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Abstract. In this work, we introduce a new scheme to extract hierarchical isocontours from regular and irregular
2D sampled data and to encode it at single rate or progressively. A dynamic tessellation is used to represent and
adapt the 2D data to the isocontour. This adaptation induces a controlled multi–resolution representation of the
isocontour. This representation can then be encoded while controlling the geometry and topology of the decoded
isocontour. The resulting algorithms form an efficient and flexible isocontour extraction and compression scheme.
Keywords: Level sets. Data Compression. Simplicial Methods. Progressive Transmission. Geometry Processing.
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Figure 1: Topology controlled extraction of a Computerized Tomography image of the cortex, and progressive compression.

1 Introduction
Curves are one of the basic building blocks of geometry

processing. They are used to represent shape in 2D images,
terrain elevation on maps, and equations in mathematical
visualization. In most of those applications, the curves can be
interpreted as an isocontour of a 2D dataset, possibly mapped
on a more complex space. Those isocontours are flexible
objects that can be refined or reduced, that can deform with
differential simulations or mathematical morphology, and
that can be described for shape classification or automatic
diagnostic in medicine or geosciences.

Problem statement. Given the sampling f̂ of scalar func-
tion f defined over a domain D embedded in R2 (such as a
2D image or a discrete surface), the isocontour of an isovalue
α is the curve f−1(α). Such an isocontour corresponds to
only a small part of D, but usually covers a large area of the
domain. For example, the cortex corresponds to only spe-
cific x–ray scintillation inside the scan of the whole head
(see Figure 1), the elevation curve is only a small part in-
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side a topographic map (see Figure 20). Therefore, specific
compression techniques for isocontours should provide bet-
ter compression rate than the encoding of the entire 2D data.

Contributions. In this paper we introduce a new method
for extracting and compressing isocontours based on a dy-
namic tessellation of the 2D data. This structure shows very
nice adaptation properties, allowing extraction of the isocon-
tour with different level of details. The main idea is to en-
code the tubular neighbourhood of the isocontour extracted
from different levels of detail of the tessellation. Moreover,
the adaptation the tessellation can depend on the isocontour,
providing to our compression scheme a full control on the
geometry and topology of the decoded isocontour. The re-
sulting algorithms are flexible, can handle irregular 2D data,
single–rate and progressive transmission together with uni-
form and adapted refinements.

2 Related work
In this work, we will use dynamic adaptive triangulations

to represent and encode two–dimensional isocontours. This
section describes some relevant works related to dynamic
adaptive tessellations, and hierarchical isocontour extraction
and isocontour compression.
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Adaptive Tessellations. Hierarchical data structures are
traditionally used for progressive compression and visualiza-
tion of images. The usual representation for images relies on
a rectangular grid that is subdivided uniformly or adaptively
with a quad–tree. However, these structures are restricted to
rectangular data sets. The size of those rectangles reduces
twice as fast as the sizes of triangles in triangular tessella-
tions, resulting in less adaptability. We will therefore focus
on triangulations. [19] introduced multi–triangulations as a
general concept for adapted variable resolution simplicial
structures. [17] developed a binary multi–resolution struc-
ture based on stellar operators, which is a multi–triangulation
with optimal properties. [18] proposed SGS, a Slow Growing
Subdivision scheme for tetrahedral meshes that employs the
refinement mechanism of a binary multi–triangulation. [23]
proposed a very simple scheme for dynamically adapting tri-
angulations while maintaining regularity conditions.

Hierarchical Isocontour Extraction. A hierarchical repre-
sentation of an isocontour can be obtained by reduction of
the polygonal curve of a single isocontour: [6] introduced
the first algorithm for reduction of the polygonal approxima-
tion of a curve in the plane. Since then, this algorithm has
been extended and improved in many aspects (see [24] for
guarantees on the consistency of the reduced curve).

Nevertheless, this hierarchy can be obtained by extract-
ing isocontours at each level of detail of a multi–resolution
representation of the 2D data [20, 15]. The approximation
of complex implicit curves usually requires robust computa-
tion, whose result can be seen as an isocontour. Hierarchi-
cal structures such as quad–trees usually provide simple and
efficient solutions [14]. Similarly, the hierarchical represen-
tation of the image data can be adapted to the specified iso-
contour. For example [11] provides a hierarchy of rectangles
to represent the isocontour, using genetic algorithm to op-
timize the dimensions of the rectangles. Those hierarchical
representations are numerous when dedicated to a specific
application, in particular for shape analysis [16, 3] and com-
pression [5].

