
Simplified training for gesture recognition
Romain Faugeroux∗†‡

∗LIX, École Polytechnique.
Paris, France.

Thales Vieira†, Dimas Martinez†
†Institute of Mathematics, UFAL.

Maceió, Brazil.

Thomas Lewiner‡
‡Department of Mathematics, PUC-Rio.

Rio de Janeiro, Brazil.

Fig. 1. Interface providing real-time feedback to the user during the training phase (left). Gestures are automatically segmented using the gesture curvature
(middle left), avoiding the requirement to start and end at a key pose, or to interrupt the recording. A minimal set of key poses is automatically extracted
to represent the gestures unambiguously (middle right), eventually adding discriminant key poses to a previous gesture g to distinguish it from the newly
recorded one g′ (right). This avoids training the key poses prior to training the gestures.

Abstract—Since gesture is a fundamental form of human
communication, its recognition by a computer generates a strong
interest for many applications such as natural user interface and
gaming. The popularization of real-time depth sensors brings
such applications to the public at large. However, familiar ges-
tures are culture-specific, and their automatic recognition must
therefore result from a machine learning process. In particular
this requires either teaching the user how to communicate with
the machine, such as for popular mobile devices or gaming
consoles, or tailoring the application to a specific public. The
latter option serves a large number of applications such as sport
monitoring, virtual reality or surveillance — although it requires
a usually tedious training.

This work intends to simplify the training required by gesture
recognition methods. While the traditional procedure uses a set
of key poses, which must be defined and trained, prior to a set
of gestures that must also be defined and trained, we propose
to automatically deduce the set of key poses from the gesture
training. We represent a record of gestures as a curve in high
dimension and robustly segment it according to the curvature
of that curve. Then we use an asymmetric Hausdorff distance
between gestures to define a discriminant key pose as the most
distant pose between gestures. This further allows to dynamically
group gestures by similarity. The training only requires the
user to perform the gestures and eventually refine the gesture
labeling. The generated set of key poses and gestures then fits
in previous human action recognition algorithms. Furthermore,
this semi-supervised learning allows re-using a previous training
to extend the set of gestures the computer should be able
to recognize. Experimental results show that the automatically
generated discriminant key poses lead to similar recognition
accuracy as previous work.

Keywords-Gesture recognition ; Machine learning ; Training ;
Pose identification ; Depth sensors ; 3d motion ; Natural user
interface ;

I. INTRODUCTION

Gestures constitute the earliest form of human communica-
tion, and their interpretation by mathematical algorithms puts
gesture recognition at the heart of many applications, ranging
from natural user interface to immersive games, emotion
identification to surveillance, assistive robotics to sports mon-
itoring, and more! The large availability of sensors motivates
the visual computing community to push those applications to
a very wide public: cheap depth sensors such as the Kinect
platform are already capable of capturing depth maps and
estimating a human skeleton at 30 frames per second [1].

However, most familiar gestures (the emblems) have a
very culture-specific interpretation [2], which means that a
gesture recognition system requires a learning approach [3]:
either teaching the user how to use the system, or letting
the computer learn the gestures from a specific group of
users. The first approach is widely used for a restricted set of
gestures in touch screen devices or game consoles. The second
approach allows for a larger set of gestures, but requires
a machine learning system, which entails recording gesture
performances as (possibly dynamic) references for automatic
action interpretation. This recording is part of the so-called
training phase, which is often tedious and specific to a class
of application. This work aims at simplifying the training until
the user almost only needs to perform the reference gestures,
in a way that the result can be used and re-used for gesture
recognition.

Related Work: Gesture learning methods can be classified
according to their representation [4]. Local representations
use features extracted from the gestures, such as key poses [5]
or spatiotemporal interest points [6,7], and build gestures as



a sequence of such features. On the one hand, this requires
an additional training phase for the machine to learn the
features, prior to training the gesture itself. On the other
hand, the final recognition algorithm only need to compare
a limited set of features, such as a few positions [8–10],
angles [11–14] or a general bag of features [15–19], leading
to extremely fast recognition which is suitable for interfacing
with games or other resource-expensive processes.
Global representations, such as space-time accumula-
tions [5,20–22] or templates [23,24], only need to train
the gestures, but generally involves complex algorithm and
requires more resource for the final recognition algorithm [25].
We aim at the best of both worlds: using a local representation
to gain on speed for the final recognition but skipping the
training of features. In this work, we use skeletons for the
local representation since they are easily available from the
Kinect platform, although the method proposed here easily
adapts to other local representations.

