can be used to compress meshes with a
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Figure 6: Decompression of the eight model as a 2573 regular sampled data. The first images corresponds to the binary multi–triangulation
refinement, followed by the geometric refinements.

controlled distortion at single rate. The initial mesh is simpli-
fied by successive weld operations when those welds do not
increase the Hausdorff distance with the initial mesh more
than a given threshold. Then the resulting mesh can be en-
coded adaptively at single rate.
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Figure 7: Rate/distortion curves: (left) on various models, (right)
of single rate encoding of the happy buddha model, with different
distortion thresholds and geometry quantizations

Figure 7(left) shows our rate/distortion curves for other
models with the same strategy, and Figures 1 and 6 illustrate
it.

Figure 7right shows the rate/distortion ratios for differ-
ent distortion threshold and different geometry quantization.
The threshold is well respected and the rate/distortion distri-
butions converges to an optimum.

Finally, we can use this distortion control for multireso-
lution encoding, by alternating refinement and geometry en-
coding pass. This is illustrated on Figure 8, where the base
mesh is encoded as in the previous single rate application,
and the refinements are sent adaptatively. At each level, we
encode the full geometry of the new vertices of the tubular
neighbourhood (8 bits).

7 Next steps
We introduced a complete isosurface compression

scheme base on simplicial and hierarchical space parti-
tion. This structure allowed us to achieve both direct and
progressive compression, and to encode the isosurface uni-
formly or adaptively. Moreover, it provides a full control
on the progression, permitting any sequence of connectivity
or geometry refinements, and granting topological and ge-
ometrical control on the decoded mesh. Finally, it achieves
rate/distortion ratios close to octree–based compression
when the progression is done first with the connectivity and
then with the geometry, and opens on other progression
schemes.

We used binary multi–triangulations for the scalar data
representation, implemented using dimension–independent
generic programming. This offers a very simple extension of
our algorithm to compress level sets in any dimension with a
similar efficiency. We also intend to enhance the probability
models for the arithmetic encoding, and to combine the
decoding with progressive rendering techniques.
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(a) base mesh : threshold 3.0, 2258 bytes

(b) base mesh with geometry: 5439 bytes

(c) first refinement: threshold 0.2, 7353 bytes

(d) geometry of the first refinement: 1135 bytes

Figure 8: Progressive encoding according to the distortion, with
alternate refinement/geometry levels.
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