Isocontour compression. Isocontour compression is usu-
ally done as a compression of a non–self–intersecting curve,
for example as two separate signals for each coordinate, or as
a vector displacement [4, 21]. It can also be compressed by
the popular chain code when the curve points are limited to
pixel quantization [8]. In that case, it can be compressed as a
2D signal [10, 2]. [9] introduced another concept by encod-
ing a hierarchical representation of the isocontour induced
by a multi–resolution of the 2D data. The progression tries
to maintain the chessboard distance from the original curve
to the encoded one. The coarser resolution is encoded as two
separate signals, and the position of the points introduced by
the refinements are encoded as a difference with the near-by
points.

3 Overview
In this work, we intend to encode a hierarchy of iso-

contours by their tubular neighbourhood. The tubular neigh-
bourhoods are extracted from an adapted triangulation of the
original 2D data. The data structure we will use to repre-
sent the 2D data is the one of [17, 23]. We adapt it to the
neighbourhood of the isocontour, and reduce it according to
the isocontour topology, geometry and position inside the
triangulation. This structure allows to a very simple multi–
resolution isocontour extraction, and enables us to compress
the curve at single rate or progressively. Moreover, it is well
suited for uniform and adapted progression on both regular
and irregular 2D data. It can prevent topological changes or
high geometric distortion during the progression. Finally, it
works with sub–pixel interpolation for the curve, which en-
ables smooth curve reconstruction at any level of detail.

Paper outline. We will introduce the adaptive triangulation
we used in section 4 Adaptive Tessellation. This structure can
represent regularly sampled data with the same amount of
sample points as the classical quad-tree representation, but
it can also adapt to irregular data. It also provides simple
and effective controls on the topology and geometry of the
isocontour as explained in section 5 Isocontour Extraction. Our
compression scheme is introduced in section 6 Isocontour
Compression and section 7 Arithmetic encoding, and the results
are showed in section 8 Results.

4 Adaptive Tessellation
The multi–resolution structure we will use here is the

Regular Binary Multi–Triangulation (RBMT) [17, 23]. This
structure is constructed using stellar operators on edges and
can decompose adaptively the 2D data. These decomposi-
tions can be regarded as hierarchies of conforming triangu-
lations. In this section, we will give a brief description of the
Stellar operators on edges and the RBMT.

(a) Stellar Operators

Stellar theory [1] studies the equivalences between sim-
plicial complexes (i.e., a generalization of a triangulation)
and defines combinatorial operators that change these com-
plexes while maintaining their topology, integrity and coher-
ence with the modelled object. The building blocks of these
operators are the stellar subdivision and the stellar simplifi-
cation.

The stellar subdivision operation in a triangulation inserts
a vertex into an edge σ. The inverse of this operation is
called stellar simplification, and removes the welded vertex
w modifying its star (see Figure 4). Stellar theory states
that these stellar operators are sufficient to map any two
equivalent triangulated manifolds [1].

(b) Binary Multi–Triangulation

The Binary Multi–Triangulation (BMT) is a multi–
resolution structure based on stellar subdivision on edges.
When subdividing an edge, its incident triangles are sub-
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Figure 2: BMT example: T i can be transformed into T i+1 by subdividing one of the subdivision edges (in bold).

Figure 3: The BMT example of Figure 2 can be represented as a binary tree.

σ

w

subdivide

simplify

Figure 4: Subdividing an edge σ ¿ simplifying the welded vertex
w. The two triangles on the right are the star of σ, while the four
triangles on the left are the star of w.

divided in two. Therefore, a sequence of subdivisions on
edges can be represented as a binary tree structure, where
each node represents a triangle and the two sons of a node
t are the two triangles obtained by subdividing t (see Fig-
ure 3). This binary tree (actually a forest) adapts more nicely
than the classical quad-tree for image decomposition, since
it provides twice more intermediate levels. We will call the
level of a triangle its depth in the binary tree. This property is
close to the partially ordered set representation of [7], which
provides a general framework for adaptive multiresolution
structures. Moreover this binary tree structures leads to very
simple algorithmic formulations.

