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2 Géométrica Project — INRIA – Sophia Antipolis — France

3 Visgraf Project — IMPA — Rio de Janeiro — Brazil
{tomlew, craizer, lopes, sinesio}@mat.puc--rio.br. {lvelho, esdras}@visgraf.impa.br.

Abstract. Among the mesh compression algorithms, different schemes compress better specific categories of
model. In particular, geometry–driven approaches have shown outstanding performances on isosurfaces. It would
be expected these algorithm to also encode well meshes reconstructed from the geometry, or optimized by a
geometric re–meshing. GEncode is a new single–rate compression scheme that compresses the connectivity of
these meshes at almost zero–cost. It improves existing geometry–driven schemes for general meshes on both
geometry and connectivity compression. This scheme extends naturally to meshes of arbitrary dimensions in
arbitrary ambient space, and deals gracefully with non–manifold meshes. Compression results for surfaces are
competitive with existing schemes.
Keywords: Geometric compression. Mesh compression. Arbitrary dimensional meshes.
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Figure 1: Compression of a scanned mechanical piece: once the geometry is decoded, the decoder attaches a triangle e ] w to the active
border edge e. w is identified by the circumradius ρ(e ] w) of the original triangle which is divided by the length of e to be compact its
histogram, which reduces the entropy. The position of w in the list of vertices with the same quantized radius is then encoded.

1 Introduction
The recent developments in Computer Graphics require

an increasing amount of processing time and generate bigger
and bigger meshes. This development has been followed by
compression algorithms which improved on the compression
ratio, the range of models that can be encoded, the ease of use
and the algorithm performances. However, they are still not
fully adapted to the wide variety of models and applications
of Computer Graphics: scans in artistic and archaeological
modelling, isosurfaces for medical and mathematical visual-
ization, re–meshed models for reverse engineering, finite–
element meshes for simulation, high–dimensional meshes
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for solid representation, meshes with high co–dimension
for non–linear optimization. . . The performances of each
compression algorithm highly depend on the nature of the
model. Thus, specific compression schemes should corre-
spond to specific applications, in particular for the most
time–consuming mesh generation algorithm: reconstruction
and the re–meshing.

Related works. The first mesh-compression algorithms
were connectivity–driven, in the sense that the geometry en-
coding depends on the connectivity encoding rules.Among
those, the Edgebreaker [24, 21, 18, 16] performs well on
generic mesh, with guaranteed practical worst–case close to
the theoretical optimum [14]. On the other side, Valence
Coding [26, 7, 13] performs very well on meshes with a
regular connectivity and has been widely extended since the
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Figure 3: A 2–manifold simplicial complex.
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Figure 4: A non–pure, non–manifold com-
plex.

original work. It has a theoretical asymptotic compression
rate close to the optimum [1], but performs very well in
practice. Some singularities of the mesh can further be han-
dled by specific algorithm, in particular for the non–manifold
case [10, 22]. These connectivity–driven approaches can be
extended to higher dimension, but the complexity of the
codes increases dramatically. Even for tetrahedral meshes,
the extensions of the surface approaches [11, 23, 12] are
quite complex.

On the contrary, geometry–driven approaches [9] handle
gracefully complex connectivity. Still, the compression ra-
tios of the geometry are not yet optimal, as these schemes
are quite new to the community. However, for the case of
isosurfaces, specific compression schemes [25, 15, 17] out-
perform any connectivity–driven approach.

Contribution. In the case of scanned models, the recon-
struction algorithm computes the connectivity of the surface
only from the geometry. Therefore, a geometry–driven ap-
proach for these cases should not waste any byte in con-
nectivity. This is the goal of this work, which proposes
a new geometry–driven approach of meshes named GEn-
code. GEncode actually encodes a mesh based on a local
geometric criterion (Figure 1), and if the encoded model can
be reconstructed with this criterion, GEncode will compress
its connectivity without wasting any byte in the compressed
stream. The geometry is encoded with an improved method
on binary space partitions, which takes the best parts of [9]
and [6]. This scheme is very general, and deals with sim-
plicial complexes of arbitrary dimension in any dimensional
space, even if the complex is non–pure, non–manifold or
non–orientable. This information is only used by the coder
and the decoder to optimize the algorithm and the compres-
sion ratio. For surface, the resulting compression ratios are
competitive with the Edgebreaker with the parallelogram
prediction.