Contributions: We propose here to automatically segment
a record of gestures and extract a suitable set of key poses from
a set of gestures (Fig. 1). A gesture is a sequence of poses
and we first represent each pose by the position in R3 of its
9 joints, so that a record of gestures becomes a curve in R27.
We derive a robust transition / neutral pose descriptor based
on the curvature of that high-dimensional curve, automatically
segmenting the record in gestures. We then use an invariant
metric in the pose space, and look for discriminant key poses,
i.e. a pose in one gesture that is the most distant to other
gestures and previous discriminant key poses. For example,
if two gestures have the same initial and final poses, two
key poses, each discriminant for a gesture in relation to the
other, are sufficient to distinguish the two gestures. When two
recorded gestures are close in our metric, we label them as the
same gesture. The gesture recognition can then be performed
efficiently from an existing key pose based method using only
the discriminant key poses.
This approach only requires that the user performs the gestures
in a single record, and eventually refine the gesture identifi-
cation in a semiautomatic manner. This minimal interaction
leads to a simple training phase, and the efficiency of the
algorithm allows for a real time feedback during the training.
Moreover, as opposed to usual recognition methods relying
on a pre-defined set of key poses, this allows to extend or
re-use already trained gestures by simply concatenating the
set of gestures, and our algorithm generates a minimal set of
discriminant key poses from the extended set.

II. TECHNICAL OVERVIEW

Our method consists of three steps: an automatic gesture
segmentation technique to extract individual gestures from a
recording of gestures (Sec. III); a greedy algorithm to compute
a compact, unambiguous key pose representation for each
gesture (Sec. IV); and strategies to filter and refine the gesture
representations, eventually incorporating corrections from the
user, for the gesture recognition (Sec. V).

Gesture Segmentation: The user performs the gestures
that the machine should recognize without the need to interrupt
the recording between gestures or to go back to a neutral pose.
At each frame of this recording, we extract a pose, i.e. the 9
relevant joints of the body skeleton [1] (Fig. 2). We segment
the gestures from this stream of poses by analyzing the gesture
curvature, i.e. the curvature of a curve in R27 whose points
are the 3d coordinates of the position of the 9 joints of the
poses, in sequence.

Discriminant Key Pose Selection: From the set of seg-
mented gestures, we incrementally compute a few poses, called
key poses, which compactly and unambiguously represent the
gesture, in a greedy adaptive sampling manner. We start by
adding the first and last pose of each gesture to the key
poses. If a gesture starts and ends at the same pose, we also
add the pose of the gesture that is the most distinct from
the initial pose. Then, we check for gestures with identical
representations, and add the discriminant key poses (the ones
that better differentiate the gestures) to the set of key poses,
until all representations become unique.

Gesture Identification: This simplification of the training
phase may lead to over-segmentation or spurious gestures (like
transition between gestures), which can be filtered using a
semiautomatic approach. The user can also effortlessly confirm
or correct the identification of two different performances of
the same gestures. We finally feed the labeled gestures into
a learning machine for recognition, and propose a simple
(although slightly less efficient) classifier based on our dis-
criminant measures to check for its coherence. The whole
process needs very few resources to run in real time, which
allows the user to fine-tune the gesture identification during
the acquisition, and to re-use or increment the initial gesture
recording to get a larger set of recognizable gestures.

θ

x r’ u

t

r

vw
ϕ

v

Fig. 2. Skeleton’s graph: only the 9 joints beyond the torso, in red, are used
(left). Joint-angle representation: each joint is represented by its spherical
angles θ and φ in the torso referential (right). Figures adapted from [14].

III. GESTURE SEGMENTATION

The first step of our simplified training process consists in
segmenting a recording of gestures into individual gestures.
The main observation is that in-between gestures, the user
naturally inserts a short pause where he stands almost still. Due
to the sensor’s use of random patterns, this pause is captured as
a rapid oscillation between relatively distinct skeletons, which
we detect through the curvature of the gesture curve. The user
may filter this segmentation at the end of the process, although
the method here turns out to be robust in practice.