The BMT is reduced or refined by walking up and down
the binary tree, creating a hierarchy of triangulations at dif-
ferent resolutions. We perform those operations efficiently
by maintaining for each triangle t, the vertex w that has been

inserted during the subdivision that created t. The vertex w
is called the simplification vertex of t, and the edge oppo-
site to w is called the subdivision edge of t. Figure 2 shows
a BMT whose root is a the two triangles of the square (T 0)
and whose leaves uniformly covers a grid (T 21). The bold
edges are the subdivision edges, and the bold vertices are the
simplification vertices.

(c) Adaptation Properties and Regularity

The adaptability of the BMT comes from the possibility to
refine and reduce the triangulation locally, while maintaining
dependencies between adjacent triangles. In particular, we
will maintain gradual transitions by preventing two adjacent
triangles from differing by more than one level. With this
restriction, the resulting structure is called a regular binary
multi–triangulation (RBMT). This type of structure is also
called a restricted hierarchy [22].

For example, Figure 5 illustrates a sequence of refine-
ments adapting the triangulation to the bold line. In order
to preserve gradual transition between resolution levels, lo-
cal refinements around the bold line propagates inside the
triangulation (in this example, far away from the bold line),
as what happens to the bottom left part. The corresponding
binary tree is represented on Figure 6.

Notice that the resulting modifications of the binary tree
are not local. Therefore, it is necessary to propagate a subdi-
vision or simplification to adjacent triangles. This propaga-
tion of a subdivision on an edge e is performed by checking
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Figure 5: RBMT adapted to the bold line: at each level, every triangle crossing the bold line is refined, but subdivisions in the upper–right
part of the square propagate to the lower–left part.

Figure 6: The BMT example of Figure 2 can be represented as a binary tree.

that each triangle t adjacent to e has e as a subdivision edge.
If it is not the case, a subdivision is performed on the subdi-
vision edge of t. This subdivision can require other triangles
to be subdivided if they do share their subdivision edges. The
propagation of a simplification on a vertex is done in a simi-
lar way (see Algorithm reduce).

In such a structure as the RBMT, subdividing a triangle
means subdividing its subdivision edge, while simplifying
it means simplifying its simplification vertex. Adaptive de-
composition is then achieved by performing restricted refine-
ment and simplification to strengthen and preserve a certain
criterium (see Algorithm reduce), such as topology, curva-
ture or decoding distortion as detailed in the next section
(see Figure 9).

5 Isocontour Extraction
The 2D data is given as a collection of samples vi, each

of which is associated with its isovalue f̂(vi). Those samples
are triangulated. In particular, when the samples are regularly
spaced on a 2D grid (a gray–scale image for example), this
triangulation can be automatically generated by the subdivi-
sion of a two–triangles square.

(a) Interpolation in a Triangulation

Assuming that we want to obtain the isocontour corre-
sponding to the isovalue α, a sample of the 2D data is classi-
fied as positive or negative depending whether its isovalue is
greater than α or not. An edge of the triangulation is crossing

Algorithm 1 reduce(criterion) : reduces the RBMT accord-
ing to criterion

1: repeat // until the propagation stabilizes
2: changed← false // until now unchanged
3: for all triangles t do // test the criterion on all

triangles
4: w ← t.welded vertex // used to check if t can be

simplified
5: for all triangles t′ ∈ w.star do // front of the

propagation?
6: if t′.welded vertex = w then // t′ must be

simplified before t
7: next t // will process t after
8: end if
9: end for

10: if criterion(w) then // t must be simplified
11: simplify(t) // simplify t
12: changed← true // unchanged the structure
13: end if
14: end for
15: until not changed // repeat until the propagation

stabilizes
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Figure 7: A regular BMT simplified to preserve the tubular neigh-
bourhood of an isocontour.

when its end–points have opposite signs. A triangle is cross-
ing when it contains a crossing edge. The tubular neighbour-
hood of the isocontour is the set of all the crossing triangles
(see Figure 7).

The isocontour is approximated by a polygonal line link-
ing the isocontour points interpolated at each crossing edge
of the tessellation. In the case of a gray–scale image, this
corresponds to a linear sub–pixel interpolation (as the pur-
ple points of Figure 7), although this extra precision does
not generate extra cost during the compression. The samples
of the 2D data will be referred as the vertices of the trian-
gulation, as opposed to the points of the isocontour. More

v0

v1 v2

t p1
p2

Figure 8: Interpolation of the isocontour.

precisely, the isocontour is computed as a polygonal curve.
Each crossing triangle t of the RBMT contains a segment
[p1, p2] of the isocontour. The extremities p1 and p2 of the
segment are linearly interpolated on the two crossing edges
v0v1 and v0v2 of t (see Figure 8):

pi = λ · v0.position + (1− λ) · vi.position

with

λ =
vi.isovalue− α

vi.isovalue− v0.isovalue
.