Overview. This work is organized as follow. Section 2 Basic
concepts recalls the basic notions of triangulations, expressed
in arbitrary dimension as our scheme works at that level of
generality. Then section 3 GEncode describes the proposed
scheme and its extensions. Finally, section 4 Results and com-
parisons shows compression results on common surface mod-

els, and compares them with the Edgebreaker.

2 Basic concepts
This section introduces the basic definitions that are used

in this work, especially the notion of triangulations (or sim-
plicial complexes) [3]. Among these, the class of simplicial
manifolds is the most widely used. They can be constructed
in an incremental manner (usually called advancing front tri-
angulation), which entails most of the mesh decoding algo-
rithms.

Triangulations. A triangle, or 2–simplex, is the convex
hull of 3 affine independent points. More generally, an n–
simplex σ is the convex hull of (n + 1) affine independent
points in the space, called the vertices of σ. A sub–simplex τ
of σ is the convex hull of a proper subset of its vertices. We
will say that σ is incident to τ and τ is bounding σ.

A complex is a coherent collection of simplices, where co-
herence means that the collection contains the sub–simplices
of each simplex and the intersection of any two simplices. A
complex K is pure of dimension d if every simplex in K is
of dimension d or is a sub–simplex of a simplex of dimen-
sion d belonging to K. The geometry of a complex usually
refers to the coordinates of its vertices (0–simplex), while its
connectivity refers to the incidence of higher simplices on
these vertices. A simplex σ can be attached to a complex K
by identifying a collection of sub–simplices of σ with some
of the simplices of K (Figure 2). Such operation can alter the
topology of the complex, and its manifoldness.

Manifolds. A simplicial d–manifold M is a pure simplicial
complex of dimension d where for each vertex v, the union
of each open simplex containing v is homeomorphic to an
open d–ball B or the intersection of B with a closed half–
space. This implies that each (d−1)–simplex bounds either
one or two d–simplices. The set of (d−1)–simplices bounding
only one d–simplex is called the border of M .

For example, a 2–complex is a surface (i.e. 2–manifold) if
it has only vertices, edges and faces (0– 1– and 2–simplices
respectively) ; if each edge bounds either one or two triangles
; and if the border does not pinch. Figure 3 shows an example
of 2–manifold and Figure 4 illustrates a 2–complex that is
neither pure nor a manifold.

The corresponding work was published in the proceedings of the Sibgrapi 2005, pp. 249–256. IEEE Press, 2005.
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Figure 5: Encoding of a tetrahedral mesh in R3 (left) and R3 (left). The 1986 vertices of the solid sphere (left, courtesy of Pierre Alliez) were
compressed by [9] with 3433 bytes, by [6] with 3877 bytes and by our method with 3429 bytes. The 192 vertices of the Cartesian product of
a sphere and a circle , (right, courtesy of Hélio Lopes) were compressed by [9] with 649 bytes, by [6] with 980 bytes and by our method with
646 bytes. The coloured lines represent part of the traversal of the mesh by the connectivity encoder.

Advancing front triangulations. Any triangulation can be
constructed by attaching a sequence of simplices to an initial
vertex. This property is intensively used in surface recon-
struction with advancing front triangulation algorithms [19].
The problem here is close to the geometry–driven approach
to mesh compression: once the vertices are transmitted, the
algorithm must create a complex with the given vertices.
For reconstruction, the final complex must approximate the
original model, without additional information. For com-
pression, the decoder uses the coded information to exactly
match original model.

