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ESDRAS MEDEIROS3

1 Department of Mathematics — Pontifı́cia Universidade Católica — Rio de Janeiro — Brazil
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Abstract. Performances of actual mesh compression algorithms vary significantly depending on the type of model
it encodes. These methods rely on prior assumptions on the mesh to be efficient, such as regular connectivity,
simple topology and similarity between its elements. However, these priors are implicit in usual schemes,
harming their suitability for specific models. In particular, connectivity–driven schemes are difficult to generalise
to higher dimensions and to handle topological singularities. GEncode is a new single–rate, geometry–driven
compression scheme where prior knowledge of the mesh is plugged into the coder in an explicit manner. It encodes
meshes of arbitrary dimension without topological restrictions, but can incorporate topological properties, such
as manifoldness, to improve the compression ratio. Prior knowledge of the geometry is taken as an input of the
algorithm, represented by a function of the local geometry. This suits particularly well for scanned and remeshed
models, where exact geometric priors are available. Compression results surfaces and volumes are competitive with
existing schemes.
Keywords: Mesh Compression. Geometry–driven techniques. Arbitrary Meshes. Arbitrary Dimension.
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Figure 1: GEncode compression: once the geometry is decoded, the decoder attaches triangles to edges of the front by identifying its apex w:
A list of candidates is computed from an encoded geometric range (a) and ordered according to a geometric criterion (b), here the distance
from w to the edge midpoint. Then w is identified in this ordered list (c) by its position (d).

Preprint MAT. 02/06, communicated on March 17th, 2006 to the Depart-
ment of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro,
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1 Introduction
Computer Graphics developments handle each time big-

ger meshes, using processes of increasing complexity. Com-
pression algorithms followed these developments by improv-
ing the compression ratio, enlarging the range of models that
can be encoded, simplifying their implementation and in-
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creasing execution performances. However, they are still not
fully adapted to the wide variety of models and applications
of Computer Graphics: scans in artistic and archaeological
modelling, isosurfaces for medical and mathematical visu-
alisation, re–meshed models for reverse engineering, finite–
element meshes for simulation, high–dimensional meshes
for solid representation, meshes with high co–dimension for
non–linear optimisation, among others. Actually, the perfor-
mances of state–of–the–art compression algorithms highly
depend on the nature of the model. We will focus here on
compression schemes adapted to the priors of specific ap-
plications, in particular for the most time–consuming mesh
generation algorithms: reconstruction and the re-meshing.

Geometry–driven compression. Meshes are usually de-
scribed by their geometry (the coordinates of its vertices)
and their connectivity (the combinatorial elements that in-
terpolate these vertices, usually triangles or simplices). This
composite nature leads to classify compression algorithms
between: on one hand connectivity–driven ones, when the
connectivity is coded separately and the geometry is partially
deduced from it, and on the other side geometry–driven ones,
when the geometry is coded separately and the connectivity
is coded using the geometry. The efficiency of connectivity–
driven algorithms usually relies on a regular connectivity,
whereas the newer trend of geometry–driven methods are ex-
pected to perform better on geometrical meshes, such as re-
constructed or re-meshed models. This work proposes a new
geometry–driven method, which encodes arbitrary meshes in
arbitrary dimension, and compares nicely to connectivity–
driven methods for surfaces (Figure 1) and for volumes (Fig-
ure 11).

Related works. The first mesh-compression algorithms
were connectivity–driven, in the sense that the geometry en-
coding depends on the connectivity encoding rules. Among
those, the Edgebreaker [33, 29, 27, 23] performs well
on generic meshes, with guaranteed practical worst–case
close to the theoretical optimum [19]. On the other side,
Valence Coding [35, 9, 18] has a theoretical asymptotic
compression ratio close to the optimum [1]. It has been
widely extended since the original work, and performs very
well in practise, especially on meshes with a regular connec-
tivity. Some singularities of the mesh can further be handled
by specific algorithms, in particular for the non–manifold
case [13, 30].

These connectivity–driven approaches can be extended to
higher dimensions, but the complexity of the codes increases
dramatically. Even for tetrahedral meshes, the extensions of
the surface approaches [14, 32, 17] are delicate.