If the isocontour is extracted from an image, the sub-pixel
interpolation can generate an ambiguity. This ambiguity is
solved (somehow arbitrarily) by the tessellation, since only
triangular elements are interpolated. The resulting isocon-
tour is controlled redundantly by the isovalue of the vertices
(gray level of the representing pixels) and by the size and
position of the edge. This double control provides more flex-
ibility on the isocontour progressive compression.

(b) Extraction from a RBMT

As an example of our formalism, we can already re-
duce the RBMT to represent with less triangles the tubu-
lar neighbourhood of the isocontour. This can be done us-
ing Algorithm reduce with the criterion function of Algo-
rithm crossing. Figure 5 was generated using such a crite-
rion on the different steps of Figure 2.

Algorithm 2 crossing(w) : test if w can be simplified with-
out altering the tubular neighbourhood

1: for all edges e ∈ w.star do // edges adjacent to w
2: if e.crossing then // e is crossing
3: return false // simplification would alter the

tubular neighbourhood
4: end if
5: end for
6: return true // simplification is safe

Now, this operation does not alter the tubular neighbour-
hood, and thus will leave the isocontour unchanged. Other
criterion functions will change the interpolation of the iso-
contour, generating different representations for it. These
representations correspond to the polygonal interpolations
for different resolutions of the RBMT. These resolutions will
be obtained by successive reductions of the finest level.

(c) Controls on the Extraction

(a) curvature (b) distortion (c) topology

Figure 9: The isocontour of Figure 7 adapted according to (a) the
curvature, (b) the distortion and (c) the topology.

The reductions can be uniform, simplifying all triangles
whose level is greater than a given threshold l (see Figure 2):
criterion(w) = w.level > l. It can also be adapted to
preserve the topology of the curve, or to preserve small
triangles where the curve has a high curvature, and to reduce
the triangulation where it is more flat (see Figure 9(a)).
In a similar way, during compressing, we will be able to
minimize the distortion of the curve (see Figure 9(b)) and
to preserve its topology (see Figure 9(c)).

Geometry control. The criterion function of Algo-
rithm crossing can be easily modified to provide a more
flexible control on the isocontour. In particular, a curve
is well approximated by a segment when its curvature is
close to zero. Therefore a very simple geometric control
will prohibit simplifications of triangles containing highly
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Algorithm 3 curvatureκ(w) : test if w is adjacent to a highly
curved part of the curve

1: n← 0 ; k← 0 // number of segments ; total curvature
2: for all edges e ∈ w.star do // edges adjacent to w
3: if t.crossing then // e is crossing
4: n← n+1 ; k← e.curv // adds local curvature
5: end if
6: end for
7: return k > κ· n // curvature threshold

curved isocontour. Other geometric criterion can be used in
a similar way, using Algorithm curvature as a model.

w

q

p1
p2

v4

v2

p
′

1
p
′

2

Figure 10: The simplification of w induces a distortion that can be
measured as max{d(q, p′1); d(q, p′2)}.

Distortion control. The distortion induced by a simplifica-
tion of a vertex w can be estimated as the distance between
the curve before and after the simplification. To perform a
vertex simplification, the star of w needs first to be composed
of only four triangles, which simplifies the cases to study to
compute this distortion Figure 10: the distortion is estimated
as the maximal distance between q and p′i. In particular for
coding, this distance can take into account the quantization
error of the decoder, in order for the encoder to compute ex-
actly the final distortion of the decoder: the points of the re-
duced curve will be the interpolation of the isocontour on the
remaining edges, with the isovalues of the vertices quantized
according to the compression tuning.

Topology control. Similarly, the topology of the isocontour
can be easily controlled during the simplification of a vertex
w. Actually, there are only two prohibited simplifications for
a vertex inside the RBMT, and similar ones on the boundary
(see Figure 11 and Algorithm topology):

1. The destruction of a connected component occurs
when all the four edges incident to w are crossing.

2. The separation of a connected component in two or the
merge of two connected components happen when the
subdivision edge v0v1 is not crossing, while wv0 and
wv1 were crossing edges.

(1)

w

v2

v1

v4

v3

(2)

w

v2

v1

v4

v3

Figure 11: There are two cases where the simplification of w
induces a change on the topology: (1) destruction of a connected
component, (2) exchange of local connected components.