An example of reconstruction algorithm that we will use
to illustrate our algorithm is the Ball Pivoting Algorithm [4].
Having the position of each vertex and a given radius α, the
algorithm reconstructs the surface by successively attaching
one triangle t = e ] w to a border edge e of the complex
being constructed. The vertex w is chosen to minimize the
circumradius G(e, w) = ρ(t) and preserve the manifoldness
of the complex. If t has circumradius greater than α, e is
left as a border edge. Actually any local geometry criterion
G(e, w) can be performed in order to choose w.

3 GEncode

The proposed encoding scheme works similarly to recon-
struction algorithms, although it encodes continuously the
differences of the original and reconstructed mesh. It first
encodes the geometry of each vertex, in any ambient space,
using a simple k–d tree coding that is an improvement of
both [9, 6] (Figure 5). The algorithm encodes an initial sim-
plex and then works as an advancing front triangulation, at-
taching at each step a simplex e ] w to a border simplex e.
The difference is that w is not always the one that minimizes
the geometric criterion G(e, w), but is encoded by its posi-
tion in a list of candidates. These candidates are chosen from
an encoded bound on G(e, w). To minimize the entropy, that
list is ordered by the geometric criterion.

(a) Geometry encoding.

For the geometric encoding, we use a simple tree coding
technique. This techniques works for vertices with an arbi-
trary number of coordinates, allowing encoding meshes of
arbitrary co–dimension. As in [9] and [6], the space is di-
vided with a particular binary space partition where each
separator is perpendicular to the axis (i.e. a k–d tree): the
axis alternates from one level to the other (X,Y,Z,X,Y. . . in
R3), and the separator is always positioned at the middle of
each subdivided node (Figures 6, 6 and 6). The subdivision
is performed until each node contains only one vertex.

5

5

⇒ 0

4
⇒ 1

2

⇒ 2

1 1

⇒ 1
⇒ 1

Figure 6: Geometry encoding of [9]: the encoder encodes 5 on 32
bits, then 5 on dlog2(6)e bits, then 4 on dlog2(6)e bits. The right
vertex position is then encoded. Then 2 is encoded on dlog2(5)e
bits, 1 on 1 bit and 1 bit again. Then each remaining vertex is
encoded.

In [9], each node of the binary space partition is encoded
by the number of vertices #vl its left children contains. The
number of vertices of the other node #vr is simply deduced
by difference from the number of the known vertices of the
parent’s node #vf . This technique wastes many bits at the
beginning of the encoding, as the number of nodes must be
encoded on dlog2(#vf +1)e bits (Figure 6). But when there
is only one vertex in a node, its position is encoded by 1 bit
for each level, which is optimal.

[6] encodes each node by one of 3 symbols: ++ if both
children contain at least one vertex, +0 if only the left child
contains a vertex, and 0+ if only the right one contains a
vertex (Figure 7). Note that at least one child must contain a
vertex, as the parent did. The encoding stops at a predefined
level. This method spends more bits at the end of the encod-
ing, since the decoder doesn’t know when there is only one
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Figure 7: Geometry encoding of [6]: the encoder encodes the
following sequence: +0, ++, ++, 0+, ++, ++, 0+. Then follow
0+ and +0 to reach the the desired number of bits.

vertex in a node. Therefore, the encoder sends log2(3) bit for
each level, which is greater than the 1 bit of [9] for the last
part.
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Figure 8: Our geometry encoding: the encoder encodes the follow-
ing sequence: +0, +1 ant the right vertex is fully encoded. Then
++, 11, 11. The position of each remaining vertex is then encoded.

Our technique takes the best part of both. First, it encodes
each node by one of 6 symbols: ++ if both children contains
more than one vertex, +1 and 1+ if one child contains
more than one vertex, and the other only one, 11 if they
both contain only one vertex, and +0 and 0+ if one child
contains more than one vertex, and the other child is empty
(Figure 8). With this encoding, the encoder detects when
there is only one vertex in a node, and then uses the technique
of [9]. The symbols do not have the same probability and the
coder takes that into account. Moreover, these probabilities
are used differently depending on the level of the node to
encode: nodes closer to the root are more frequently of type
++, whereas those are rare when going closer to the leaves.