0	  

0.1	  

0.2	  

0.3	  

0.4	  

0	
 50	
 100	
 150	
 200	
 250	
 300	
 350	
 400	
 450	
 500	
 550	
 600	
 650	
 700	
 750	
 800	
 850	
 900	
 950	
 1000	
 1050	
 1100	
 1150	
 1200	
 1250	
 1300	


Fig. 3. Gesture curvature during a recording of one individual performing 11 gestures: short pauses can be easily identified by intervals of high curvature,
while gesture executions are characterized by low curvature intervals.

A. Pose representations

In this work, we use two local representations derived from
the skeleton produced by the OpenNI1 from the Kinect sensor.
This skeleton contains several labeled joints, out of which 9
are considered relevant for body gestures [8–10,13,14]. We
refer to a configuration of those 9 joints as a pose, and use
two distinct representation for it (Fig. 2).

For the gesture recognition, we encode a pose as the list
of spherical angles of each of the 9 joints [13,14], so that a
pose is tuple of 9 points on a sphere: p ∈

(
S2
)9

. We use the
geodesic distance on the sphere δ(pl, p′l) to compare the same
joints l in two distinct poses p and p′ using their spherical
angles (θl, φl) and (θ′l, φ

′
l) using the usual formula:

δ(pl, p
′
l) = arccos (sin θl sin θ′l + cos θl cos θ′l cos |ϕl − ϕ′

l|) .

We can then measure the distance between two poses as
suggested in [14]:

∆(p, p′) =

9∑
l=1

[δ (pl, p
′
l)]

2
.

This distance measure is used for identifying poses and
distinguish discriminant key poses in the Sec. IV.

For the gesture segmentation, we encode a pose by the
coordinates of each of the 9 joints in R3 [8–10], in which
case a pose is a point in R27 and a gesture is a curve in R27.
This representation is straightforward, and the use of curvature
of the gestures ensures the segmentation is invariant to change
in the relative position of the user to the sensor.

B. Curvature estimation

Although the gesture curve is embedded in R27, we only use
its first curvature, and the estimator can be adapted from usual
curvature estimators. Since the curve has a high co-dimension,
parametric estimators gain performance.

Denoting the gesture curve by function p(t) ∈ R27, its cur-
vature can be computed from the associated Frenet frame [26],
i.e. for each time parameter t an orthonormal frame whose
origin is at p(t). Its first vector e1(t) points in the direction of
the tangent to the curve: e1(t) = p′(t)

‖p′(t)‖ . The second vector
e2(t) points in the direction of the first normal: the plane
Span(e1(t), e2(t)) matches the plane Span(p′(t), p′′(t)) and

1http://www.openni.org

〈e2(t), p′′(t)〉 > 0. The following vectors of the frame point
in the direction of the higher-order normals.

The curvature κ(t) of the curve at p(t) follows from the
time derivative of e1(t) [26]:

κ(t) =
〈e′1(t), e2(t)〉
‖p′(t)‖

=
〈p′′(t), e2(t)〉
‖p′(t)‖2

.

The second form is deduced using the definition of the frame,
and avoids estimating e′1(t).

We estimate the derivatives of p(t) using an extension of
parametric curve fitting [27]: we fit a portion of the gesture
curve around p(t) to a parabola of the form

p̃(s) = p(t) + p̃′ · s+ 1
2 · p̃

′′ · s2 ,

where the unknown vector coefficients p̃′ and p̃′′ are the
estimates for the derivatives p′(t) and p′′(t). The fitting is
obtained by a weighted least-squares minimization of the
distance of poses p(t′) of the gesture curve to the fitted curve
p̃(s). The arc-length parameter s is estimated as ‖p(t′)−p(t)‖
and the weights are given by a Gaussian function of s.

C. Gesture segmentation

Usual protocols for gesture recognition training require the
user to separate the gestures by a neutral pose, which can be
trained and detected [22]. We propose here to remove this
requirement and let the user record the sequence of gestures
with the only restriction to perform a short pause between two
gestures. Since the Kinect sensor projects random patterns to
extract the depth image, the skeleton extraction [1] receives
slightly different inputs even for a static body and its example-
oriented nature returns distinct, unrelated skeletons for each
input. This results in a rapidly oscillating sequence of poses,
which can be directly detected from the gesture curvature, as
shown in Fig. 3.