As an intermediate towards geometry–driven approaches,
some connectivity–driven schemes use the previously coded
geometry to predict the connectivity [20, 21, 11, 18]. Each
of these algorithms uses a different prior on the geometric
regularity of the mesh.

On the contrary, geometry–driven approaches introduced
by [12] handle gracefully complex connectivity. Still, the

compression ratios of the geometry are not yet optimal, since
these schemes are quite new to the community. However, for
the case of isosurfaces, specific compression schemes [34,
22, 24] outperform any connectivity–driven approach.

Contributions. This work proposes a new geometry–
driven scheme called GEncode, which works for meshes
of arbitrary topology and dimension embedded in spaces
of arbitrary dimension. To our knowledge, GEncode is the
first compression method that works at that level of gener-
ality and still compares nicely to state–of–the–art compres-
sion methods for triangulated surfaces and volumes. As op-
posed to [12], GEncode is single rate, but copes with gen-
eral meshes, and shows better compression ratios: For sur-
faces, the resulting compression ratios are competitive with
the Edgebreaker with the parallelogram prediction, and for
volumes it is highly competitive with Grow&Fold [32] and
with streaming compression [16].

Aside from its generality, GEncode treats the priors of
the mesh as an input, and can therefore easily adapt to spe-
cific classes of meshes. These priors include on one side
global topological properties such as manifoldness, the pres-
ence of boundary and eventually the degree of the facets, and
on the other side local geometrical properties represented by
a scalar function of the vertices of a facet. For example, a
common prior for usual Computer Graphics models assumes
that the mesh is a triangulated manifold without boundary,
and that the triangles maximise their circumradius or their
aspect ratio. In particular, if the mesh can be reconstructed
from its vertices with a geometric prior, the GEncode con-
nectivity encoding with that prior leads to a zero entropy
code.

This work is an extended version of [25] and part of
Thomas Lewiner’s Ph.D. [26]. It describes GEncode at its
high level of generality, investigates different geometric pri-
ors and separates the geometric range definition from the ge-
ometric prior in order to reduce the constraints on the geo-
metric function defining the prior. Moreover, this version in-
cludes tests on tetrahedral meshes, where GEncode turned
out to be particularly competitive.

Overview. This work is organised as follow. section 2 Gen-
eral Meshes recalls the basic notions of meshes, expressed in
arbitrary dimension. Then section 3 Independent Encoding of
the Geometry introduces the two methods we considered for
compressing the geometry, and how we synthesised them.
The main part of GEncode is introduced at section 4 Connec-
tivity Encoding: Geometric Range and Apex Identifiers, followed
in section 5 Geometric Priors by a discussion on priors that
can be plugged into the algorithm to compress efficiently
usual models. Finally, section 6 Results provides some results
and comparisons with state–of–the–art methods on common
models, and compares them with the Edgebreaker for sur-
faces, and with Grow&Fold and streaming methods for vol-
umes.

The corresponding work was published in Computer Graphics Forum, volume 25, number 4, pp. 685–695. Blackwell, december 2006.
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Figure 2: Cell complex elements topology and cell attachment
operation.

2 General Meshes
This section introduces the basic definitions that are used

in this work, especially the notion of convex cell com-
plexes [15]. This notion is introduced formally, but corre-
sponds to the usual meshes used in Computer Graphics, and
the reader can think of this notion as a generalisation of trian-
gulated surfaces. They can be constructed in an incremental
manner by the single operation of cell attachment. This con-
struction is usually referred as advancing front, and entails
most of the mesh decoding algorithms.

Convex cells. A convex cell σ in Rp is a non-empty com-
pact subset of Rn which is the solution set of a finite number
of equations fipxq � 0 and inequalities gipxq ¥ 0, where
fi and gi are affine functions of the form px1, x2, ..., xpq ÞÑ
λ0 � λ1x1 � λ2x2 � ...� λpxp.

A cell σd has dimension d if it contains d � 1 affine in-
dependent points but no more. A subcell τ of σ is a cell ob-
tained by changing some of the inequalities gipxq ¥ 0 to
equalities. We will say that σ is incident to τ . The collection
of all the subcells of σd of dimension d�1 is denoted Bσ.

Points, line segments, triangles, quadrangles, tetrahedræ,
cubes are examples of convex cells. Among these convex
cells are the simplices, which generalise the notion of line
segment, triangle and tetrahedron: A d–simplex is the con-
vex hull of pd�1q affine independent points in the space.