(b) Connectivity encoding for surfaces.

Our scheme decodes the connectivity in an advancing
front manner, attaching at each step a triangle e ] w to
an edge e of the active border, or by removing e from
the active border. More precisely, once the first triangle of
the connected component is decoded, its three bounding
edges are added to the active border. Then, one edge of
the active border is selected, for example the longest one
(as described below). The decoder then receives from the
encoder two numbers to choose w: the quantized radius and
the candidate position. The quantized radius will serve to
build up a list of candidates, or to indicate that e was on the
border of the encoded mesh in which case e is removed from
the active border. Then the candidate w is identified by its
position inside the candidates list. The decoder then attaches
the triangle e ] w and adds its edges to the active border
(Algorithms.1 and 2).

Quantized radius. The decoder has to choose which vertex
w of the encoded mesh was adjacent to e. This information
is encoded by the index of w inside a list of candidates. This

Algorithm 1 GEncode
1: priority queue q // q ordered by edge length
2: q.enqueue( edges of the first triangle )
3: while NOT q.empty() do // main loop
4: e := q.top() // the longest edge of the border
5: w such that e]w is a triangle and NOT w.encoded()
6: r := G(e, w) // ρ(e ] w)/length(e)
7: [Gmin,Gmax] := quantize(r) // quantization interval
8: encode Gmax // encodes the quantized radius
9: candidates := select( bsp, e, [Gmin,Gmax] ) // looks in

the binary space partition for candidates
10: sort (candidates, G ) // optimal G(e ] w) first
11: encode( position of w in candidates ) // candidate #
12: q.enqueue( edges of e ] w 6= e ) // front update
13: end while

Algorithm 2 GDecode
1: priority queue q // q ordered by edge length
2: q.enqueue( edges of the first triangle )
3: while NOT q.empty() do // main loop
4: e := q.top() // the longest edge of the border
5: decode Gmax // decodes the quantized radius
6: candidates := select( bsp, e, [Gmin,Gmax] ) // looks in

the binary space partition for candidates
7: sort (candidates, G ) // optimal G(e ] w) first
8: w = decode( position in candidates ) // candidate #
9: add triangle e ] w // advancing front

10: q.enqueue( edges of e ] w 6= e ) // front update
11: end while

list could be the list of all vertices, but that would be too
expensive. In order to minimize the number of elements of
the candidate list and the time used to create that list, the
geometric criterion G(e, w) of w is quantized and encoded. If
the edge e was on the border of the original mesh, a specific
symbol is encoded. In the implementation, the binary space
partition of the geometric encoding is used to accelerate the
search for candidates.

Candidate position. The quantized radius is just an interval
[Gmin,Gmax] that contains G(e, w). The decoder then enu-
merates all the candidates vi /∈ e that could fit in this interval
: G(e, vi) ∈ [Gmin,Gmax], and order this list of candidates
by G: G(e, vi) < G(e, vi+1) (Figure 10). For typical meshes,
this ordering lowers drastically the entropy.

Manifoldness restriction. If we know the original mesh
was a manifold, we can remove from the list the candidates
that would create a non–manifold triangulation, i.e. the ver-
tices that are not in the active border. Moreover, once an edge
of the active border has been processed, it can safely be re-
moved from the active border, as it has either been marked
as a border edge or is already bounding two triangles.

Quantization for the Ball Pivoting criterion. We would
like our encoding algorithm to compress better the output

The corresponding work was published in the proceedings of the Sibgrapi 2005, pp. 249–256. IEEE Press, 2005.
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(a) edge length (b) circumradius (c) quantized radius

Figure 11: Whereas the circumradius of a simple mesh has a high entropy (a), its circumradius divided by the edge length (b) has a very
low entropy and can be efficiently quantized (c). However, when some of the triangles an edge to a distant vertex, as in Figure 12, their
quantization become expensive.