We thus detect the pauses in-between gestures with a simple
threshold on a window inside the gesture curvature graph. In
our experiments, we use a threshold of 0.01 and a window of 5
poses. This may eventually result in over-segmented gestures
(actually it occurred only once in our experiments, as recorded
in Fig. 10), and the user can simply indicate at the end of the
process that two half-gestures should be concatenated.



k1
k1

k2

Fig. 4. A gesture that starts and finishes at a neutral pose k1 (left) does
not have a valid representation and must be refined by inserting the most
discriminative pose k2 (right).

IV. DISCRIMINANT KEY POSE SELECTION

Once the recording is segmented into a set G of gestures,
we aim at representing each gesture as a minimal sequence of
poses, called key poses, such that distinct gestures correspond
to different sequences of key poses. We greedily select key
poses that are the most discriminant between pairs of gestures.

A. Gesture representation

For a given set K = {k1, . . . , kn} of key poses, we
compute a representation ĝ = (ki, kj , . . . ) for each gesture
g = (p1, p2, . . . ) ∈ G as a sequence of key poses as follows.
For each pose p of g, we look for its closest key pose
kp ∈ K, using the pose distance ∆ introduced in Sec. III-A:
kp = argmink∈K ∆(p, k). Then, we traverse the poses of
gesture p, and insert kp in the sequence ĝ representing g if
∆(p, kp) < ε for a given threshold ε. To improve robustness
in noisy examples, we only consider inserting a key pose k
if it corresponds to two successive poses pt, pt+1 of g, i.e.
if k = kpt

= kpt+1
. Additionally, consecutive repetitions

of key poses in ĝ are ignored, e.g., gesture representation
ĝ = (k1, k2, k2, k3) simplifies to ĝ = (k1, k2, k3).

B. Discriminant key pose

We look for discriminant key poses in two situations: either
to refine a single gesture or to distinguish two gestures.

Initially, each gestures is represented by their initial and
final poses, both inserted to the key pose set. In that context,
a gesture g may reduce to the representation (k1, k1), in
particular when k1 is a kind of neutral pose. To avoid this
degenerated representation, we look for an intermediate key
pose as the pose of g that is the farthest from k1:

k2 = argmax
p∈g

∆ (p, k1) .

Eventually, k2 is still similar to k1: ∆(k2, k1) < ε, in
which case gesture g reduces to a static pose and we discard
it. Otherwise, k2 is inserted into K and, using the process
described in Sec. IV-A, gesture g will be represented by
ĝ = (k1, k2, k1) (Fig. 4).

g

g′k1

k1.5
k2

k′1.5

k1

g

k2

g′

Fig. 5. An ambiguous gesture representation (k1, k2) representing different
gestures g and g′ (left) are refined by finding and inserting discriminant poses
k1.5 and k′1.5 that better distinguishes gestures g and g′ (right).

In order to distinguish two gestures g and g′ that have the
same representation ĝ = ĝ′ = (k1, k2, . . . , kn), we look for
two key poses to insert in the sequences ĝ and ĝ′ in order to
differentiate them. Let’s look first at the case n = 2: ĝ = ĝ′ =
(k1, k2) (Fig. 5). We can define the most discriminant pose of
g in relation to g′ as the pose k1+1/2 where the asymmetric
Haussdorff distance is achieved:

k1+1/2 = argmax
p∈g

min
p′∈g′

∆ (p, p′) .

Similarly, we compute the most discriminant pose of g′ in
relation to g as: k′1+1/2 = argmaxp′∈g′ minp∈g ∆ (p′, p) .

In the general case, we repeat the process above for every
sub-sequence between successive key poses of g and g′ and
select the most distinctive pair (Fig. 6). More precisely for
ĝ = ĝ′ = (k1, k2, . . . , kn), let gi and g′i be the sub-gestures
of g and g′ respectively whose initial and final key poses
are ki and ki+1. We compute the most discriminant pairs
of key poses ki+1/2 and k′i+1/2 between gi and g′i for every
i ∈ {1, . . . , n− 1}, and select for K only the pair ki+1/2

and k′i+1/2 with the highest sum of asymmetric Haussdorff
distances:

j = argmax
i

{
min
p′∈g′

i

∆
(
ki+1/2, p

′)+ min
p∈gi

∆
(
k′i+1/2, p

)}
.