Convex cell complex. A convex cell complex K is a co-
herent collection of distinct convex cells, where coherence
means that the collection contains the subcells of each cell
and the intersection of any two cells. A convex cell complex
K is pure of dimension n if every cell in K is of dimension
n or is a subcell of a cell of dimension n belonging to K. A
facet of a pure n–complex K is a cell of K of dimension n.

The vertices of a cell are its subcells of dimension 0. The
geometry of a complex usually refers to the coordinates of
its vertices, while its connectivity refers to the incidence of
higher dimensional cells on these vertices. Observe that a
cell is uniquely determined by its vertices.

Cell attachment. An n–cell σ can be attached to a complex
K by identifying a collection of its subcells tτ1, � � � , τku
with some of the cells of K, preserving its nature of cell

complex.
If one of the cells τ of K is of dimension n�1, this cell

attachment can be considered as the attachment of σ onto τ ,
and we will write σ � τ � tw1, . . . , wmu, where the verticestw1, . . . , wmu are those of σ not subcells of τ (Figure 2).
These vertices are called the apexes of the cell attachment. If
σ is a simplex, there is only one apex (m � 1).

Manifolds. Among these convex cell complexes, the class
of combinatorial manifolds is the most widely used. A com-
binatorial n–manifold M is a pure complex of dimension
n where for each vertex v, the union of each open simplex
containing v is homeomorphic to the open n–ball Bn or the
intersection of Bn with a closed half–space. This implies that
each pn�1q–cell is a subcell of either one or two n–cells. The
set of pn�1q–cells subcells of only one n–cell is called the
boundary of M (Figure 2).

3 Independent Encoding of the Geometry

GEncode is a pure geometry–driven scheme, and the
coordinates of the vertices of the mesh are thus encoded
separately before the connectivity compression. We consid-
ered two geometry coding techniques, described in [12] and
in [8], and propose a synthesis of them. This synthesis has
similar compression ratios as both [12] and [8], but empha-
sises their strong points and could be the basis for further
improvements on this part of the coding. In our experiments,
the proposed synthesis is generally more efficient on small
models (below 3000 vertices) or on the three–dimensional
meshes we tested (Figure 11), whereas [12] gets the best re-
sults for larger models.

Space partition encoding. The coordinates of all the ver-
tices are encoded globally as a space partition tree. This kind
of techniques works for vertices with an arbitrary number
of coordinates, allowing encoding meshes of arbitrary co–
dimension. In particular in [12] and [8], the space is divided
with a particular binary space partition where each separator
is perpendicular to the axis, as an octree for dimension 3: the
axis alternates from one level to the next one (X,Y,Z,X,Y. . .
in R3), and each part is subdivided in two equal sub-parts, as
on Figs. 3, 4 and 5. The subdivision is performed until each
part contains only one vertex. We will now compare and syn-
thesise these techniques.

5

5

⇒ 0

4
⇒ 1

2

⇒ 2

1 1

⇒ 1
⇒ 1

Figure 3: The geometry encoder of [12] codes first 5 as a standard
32 bits number, then 5 on rlog2p6qs bits, and then 4 on rlog2p6qs
bits. The right vertex relative position is then coded. Then 2 is coded
on rlog2p5qs bits, and both 1 on rlog2p3qs bits. The position of the
last vertices is coded.
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Lower nodes efficient. In [12], each node of the space
partition is encoded by the number of vertices #vl its left
children contains. The number of vertices of the other node
#vr is simply deduced by difference from the number of the
vertices of the parent’s node #vf which is known from the
recursion. This technique wastes many bits at the beginning
of the encoding: the number of nodes must be encoded on
rlog2p#vf � 1qs bits, since the number of node of the left
child can be t0, . . . , #vfu (except the first node which is on
32 bits by convention), as for the example of Figure 3. At the
end, when there is only one vertex per node, it is encoded
with 1 bit per level, which is optimal.

+

0

+ +
+

+

+ +

++ ++

0

0

Figure 4: The geometry encoder of [8] codes the following se-
quence: �0, ��, ��, 0�, ��, ��, 0�. Then follow 0� and�0 to reach the desired number of bits.