Algorithm 4 topology(w) : test if the simplification of w
would alter the topology of the isocontour (valence 4 case)

1: (e1, e2, e3, e4)← edges of w.star // e2 ∪ e4 is the
subdivision edge

2: (c1, c2, c3, c4) ← (e1.cross, e2.cross, e3.cross, e4.cross)

3: if (c1, c2, c3, c4) = (true, true, true, true) then
4: return false // (1) destruction of a connected

component
5: end if
6: if (c1, c2, c3, c4) = (true, false, true, false) then
7: return false // (2) exchange of local connected

components
8: end if
9: return true // simplification is safe

6 Isocontour Compression
The techniques we are now to introduce perform both di-

rect and progressive encoding of the tubular neighbourhood
of an isocontour. Moreover, the encoding of this neighbour-
hood can be done uniformly (i.e., the triangles of the tubular
neighbourhood of the isocontour have constant size, see Fig-
ure 12) or adaptively (i.e. the size of the triangles varies ac-
cording to the contour see Figure 14).

This section is organized as follows. We will introduce
our method for encoding the tubular neighbourhood of the
isocontour first uniformly and then adaptively. These meth-
ods can be used to encode the coarser resolution of the pro-
gression, or to encode the entire isocontour at single rate.
Then, we will detail our techniques to encode the refine-
ments, used for the progressive compression. Again, this pro-
cess can be done uniformly or adaptively. Finally, we will ex-
plain the geometry encoding, and describe how to reuse the
compressed data of one isocontour to encode other near–by
ones on the same scalar data.

(a) Coarser Resolution

Our main idea is to encode the tubular neighbourhood go-
ing along with the isocontour, from one crossing triangle to
an adjacent one in the tubular neighbourhood. The algorithm
encodes first the localization of an unvisited crossing trian-
gle t0, and the signs of its vertices. From this initial triangle,
it follows the isocontour, encoding the sign of each unvisited
vertex encountered. When the traversal is done, it continues
on the next connected component. Notice that the vertices of
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(a) Location: level 4, 1, L R L R.
+−−.

(b) Vertex signs:−−++++++. (c) 2 known vertices, then:−+−. (d) −−−−+ +−+−End.

Figure 12: Uniform encoding of the coarser resolution of a small sinusoid. The light curve is a second–order fitting of the decoder’s points
(in the middle of the crossing edges), and serves as geometrical predictor.

the only tubular neighbourhood have their isovalue encoded,
leaving our algorithm almost independent of the initial size
of the 2D data size.

Algorithm 5 send localize(t0) : send localization of t

1: t← t0 // temporary variable
2: stack ∈ {0, 1}N // stack of the positions of the

ancestors of t0
3: while t.parent 6= ∅ do // not reached the root
4: stack.push(t.parent.left = t) // stores as Left (true)

or Right (false)
5: t← t.parent // one level up
6: end while
7: send bit(t = first) // encodes the root of the binary

tree
8: while stack 6= ∅ do // pops the stack
9: send bit(top.push) // encodes the Left or Right

symbol
10: end while

Localization. The location of a triangle t0 can be encoded
using the binary tree inherent to the RBMT (see Algo-
rithm send localize). The root of the tree contains only a
few triangles: 2 for a regular grid. The triangle containing
t0 is encoded by its index. Then, knowing the level l of the
triangle to encode, it can be localized using a sequence of l
symbols Left and Right (see Figure 12(a), Figure 14(a) and
Figure 14(d)). The signs of its vertices are then encoded and
all of them are marked as visited; the initial triangle t0 is also
marked as visited.

Uniform encoding. Once the signs of the vertices of the
initial triangle t0 have been encoded, its crossing edges are
known to the decoder. The first one is chosen to be the first
gate e0 (see Figure 13). The triangle t1 (6= t0) incident to the
gate e0 is also crossing (see Algorithm next triangle). The
sign of the vertex v1 opposite to e0 is encoded, and both t1
and v1 are marked as visited. The algorithm then continues
the same way starting as t1 (see Algorithm receive coarse

t0 t1

e0

v1

v
−1

v0

v
−2

v2 v3

v5

v7

v4

v6

Figure 13: Coarser resolution compression: the traversal goes
from t0 to t1 through the gate e0, and encodes the vertex v1.