If ∆
(
kj+1/2, k

′
j+1/2

)
< ε, both gestures receive identical

labels. Otherwise, kj+1/2 and k′j+1/2 are inserted in K, and
we re-compute the representations of all gestures as described
in Sec. IV-A.



k1

g
k2

g′

k3

k1

g
k2

g′

k3

k1

g
k2

g′

k3

k′1.5

k1.5

Fig. 6. When an ambiguous gesture representation is composed of three or more key poses, as the example (k1, k2, k3) (left), each pair of consecutive key
poses is analyzed. Here, discriminant key poses are found in pairs (k1, k2) and (k2, k3) (center), and only the most discriminative key poses k1.5 from k′1.5
are inserted (right).

C. Greedy selection of discriminant key poses

At the beginning of the algorithm, or each time a gesture
is added, the initial and final poses of each gesture g ∈ G are
inserted in K, and similar poses (within ∆-distance inferior to
ε) are identified. We then compute the gesture representations
with this initial set K as described in Sec. IV-A. If a gesture
g has a degenerate representation ĝ = (k1, k1), we look for a
discriminant key pose to refine ĝ as described in Sec. IV-B,
either discarding g or inserting a new key pose k2 to K, in
which case we re-compute the gesture representations with the
new set K.

Now that all gestures have a valid representation, we pro-
ceed iteratively to refine gestures that have identical represen-
tations. If two gestures g and g′ have the same representation
ĝ = ĝ′ = (k1, k2, . . . , kn), we look for a pair of discriminant
key poses as described in Sec. IV-B, either identifying g or
inserting both key poses to K, in which case we re-compute
the gesture representations.

This process is indeed an adaptive sampling of the gesture
curves, refined until all distinct gestures have different repre-
sentations.

V. GESTURE IDENTIFICATION

During a training session, the user sequentially performs
several different gestures with short pauses and no labeling.
The automatic process described so far copes with a very
simple training protocol, but it may generate spurious gestures
or it may fail to detect performances of the same gestures.
Those issues are handled by semiautomatic filters described
in this section.

A. Spurious gesture elimination

The segmentation may extract spurious gestures, like transi-
tions between gestures, long pauses or static gestures. We opt
for a semiautomatic filter, where some of the spurious gestures
are automatically removed and others are submitted to the user
for validation.

We detect static gestures during the refinement of a single
gesture (Sec. IV-B). Then, we suggest to the user very short
gestures sorted according to their duration, but presenting first
gestures that start at a non-neutral pose and end at the neutral
pose. The first gestures of that list can safely be automatically
classified as spurious, while the following are left to the user’s
decision.

B. Semiautomatic labeling

A gesture recognition method requires several exemplars
of the same gesture, eventually performed by different users.
This may lead to different key poses sequence for the same
gesture, and several gesture recognition method incorporate
this fact using templates [8], decision forests [14] or action
graphs [19,21,22], to cite a few.

During the search for discriminant key poses (Sec. IV-B),
we already detect that some gestures are identical, and gener-
ate a single label for both. This identification heavily depends
on the pose similarity threshold ε, so we opt to use a safe value
for ε and ask the user to complete the labeling. In our interface,
the user confirms whether two performances correspond to the
same gesture. If not, we look for discriminant key poses as
described in Sec. IV-B, but threshold ε is exceptionally ignored
to allow the insertion of similar key poses in K, and effectively
distinguish the gestures. Note that, for natural user’s interface
applications, this interface can be coupled to the assignment
of an action the computer should perform in response to a
user’s gesture.

C. Gesture recognition

The result of our simplified training is a set G of gestures
together with a set of key poses that can represent the gestures
unambiguously. This is indeed the common format for gesture
recognition databases such as the MSR2, UTKinect3, CAD4

or KGD5 datasets, and can thus be used by most gesture
recognition algorithms.

In order to validate our approach, we embedded the result
of our simplified training in a modification of the key pose
based gesture recognition system of Miranda et al.[14]. The
key pose learning machine uses the set K of key poses, and a
classifier f̃ that is capable of recognizing poses acquired from
the Kinect sensor in real time. Instead of the original SVM
definition of f̃ , we use a nearest-neighbor classifier combined
with the pose similarity threshold to classify a pose p:

f̃(p) =

{
kp = argmin

k∈K
∆ (k, p) if ∆ (kp, p) < ε,

-1 otherwise.

Note that if the current pose p is not similar to any key pose
in K, the classifier returns −1.