(a) # candidates (b) candidate position

Figure 9: The quantization of the geometrical criterion affects the
entropy of the candidate position.

of reconstruction algorithms. For example, each triangle of
a mesh reconstructed by the Ball Pivoting Algorithm mini-
mizes the geometric criterion G(e, w) = ρ(e]w). The radius

candidate #3

would create a
non–manifold

vertices out
of range

candidate #1

candidate #2
G(τ, w)

τ

w

Figure 10: Candidate selection from a given geometric criterion
(here the circumradius).

can then be quantized in a more efficient manner by consid-
ering G(e, w) = ρ(e]w)/length(e) (Figure 11). As ρ is the
circumradius, ρ(e ] w) > 1

2 length(e). Moreover, with this
quantization, the candidates can be searched only in a ball
centred of radius

√
3 ·Gmax at the midpoint of e. The radius

is then quantized in an exponential manner, with a parameter
k that, experimentally, was optimum around 7:

q(e, w) =
⌈
log2

(k ρ(e ] w)
length(e)

− k

2
)⌉

, k = 7.

Figure 12: The circumradius encoding can be expensive for meshes
generated with a criterion different from G(e, w).

This quantization is actually a trade–off between an ex-
pensive coding of the radius, which could identify com-
pletely the vertex and reduce the candidate position (Fig-
ure 9), and no quantization of the radius which will slow the
coders and increase the entropy of the candidate position.
Note that if the mesh was reconstructed by the Ball Pivoting
Algorithm, the quantized radius takes a unique value, and
the right candidate is always the first one. The connectivity
is thus compressed with 0 byte.

Traversal strategy. These kinds of optimizations actually
depend of which edge of the active border is chosen at each
step. In particular for the Ball Pivoting case, the radius will
be better quantized if the length of the active edge is bigger,
as it optimizes the entropy of G(e, w) = ρ(e]w)/length(e)
(Figure 13).
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Figure 13: Traversal of a sphere and of a Klein bottle models, from
cold to hot colours: good orders can improve the compression.

(c) GEncoding in higher dimension

The algorithm we described here actually works for sim-
plicial manifolds of any dimension d, and the generality of
the geometry encoder allows working in any co–dimension.
The algorithm is exactly the same: a first s–simplex is en-
coded, and all its bounding (d−1)–simplices are enqueued in
the active border priority queue.

For the Restricted Ball Pivoting case [20], this queue is
sorted by the volume of the (d−1)–simplex. For each ac-
tive (d−1)–simplex τ , the radius of the uncoded incident
d–simplex σ = τ ] w divided by the volume of τ is quan-
tized and coded. In dimension greater than 3, the volume of
a simplex can be computed using the Cayley–Menger de-
terminant [5]. This determinant can be used to compute the
circumradius of the simplex [5], but the computation in high
dimensions is expensive and our implementation substitutes
it for dimension greater than 4 by the volume.

Based on that radius, the coder builds up a list of candi-
dates, using the binary space partition to optimize the search.
The position of w in that list is then coded. When the mesh
is known to be a manifold, vertices that are not part of the
active border are not considered as valid candidates, and the
(d−1)–simplices are considered only once.

(d) GEncoding non–manifold objects

The encoding of non–manifold triangulations (as on Fig-
ure 1) which are pure complex functions exactly as described
in the previous section, without the manifoldness restric-
tions. The special symbol for border (d−1)–simplices at the
radius quantization step is used to tell the decoder that the
active (d−1)–simplex has no more incident d–simplex.

For non–pure triangulations, i.e. simplicial complexes of
dimension d ≥ 2 having non–pure simplices of dimension
k < d not bounding any simplex, the situation is quite
more delicate. We encode first the pure part Kd of the
complex, i.e. all the simplices of dimension d, with the above
technique. Then, we consider all the non–pure simplices
of dimension d−1 as a new non–manifold triangulation to
encode, considering the border of Kd as the active border.
This procedure then repeats for dimension d−1, until reaching
dimension 1.