Algorithm 6 next triangle(e, t) : gets the next triangle t′

from edge e

1: for all edges e′ = (t, t′) of t do // look for the out edge
2: if e′ 6= e and e′.crossing and not t′.encoded then //

crossing edge
3: return (e′, t′) // next triangle
4: end if
5: return ∅ // closed component
6: end for

uniform). The traversal ends when both triangles incident to
the gate are marked, or when the gate is a boundary edge of
the RBMT.

Actually, the sign of the vertex v1 is encoded only when
it has not been marked. This guarantees to encode exactly
one sign bit per vertex, with an overhead of a few bits per
connected component, used for the localization procedure
(see Figure 12).

Adaptive encoding. The above algorithm can be easily
modified to encode the tubular neighbourhood of the isocon-
tour when it is composed of triangles of different levels. In
that case, the algorithm also encodes the level of the current
triangle (t1) during the traversal. The decoder will read the
required level for t1 and subdivide or simplify t1 if neces-
sary. The RBMT we use maintain a difference of at most one
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(a) Location: level 5, 0, L R
L L L. −+ +.

(b) Vertex levels and signs:
> − = − < + < − < +.

(c) = + > − > + > − =
− < +.

(d) level 5, trig 0, L L L L
L. − + +. > − = − <
+ < − <.

(e) = + > − > + > − =
− < +End.

Figure 14: Adaptive encoding of the coarser resolution of a small hyperbola.

Algorithm 7 receive coarse uniform : decodes the coarser
level uniformly

1: t← receivelocalize ; e← t.edge0 // retrieve the first
triangle

2: repeat // traverse the curve
3: (e′, t′)← next triangle(t) // get the next triangle
4: curve← curve∪ (e′, t′) // add to the decoded curve
5: e′.opposite.isovalue← receive bit // decode the sign

of the next vertex
6: until [closed the component]t′ = ∅
7: return curve // the curve is used for the refinements

level between adjacent triangles (see section 4 Adaptive Tes-
sellation). Therefore, the decoder will have to subdivide or
simplify an unvisited triangle at most once, and the encoder
will manage only 3 symbols: ′ =′ when the levels match,
′ >′ or ′ <′ when the levels differ. The encoding of the signs
is done similarly to the uniform one.

This guarantees to encode exactly one bit per vertex of the
tubular neighbourhood, plus one symbol of {=, <,>} per
triangle of the tubular neighbourhood, with an overhead of a
few bits per connected components, used for the localization
procedure (see Figure 14).

(b) Progressive refinement

The refinement methods allow a progressive adaptation
of the tubular neighbourhood to the isocontour, using each
time smaller triangles. The algorithm can simply encode the
signs of the new vertices created by the subdivisions of all
triangles on the tubular neighbourhood, or it can first specify
which triangles to subdivide and then send the sign of the
new vertices inserted.

Uniform refinement. The uniform refinement simply sub-
divides first all the triangles of the tubular neighbourhood,
and then en/decodes the signs of the vertices created by the
subdivision inside the former tubular neighbourhood. The or-
der of the new vertices is induced by the traversal used for
the coarser resolution en/decoding.

When subdividing a triangle crossing the isocontour, the
configuration of its sub–triangles is determined by the sign

v

v0

v1e

Figure 15: A subdivision can extend the tubular neighbourhood of
the isocontour if the sign of vv0 > 0 and vv1 > 0.

of the new vertex introduced on the subdivision edge. This
sign is encoded during the compression. This subdivision can
locally extend the tubular neighbourhood (see Figure 15).
This case occurs when a non–crossing subdivision edge e =
v1v2 gives rise to two crossing sub–edges. In that case,
the vertex v opposite to e will be included in the tubular
neighbourhood, but its sign need not to be encoded as it can
be deduced by the decoder as the sign of v1 (see Figure 15).

Adaptive refinement. Our method also allows an adaptive
progression, creating smaller triangles where the isocontour
is more complex, and leaving bigger triangles where it is
simple. For each subdivision edge in the tubular neighbour-
hood, we encode the Refine and Keep code. When a Keep
symbol is encoded, the subdivision edge will not be consid-
ered in future refinements, keeping it as a leaf on the hier-
archy. The subdivision edges of the tubular neighbourhood
are collected in the order of the coarser resolution traver-
sal. The sign of the newly inserted vertices is encoded in the
same way as for uniform refinement (see Algorithm receive
adaptive refinement).