2http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
3http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
4http://pr.cs.cornell.edu/humanactivities/data.php
5http://www.im.ufal.br/professor/thales/gesturedb.html



gesture id segmentation recognized gestures per user ours [14]
accuracy u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 (%) (%)

Turn Next Page ĝA 10 10 8 10 10 9 9 10 9 9 9 93 95
Turn Previous Page ĝB 10 10 9 10 10 9 6 9 9 9 10 91 95
Raise Right Arm ĝC 10 9 8 9 8 7 10 9 10 8 10 88 94
Raise Left Arm ĝD 10 10 10 9 10 9 9 10 9 10 9 95 94
Open Clap ĝE 8 10 10 10 9 9 8 10 9 8 10 93 99
Open Arms ĝF 9 9 9 10 8 9 10 10 9 8 9 91 97
Put Hands Up Lat. ĝG 9 10 10 10 10 10 9 10 10 10 10 99 100
Put Hands Up Front ĝH 10 10 9 7 9 10 9 10 10 10 9 93 96
Lower Right Arm ĝI 8 8 7 6 8 7 8 8 8 8 7 75 82
Bow ĝJ 6 10 10 10 9 10 10 10 9 10 10 98 100
Goodbye ĝK 7 9 9 10 7 9 10 9 10 8 7 88 92
average (%) 88 90 92 89 89 91 89 93 89 91 92

Tab. 7. Trained gestures, segmentation accuracy and recognition rate for 10 individuals. Individuals were asked to train gestures respecting the sequence
given in this table. Segmentation accuracy per gesture counts how many users had the gesture successfully segmented during the first execution (spurious
gestures are not considered). The recognized gestures per user column shows the number of successfully recognized gestures after 10 executions per gesture.

Fig. 8. Discriminant key pose set K computed online during a training session from a single user. During the session, 11 gestures were performed sequentially,
and our method successfully found a small set of 10 key poses capable of representing all gestures as key pose sequences, avoiding ambiguity and allowing
high recognition rates.

^

^

^

^

^

^

^

^

^

^

^

Fig. 9. Gesture representations computed for 11 gestures captured from individual u1. 10 discriminant key poses shown Fig. 8 were automatically computed,
and coincidentally all gestures were described by a sequence of exactly 3 key poses.



We then proceed as in [14] to detect gestures executions:
key poses recognized by the classifier are accumulated into
a circular buffer that continuously queries a decision forest
representing all gestures. The modification proposed does not
intend to improve the performance of the classifier, but to
validate the key poses extracted during our simplified training
and the pose similarity distance ∆.

VI. EXPERIMENTS

To evaluate each step of our method and fairly compare
with previous work, we use the same set of 11 gestures as
Miranda et al.[14]5, reported in Tab. 7. We provided a brief
description of each gesture to 10 inexperienced individuals,
and asked them to sequentially perform each gesture once,
with minor pauses, in front of a Kinect sensor. Each user took
an average of 46 seconds and 1,400 frames.

Both segmentation and discriminant key pose selection were
executed online, while the few spurious gestures were manu-
ally eliminated by each user in a post-processing phase. Un-
successfully segmented gestures were exceptionally retrained
to allow gesture recognition experiments. Finally, we asked
each user to perform again each gesture 10 times to check the
gesture recognition accuracy.

A. Real-time segmentation robustness
To evaluate the robustness of the gesture segmentation, we

count, for each of the 10 users’ recordings, how many gestures
were correctly separated by the curvature criterion.

The algorithm was able to accurately segment most gestures
in at least 8 out of 10 users, as reported in Tab. 7. Some over-
segmentation occurred, mainly for the Bow and the Goodbye
gestures. The curvature graphs of these executions (Fig. 10)
show that some performances of those gestures contain a small
pause (around pose kJ ) that is interpreted by our algorithm as
a transition between gestures.

B. Discriminant key pose selection
Computing discriminant key poses for each user separately,

our algorithm succeeded in computing small sets of 10 to 12
discriminant key poses (Fig. 8). Most of our automatically
selected key poses were similar among all individuals, and
also similar to the manually designed key poses from the work
of Miranda et al.[14], revealing good stability.

In most individuals training sets, small key pose sequences
were obtained for all gestures. Fig. 9 shows gesture representa-
tions for user u1. Coincidentally, all gestures were represented
by a sequence of exactly 3 key poses, which seems visually
adequate to both describe and discriminate all trained gestures.