Higher nodes efficient. In [8], each node is encoded by
one out of 3 symbols: �� if both children contain at least
one vertex, �0 if only the left child contains a vertex, and
0� if only the right one contains a vertex, as for the example
of Figure 4. Note that at least one child must contain a vertex,
since the parent did. The encoding stops at a predefined level.
This method spends more bits at the end of the encoding,
since the decoder does not know when there is only one
vertex in a node. Therefore, the encoder sends log2p3q bit
for each level, which is greater than the 1 bit of [12] for the
last part.

+

0

+ 1
+

+

1 1

11

Figure 5: Synthesis: the encoder codes the following sequence:�0,�1 and the right vertex relative position is then coded, and then��, 11, 11. The position of the remaining vertices is then coded.

Synthesis proposal. The goal of this synthesis is to take
the best part of both. First, it encodes each node by one of 6
symbols:�� if both children contains more than one vertex,�1 and 1� if one child contains more than one vertex, and
the other only one, 11 if they both contain only one vertex,
and �0 and 0� if one child contains more than one vertex,
and the other child is empty, as for the example of Figure 5.
With this encoding, the encoder detects when there is only
one vertex in a node, and then uses the technique of [12]. The
coder further benefits from the different probability of the
symbols. Moreover, these probabilities are used differently
depending on the level of the node to encode: nodes closer

to the root are more frequently of type ��, whereas these
are rare when going closer to the leaves.

4 Connectivity Encoding:
Geometric Range and Apex Identifiers
The main contribution of GEncode is its connectiv-

ity coding (Algs. 1: gencode and 2: gdecode). As a
generic geometry–driven compression scheme, the geometry
is known before the connectivity is decoded, either because
it is already available as a point cloud, or because it has been
decoded by a method like the one we presented above. The
connectivity decoding then works similarly to greedy ad-
vancing front reconstruction algorithms such as [6, 28, 31],
but the best match used by the reconstruction algorithm is
continuously corrected by the encoded stream. Therefore,
for meshes that can be reconstructed with a greedy strategy,
GEncode can achieve a zero entropy message for the con-
nectivity.

Coding Principle. The algorithm encodes an initial n–
cell and then works as an advancing front triangulation,
maintaining an ordered queue of pn�1q–cells and attaching
at each step a cell τ �tw1, . . . , wmu to τ , the cell of the front
with the highest priority, or removing τ from the front, for
example when τ is on the boundary of the final mesh. When
an n–cell is attached, its pn�1q–faces are added to the front.
The compression of a connected component ends when the
front is empty. The difference with greedy reconstruction
algorithms is that vertices wj are not always the ones that
minimise a given geometric criterion G pτ, wjq, such as the
circumradius of τ � wj used by [6]. Such criteria will be
discussed in section 5 Geometric Priors. To identify the apex
wj , we actually encode its position in a list of candidates,
generated by a geometric range rRmin,Rmaxs and ordered
by geometric criterion G.

Geometric Range. The list of candidates for w could be the
list of all vertices, but that would allow O p#vertsq choices,
which is too expensive to encode. In order to reduce the
size of that list and the time used to compute it, a geomet-
ric function R pτ, wq is transmitted (Figure 6(a)). However,
the quantisation process encodes R pτ, wq as one of the pre-
defined ranges: R pτ, wq P rRmin,Rmaxs. The list of candi-
dates will then be the vertices vi such that R pτ, viq belongs
to rRmin,Rmaxs (Figure 6(b)).

The definition of the geometric functionRmust be effec-
tive for identifying the candidate vertices. In particular, for
simple geometric priors G on the mesh, we choose R � G.
Moreover, the binary space partition of the geometric encod-
ing is used to accelerate the localisation of the candidates.

Apex Identifiers. Once the list of apex candidates tviu is
generated, it is ordered by the geometric prior G pτ, viq. For
example on Figure 6(c), the best candidate according to G
gets identifier 1, the second best match receives identifier 2.
The original apex gets identifier 3, and this number is trans-
mitted to the decoder, which can then perform the right cell

The corresponding work was published in Computer Graphics Forum, volume 25, number 4, pp. 685–695. Blackwell, december 2006.
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front cell τ
apex w

geometric fun.
R(τ, w)

(a) Coder side: geometric functionR pτ, wq � }τmid � w}. (b) Both sides: geometric rangeRmin ¤ R pτ, wq   Rmax.