4 Results and comparisons

Geometry Connectivity
animal 19.343 1.980
art 19.561 1.491
cad 18.566 1.682
math 21.499 1.996
medical 21.220 2.411
scans 18.639 1.372
original 19.334 2.246
re–meshed 18.882 1.269
all 19.089 1.717

Table 1: GEncode compression ratio, in bits per vertex. These
results are an average over 200 models, grouped by category.

GEncode intends to compress better meshes that have a
nice geometry. In the case of the Ball Pivoting criterion, this
means that the simplices should be as equilateral as possible,
or at least a sub–triangulation of a Delaunay polyhedron.
This is the case of reconstruction algorithm [4] or some
techniques of re–meshing [2]. The results of Table 1 shows
this behaviour stands in practice, as the re–meshed models
and the scans sculptures are better compressed than the other
models (Figure 14). Although most of the results presented
here are surfaces, the algorithm has been implemented for
any dimension and co–dimension. The only two features
that were not implemented in high dimension are the non–
pure compression and the manifoldness recognition (which
is a NP–hard problem). We did not have enough geometrical
models in high dimension to make a valid benchmark.

The compressor compares nicely to existing compression
scheme, although it is able to compress a wider range of
models. Table 2 details some comparisons with the Edge-
breaker algorithm [21, 18, 16] for the meshes illustrating
this work. These comparisons were made using the parallel-
ogram prediction for the Edgebreaker, with the same quanti-
zation for the vertices (12 bits per coordinate). We are aware
that many techniques improved on this parallelogram pre-
diction [8]. As the difference is tight, the performance of

Figure 14: Candidate position for scanned models: the connectivity
is encoded almost at zero rate: # is not transmitted, and thus almost
only 0 codes are encoded.

The corresponding work was published in the proceedings of the Sibgrapi 2005, pp. 249–256. IEEE Press, 2005.
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#vertices EB Geometry EB Connectivity GEncode Geometry GEncode Connectivity
terrain 16641 17.093 0.282 13.505 3.557
mechanical 71150 ∗ ∗ 15.860 0.822
david 24988 25.800 2.707 16.985 1.631
horse 19851 24.856 3.012 18.216 1.193
gargoyle 30059 20.992 2.316 18.379 0.894
bunny 34834 17.050 2.178 18.767 1.182
blech 4102 21.552 2.102 20.721 4.550
fandisk 6475 19.555 2.254 21.519 2.630
klein 4120 ∗ ∗ 22.110 3.436
sphere 642 27.975 2.268 24.685 0.051
rotor 600 31.667 3.693 24.078 6.438

Table 2: GEncode compression ratio compared with Edgebreaker. The mechanical piece is not a manifold object, and the Klein bottle is not
orientable, which prevented the Edgebreaker to work.

connectivity–driven algorithm could best this current version
of GEncode for surfaces. However, we believe that there are
many open directions to improve this new scheme that will
maintain it competitive.

5 Future works

Figure 15: Number of candidates: with the Ball Pivoting criterion,
CAD models are compressed faster if re–meshed.

This work provides a geometry–driven compression
scheme that compresses efficiently meshes resulting from
expensive processing, in particular scanned and re–meshed
models. This scheme actually encodes also nicely more gen-
eral models, and compares nicely to the existing compression
schemes for the case of surfaces. Moreover, it generalizes
easily to arbitrary dimension and arbitrary ambient space di-
mension, and to singular topological models.

The geometrical criterion of the algorithm is fundamental
for the compression and we can certainly improve it or
combine it with other criteria. For example for the CAD
models (Figure 15), the edge length could serve as a switch
between criteria (Figure 16), which allows using different
ones jointly. This work extends in a straightforward manner
for non–simplicial meshes with convex cells. But we plan to
extend it first to progressive and multi–resolution meshes,
not directly based on the k–d tree hierarchy, as existing
methods gave poor visual results [9, 15].
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