We empirically found that better key pose representations
were found by setting ε = 0.2π. Larger values of ε result
in fewer key poses and less accurate representations. On the
one hand, setting ε = 0.4π, poses similar to kJ would be
recognized as a key pose similar to kA, turning the Bow
gesture invalid. On the other hand, setting smaller values of ε,
the number of key poses increases, resulting in visually similar
key poses in K. Furthermore, the recognition rate decreases
the classifier rejects more poses.

C. Gesture recognition

After computing for each user ui its key pose set Ki and
its set of gesture representations Ĝi, we asked them to execute
each gesture 10 times to check the recognition accuracy. For
most gestures, the recognition rate is similar to manually
selected and trained key poses [14], as reported in Tab. 7. Note
that this previous work relies on 18 key poses, as opposed to
11 automatically generated, and uses several executions of the
same gestures with an SVM classifier, which is more robust
than our validation-purposed nearest neighbor classifier.

The major cause of recognition inaccuracy was the con-
fusion between key poses kB and kG (Fig. 8), in partic-
ular for the Raise Right Arm or Lower Right Arm ges-
tures. Another issue for the recognition occurred in the
repetitive Goodbye gesture, where some users trained se-
quences like {kA, kH , kG} but later performed symmetrically
{kA, kG, kH}.

D. Performance

As mentioned before, our method is capable of segmenting
gestures, computing key pose representations and recognizing
gestures in real time with minor CPU usage, at 30 fps
(maximum Kinect sensor frame rate), on a Core i7 laptop at
2.4 GHz.

During a training session, the method computes curvatures
for each frame, which induces a lag of 3 frames to achieve
the window where the time derivatives are computed. The
main bottleneck of the discriminant key pose selection is the
nearest neighbor queries for existing key poses in K: since
the amount of key poses is small, no spatial data structures
were used. Finally, during recognition phase, only one nearest
neighbour query is executed to detect key poses, while the
decision forests keeps gesture search complexity very low.

We also performed experiments offline by segmenting and
computing a key pose representation for a training session
composed of 1329 frames (44.3 seconds) and 20 gestures
(including spurious ones, see Fig. 3). The discriminant key
poses extraction took 0.33 seconds, reinforcing that the per-
formance of our method allow for CPU-intensive process to
run concurrently.

VII. LIMITATIONS AND FUTURE WORK

The method proposed here allows extracting a small set of
key poses that represent unambiguously a given set of gestures,
as long as the speed of execution of a gesture or part of it is
not relevant. In some applications, like dance gestures [13],
periodicity and time are intrinsic to the gesture validation,
and our gesture representation (Sec. IV-A) must be modified
accordingly.

We use the same threshold ε for all our comparisons, and
even in the key pose classifier adapted for our validation
experiments. Tailored thresholds for the refinement of a single
gesture, the discriminant key poses between two gestures, the
identification of key poses and in particular for the classifier
would certainly improve the key pose extraction and recogni-
tion rate.



0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100 110 

Fig. 10. Over-segmentation due to a long pause in the Bow gesture before turning the head up, as shown in the left curvature graph between frames 63 and
71. In this case, the method incorrectly segmented the gesture at frame 70. On the right graph, even though high curvatures were detected around frames 51
and 53, they were not enough to segment the gesture.

Finally, regarding the segmentation, we only use the first
of the 26 gesture curvatures. Although higher-order curvatures
are more sensitive to noise, they may help in reducing the over-
segmentation of some gestures (Fig. 10). Better heuristics for
the spurious gesture detection may also further simplify the
user’s interaction during the training.

ACKNOWLEDGMENT

The authors would like to thank CNPq, FAPEAL, FAPERJ
and École Polytechnique for partially financing this research.

REFERENCES

[1] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose recognition
in parts from single depth images,” in CVPR, 2011, pp. 1297–1304.

[2] M. Desmond, P. Collet, P. Marsh, and M. O’Shaughnessy, Gestures:
Their origins and distribution. Cape, 1979.

[3] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[4] R. Poppe, “A survey on vision-based human action recognition,” Image
and Vision Computing, vol. 28, no. 6, pp. 976–990, 2010.

[5] F. Lv and R. Nevatia, “Single view human action recognition using key
pose matching and Viterbi path searching,” in CVPR, 2007, pp. 1–8.