(c) Both sides: apex candidates are ordered by the geometric prior
G pτ, viq � ρ pτ � viq.

new front cell

(d) Decoder side: the decoded apex identifier #3 defines
the cell attachment τ � w.

Figure 6: GEncode principle: the geometric function (a) is encoded. Its quantisation restricts the apex candidates, which are then filtered
by the topological priors (b). The candidates are ordered (c) and the encoder transmits the candidate number in the list (here #3), which
allows the decoder to perform the cell attachment (d) and continue on the next front cell.

attachment (Figure 6(d)). This ordering gives a higher prob-
ability to the lower identifiers and thus reduces the entropy.

Non–simplicial meshes. If the mesh is not simplicial,
a third number needs to be encoded: the number m of
apexes for the cell attachment τ � tw1, . . . , wmu (line 8 of
Alg. 1: gencode). Moreover, there is one range per apex wj ,
but only the smallest and the biggest ranges of the wj are
actually encoded. In that case, we know that the second and
following apexes are restricted to be on the affine hyperplane
defined by τ �w1. This reduces the candidate list, which im-
proves the entropy of the apex identifiers stream.

Quantisation trade–off. This scheme actually encodes the
apex by two means: the geometric range and the apex iden-
tifier. The quantisation of the geometric function is thus a
trade-off: On the one hand, if the quantisation is rough, there
will be many candidates, which requires more time to gener-
ate the list and an expensive encoding of the position of wj in
the list of the candidates, as shown on the histograms of Fig-
ure 7. On the other hand, if the quantisation is too refined,
the quantised geometric range will be expensive to encode.

Topological Priors. GEncode compresses pure meshes
of arbitrary dimension, embedded in any co–dimensional
space, orientable or not, with any kind of topology. If the
mesh contains multiple connected components, the algo-
rithms are applied separately on each of them. Further infor-
mation on the mesh will then improve the compression ratio:
We already saw that if the mesh is simplicial, the encoding
of the face degree (parameter m at line 8 of Alg. 1: gencode)
can be avoided. Even if this is not known to the coder, the
sequences of m will be constant, and thus have entropy zero.

Computer Graphics meshes are usually manifolds. In that
case, GEncode is optimised in two ways: firstly, by remov-
ing from the list the candidates that would create a non–
manifold object, i.e. the vertices that are not on the boundary
of the reconstructed mesh (Figure 6(b)). Secondly, an pn�1q–
cell will be processed at most once. Therefore, the m � �1
code of line 16 of Alg. 1: gencode only serves as a marker for
boundary cells, reducing its range to 0{�1 and thus improv-
ing the entropy of that code. If the complex is a simplicial
manifold without boundary, the encoding of m can be omit-
ted for both the number of apexes and the boundary marker
(lines 8 and 16 of Alg. 1: gencode).

Preprint MAT. 02/06, communicated on March 17th, 2006 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) range: roughly quantised (low
entropy).

(b) number of candidates (high en-
tropy).

(c) range: precisely quantised (high
entropy).

(d) number of candidates (low en-
tropy).

Figure 7: Quantisation trade–off: rough quantisation of R leads to lower entropy for the range, but more candidates, thus higher entropy for
the apex identifier.

Non–pure complexes. The above algorithms can be ex-
tended to cope with more general topology. If the n–complex
K is not pure, as the one of Figure 2, we first encode it
as if it were a pure complex. The uncoded cells will then
be the non–pure elements of K. They form a complex K 1
of dimension lower than n. We then encode K 1 as above
and continue recursively. This involves at most n�1 calls
to Alg. 1: gencode or Alg. 2: gdecode, which maintains the
linear complexity of these algorithms (considering that the
localisation of the candidates is constant).

Algorithm 1 gencode(R,G): encodes one component of a
pure n–complex.