Actually two successive resolution of the RBMT can
differ locally by more than one level in the binary tree.
Therefore, the above sequence will be repeated as long as
a Cont/Stop bit is read by the decoder after the vertex signs
are received.

(c) Final geometry encoding

Once the tubular neighbourhood of a resolution level is
encoded, only one bit for each vertex of the RBMT is known

The corresponding work was published in Computerized Medical Imaging and Graphics, volume 30, number 4, pp. 231-242. Elsevier 2006..
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(a) Location: level 6, 1, L L
L L L R. −+ +. < −.

(b) Vertex levels and signs:
= − > +.

(c) level 5, trig 0, L L L L
L.

(d) − + −. = − = − >
+ > − = − < + = −.

(e) > − = − = − =<
+ = − > − = + <<
End.

Figure 16: Adaptive encoding of the coarser resolution of a cubic: irregular tessellation can reduce the distortion.

Algorithm 8 receive adaptive refinement(curve) : de-
codes the adaptive refinement

1: Refine the curve
2: newverts← ∅ // vertices created by the subdivision
3: subedges← subdivision edges(curve) // subdivision

edges of the curve
4: for all edgee ∈ subedges do // potential subdivisions
5: if receive bit then // e should be subdivided
6: ({wi}, {ei})← subdivide(e) // new vertices and

subdivision edges
7: newverts ← newverts ∪ {wi} ∩

neighbour(curve)
8: subedges← subedges∪{ei}∩neighbour(curve)
9: end if

10: subedges← subedges \ e // remove e from
subedges

11: end for
12:
13: Decode the isovalues of the new vertices
14: for all vertexw ∈ newverts do // new vertices
15: w.isovalue← receive bit // retreive the sign of w
16: end for

to the decoder. Therefore, the position of each point p of
the isocontour is a priori the middle point of a crossing
edge e. This can be improved by sending the isovalue of the
endpoints of e. Moreover, this scalar value will be used to
encode other isocontour generated with a different isovalue.

The input 2D data regularity can actually influence the
quality of the compression (see Figure 16). For specific ap-
plications such as human face contour compression, the input
data can be sampled according to the mean and variances of
the original isocontour, resulting in an elliptic–radial initial
distribution of the 2D data.

(d) Close–by isocontour encoding

Once an isocontour C corresponding to an isovalue αC

has been decoded, the decoder knows its entire tubular neigh-
bourhood. It can be used to encode also isocontours C ′ cor-
responding to isovalues αC′ close to αC , especially for med-
ical applications where the contrast of the 2D data is not well
defined. C ′ can be easily encoded as a new coarser resolution
by sending first the isovalue αC′ and then the quantized iso-
values of the vertices not precise enough or unknown to the
decoder. The algorithm is almost identical to Algorithm re-
ceive coarse uniform.

7 Arithmetic encoding

In order to improve the compression rate of our scheme,
each compression step (coarser resolution, refinements and
isovalue compression) is composed of the encoder described
in the previous section, followed by an arithmetic coder.
Those coders can be improved by the use of good predic-
tors and eventually by the memory of the former symbols
encoded, known as the order of the encoder. Moreover, the
predictor can estimate the quality of its prediction. Depend-
ing on the prediction and on the order, the encoder will use
different probability models, or contexts, which will be used
for the arithmetic coding. Those models are then updated ac-
cording to the current symbol, in order to the encoder adapt
itself to the data. We will now describe the predictors we
used for the different techniques of encoding, and detail the
contexts we used with them.

Preprint MAT. 21/05, communicated on August 15th, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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a

b

c

Figure 17: The next crossing edge can be predicted using a simple
curve fitting (in blue) on the decoder points, situated at the middle
of each crossing edge for the first pass.

(a) Prediction

Coarser resolution. The sign of the vertex being decoded
can be predicted by approximating the decoded curve and
extrapolating this approximation. More specifically, we fit
a parabola on the last 20 decoded isocontour points us-
ing [12]. Observe that during the decompression, the isocon-
tour points are at the center of each decoded crossing edge.
This parabola passes closer to one of the two unknown edges
the triangle returned by Algorithm next triangle. The algo-
rithm predicts that edge to be the next crossing edge. More-
over, the distance to the central vertex allows defining 3 dif-
ferent cases, each of which corresponds to a specific prob-
ability model (context). This prediction succeeds in average
in 80% of the cases [13]. We encode if prediction succeeds
using an order 0 arithmetic coder.