[6] I. Laptev and T. Lindeberg, “Space-time interest points,” in ICCV, vol. 1,
2003, pp. 432–439.

[7] Y. Zhu, W. Chen, and G. Guo, “Evaluating spatiotemporal interest
point features for depth-based action recognition,” Image and Vision
Computing, 2014.

[8] M. Müller and T. Röder, “Motion templates for automatic classification
and retrieval of motion capture data,” in SCA, 2006, pp. 137–146.

[9] M. Müller, A. Baak, and H.-P. Seidel, “Efficient and robust annotation
of motion capture data,” in SCA, 2009, pp. 17–26.

[10] A. W. Vieira, T. Lewiner, W. Schwartz, and M. F. M. Campos, “Distance
matrices as invariant features for classifying mocap data,” in ICPR.
IEEE, 2012, pp. 2934–2937.

[11] L. Kovar, “Automated extraction and parameterization of motions in
large data sets,” in Siggraph, vol. 23, 2004, pp. 559–568.

[12] K. Forbes and E. Fiu, “An efficient search algorithm for motion data
using weighted PCA,” in SCA, 2005, pp. 67–76.

[13] M. Raptis, D. Kirovski, and H. Hoppe, “Real-time classification of dance
gestures from skeleton animation,” in SCA, 2011, pp. 147–156.

[14] L. Miranda, T. Vieira, D. Martinez, T. Lewiner, A. W. Vieira, and
M. F. M. Campos, “Online gesture recognition from pose kernel learning
and decision forests,” Pattern Recognition Letters, vol. 39, pp. 65–73,
2014.

[15] J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li, “Hierarchical
spatio-temporal context modeling for action recognition,” in CVPR,
2009, pp. 2004–2011.

[16] L. Cao, Z. Liu, and T. Huang, “Cross-dataset action detection,” in CVPR,
2010, pp. 1998–2005.

[17] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative
space-time neighborhood features for human action recognition,” in
CVPR, 2010, pp. 2046–2053.

[18] J. C. Niebles, C. W. Chen, and L. Fei-Fei, “Modeling temporal structure
of decomposable motion segments for activity classification,” in ECCV,
2010, pp. 392–405.

[19] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3D
points,” in CVPR Workshops, 2010, pp. 9–14.

[20] D. Weinland and E. Boyer, “Action recognition using exemplar-based
embedding,” in CVPR, 2005, pp. 1–7.

[21] W. Li, Z. Zhang, and Z. Liu, “Expandable data-driven graphical model-
ing of human actions based on salient postures,” Circuits and Systems
for Video Technology, vol. 18, no. 11, 2008.

[22] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F.
Campos, “On the improvement of human action recognition from
depth map sequences using Space–Time Occupancy Patterns,” Pattern
Recognition Letters, vol. 36, no. 15, pp. 221–227, 2014.

[23] A. Bobick and J. Davis, “The recognition of human movement using
temporal templates,” TPAMI, vol. 23, 2001.

[24] D.-Y. Chen, H.-Y. M. Liao, and S.-W. Shih, “Human action recognition
using 2-D spatio-temporal templates,” in Multimedia and Expo, 2007,
pp. 667–670.

[25] C. Ellis, S. Z. Masood, M. F. Tappen, J. La Viola, Joseph J., and R. Suk-
thankar, “Exploring the trade-off between accuracy and observational
latency in action recognition,” International Journal of Computer Vision,
vol. 101, no. 3, pp. 420–436, 2013.

[26] M. do Carmo, Differential geometry of curves and surfaces. Prentice
Hall, 1976.

[27] T. Lewiner, J. Gomes, H. Lopes, and M. Craizer, “Curvature and torsion
estimators based on parametric curve fitting,” Computers & Graphics,
vol. 29, no. 5, pp. 641–655, 2005.


	Introduction
	Technical Overview
	Gesture Segmentation
	Pose representations
	Curvature estimation
	Gesture segmentation

	Discriminant Key Pose Selection
	Gesture representation
	Discriminant key pose
	Greedy selection of discriminant key poses

	Gesture identification
	Spurious gesture elimination
	Semiautomatic labeling
	Gesture recognition

	Experiments
	Real-time segmentation robustness
	Discriminant key pose selection
	Gesture recognition
	Performance

	Limitations and future work
	References