Refinements. We distinguish two cases for the vertex v
created during the refinement process: v is on the border of
the tubular neighbourhood, or inside the tubular neighbour-
hood. On the border, the general case is not to extend the
tubular neighbourhood, as mentioned in section 6(b) Progres-
sive refinement. Inside the tubular neighbourhood, the predic-
tion is be made using the parabola fitting of the last para-
graph. We encode if prediction for the refinements succeeds
using an order 2 arithmetic coder.

Geometry. The geometry can be predicted smoothing the
isocontour, by standard signal processing. However, since
we already used the parabola fitting with success, we use
it again for the prediction of the geometry. This strategy
showed nice results when encoding the geometry as a final
step. We used an order 1 arithmetic coder to encode the
difference between the predicted isovalue and the real one.

(b) Context designs

The encoding schemes we introduced here accompany the
isocontour to compress. Therefore, the next symbols to en-
code are closely related to the symbols just encoded before.
This fact gives a priori more accurate probability models for
the context–based arithmetic encoding. The context model
can be enhanced with a good initialization. In particular, we
use a Gaussian probability centered at 0 for the geometry en-
coding, an 80%/20% probability for the sign encodings and

a doubled probability to the = symbol in the adaptive base
mesh encoding.

We consider a unique probability distribution of the sym-
bols (context) for the order 0 encoders, four of them for the
order 2 coders (for each combination of the 2 last bits) and
two for the geometry (since we send one bit at a time). Each
context is updated at each symbol encoded. Moreover, the
encoder does not encode a RBMT grid vertex twice, although
it visits it more than once. This multiple visit can be used
to update the probability model of the context, even with-
out encoding the corresponding symbol. This accelerates the
learning delay of the arithmetic coder, without any cost.

8 Results
The methods we introduced here are flexible and can be

used in many ways. For isocontours of images, we chose
to reduce the complete triangulation of the pixels. We then
encoded the isocontour at each step of this reduction, which
can be uniform or adapted to the isocontour. For implicit
curves, we sent in–between two levels of detail a part of
the geometry (2 bits). We implemented our compression
scheme with a context arithmetic coder of order 0 for the
coarser level transmission, 2 for the refinements and 1 for
the final geometry encoding. We used a simple predictor
based on a second–order curve fitting [12, 13] (see Figure 12
and Figure 14).

Our method resulted in efficient rate/distortion curves
(see Figure 18). The different controls on the adaptation of
the multi–resolution can have a significant cost. For example,
on regular models such as the elevation curve of the Sugar
Loaf of Figure 20, the distortion and topology controls pro-
vide nicer results to the eyes at the beginning of the com-
pression than uniform refinements, while finally resulting in
similar performances. Topology control means an extra cost
depending on the complexity of the model (compare the car
number plate of Figure 21 with the brain model of Figure 1
on Figure 18), but the rate/distortion performance has a sim-
ilar evolution for all methods and models (see Figure 18(a)).
Geometry encoding seems a good alternative to refinements
for regular models such as the ellipse of Figure 18(a). Single
rate encoding is, as usual, a little more efficient than progres-
sive encoding, but can be complemented by the final geome-
try compression of section 6(c) Final geometry encoding.

9 Next steps
We introduced a complete isocontour multi–resolution

extraction and compression scheme. The dynamic triangula-
tion we used provides a very simple way of creating a multi–
resolution structure of the 2D data adapted to the isocontour.
This structure allowed us to achieve both direct and progres-
sive compression, and to encode the isocontour uniformly or
adaptively. The single rate, uniform compression is guaran-
teed to compress less than 2 bits per pixels intersecting the
curve before the arithmetic coder. Moreover, it provides a
full control on the progression, granting topological and ge-
ometrical control on the decoded isocontour.

The corresponding work was published in Computerized Medical Imaging and Graphics, volume 30, number 4, pp. 231-242. Elsevier 2006..
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Figure 18: Compression results: on complex models, topology control is mode expensive with progressive encoding.

(a) Original. (b) Tessellation. (c) Curvature. (d) Distortion. (e) Topology.

Figure 19: Extraction of an isocontour with different controls.

We used binary multi–triangulations for the scalar data
representation, implemented using dimension–independent
generic programming [17]. This offers a very simple exten-
sion of our algorithm to compress level sets in any dimension
with a similar efficiency. This will require first to optimize
the arithmetic coding and prediction parameters we use for
the compression, and to quantify the advantages of geometry
encoding upon refinement operations.
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