// Encodes the first n–cell, and adds its facets to the queue

1: σ Ð encode first pinitial cell pqq
2: q ÐH ; q.push pBσq
// Front propagation

3: while τ Ð q.top pq do
4: if τ .mark then continue end

// Encodes all uncoded the cells incident to τ

5: for all σ ¡ τ do
6: if σ.mark then continue end

// Encodes the degree of the facet (non–simplicial case)

7: tw1, . . . , wmu Ð apexes pσ, τq
8: encode pmq

// Computes and encodes the geometrical function

9: rRmin,Rmaxs Ð
quantise range pτ, tw1 . . . wmuq

10: encode pRmin,Rmaxq
// Apex candidates in that range, best matches first

11: tv1, . . . , vku Ð candidates pτ, rRmin,Rmaxsq
12: sort ptv1, . . . , vku ,Gq

// Encodes the position of each apex in the list

13: for j P v1,mw do encode pi : wj � viq end
14: q.push pBσq ; σ.mark Ð true
15: end for

// End of incident n–cells (non–closed manifold case)

16: encode p�1q ; τ.mark Ð true
17: end while

Guarantees. Given a convex cell complex K, the
GEncode compression encodes a sequence of cell at-
tachments, starting from an empty cell, and ending at K.
The decompression reconstructs K by this sequence, and
identifies each cell attachment uniquely by the front cell,
the number of apexes and their identifiers. The definition of
a convex cell complex implies that this is enough to define
the geometric realisation of the attached cell |σ|. However,
there can be more than one combinatorial description of |σ|
if two p–cells of the boundary of σ are aligned (contained in
a p–affine plane). If this degenerated case does not occur in
K, GEncode is then guaranteed to reconstruct K. If it oc-
curs, the model can be either perturbed, or Algs. 1: gencode
and 2: gdecode can be modified to encode the combinatorial
structure of degenerated cells.

Algorithm 2 gdecode(R,G): decodes one component of a
pure n–complex.

// Decodes the first n–cell, and adds its facets to the queue

1: σ Ð decode first pq
2: q ÐH ; q.push pBσq
// Front propagation

3: while τ Ð q.top pq do
4: if τ .mark then continue end

// Decodes the degree of the facet or the code for next τ

5: while mÐ decode pq && m � �1 do
// Decodes the geometrical range

6: rRmin,Rmaxs Ð decode pq
// Apex candidates in that range, best matches first

7: tv1, . . . , vku Ð candidates pτ, rRmin,Rmaxsq
8: sort ptv1, . . . , vku ,Gq

// Decodes each apex by its position in the list

9: for j P v1,mw do i Ð decode pq ; wj Ð vi end

// Attach the new cell

10: σ Ð attach pτ, τ � tw1, . . . , wmuq
11: q.push pBσq ; σ.mark Ð true
12: end while
13: τ.mark Ð true
14: end while

The corresponding work was published in Computer Graphics Forum, volume 25, number 4, pp. 685–695. Blackwell, december 2006.
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(a) circumradius (b) edge length (c) quantised range

Figure 8: Normalisation of the geometric range significantly reduces the entropy.

5 Geometric Priors
GEncode relies on two complementary geometric func-

tions: the geometric range rRmin,Rmaxs and the geometric
prior G that orders the apexes by their probability to com-
plete the front cell. In a rough sense, R encodes the highest
bits of the apexes, which are usually the same as the highest
bits of the front cell τ , and G predicts the best apex in that
range.

We will consider here two uses for the geometric function
R: either to encode a specific geometric property of the mesh
or to localise the apexes. In the first case, it should be equal
to G (as in [25]). In the second case, its simplest expression
would be the distance to the barycentre of the front cell τ .
We will thus focus now on G.

Geometric criterion. The geometric criterion G pτ, wq is an
arbitrary real valued function that should be minimal with
high probability when the cell τ � w is a cell of the mesh.
This criterion uses the local geometry of τ � w, and may
take into account the decoded mesh, although we will not
use this feature here. The more the criterion fits to the coded
mesh, the better the compression ratio, since parameter i at
line 13 of Alg. 1: gencode will be equal or close to 0 with
high probability, reducing the entropy of these codes.

Closest point criteria. The simplest geometric criterion
is the distance to the barycentre of τ : Gd pτ, wq �}w � bary pτq}. In that case, the geometric function R
can be normalised by the volume (length) of τ quan-
tised on r0,8r with an exponential function: Rd pτ, wq �Q
log2

�Gd pτ, wq {vol pτq �U. For regularly sampled meshes,
the geometric range should therefore be always a low value.

Mesh quality criteria. Geometric Modelling gener-
ally aims at generating meshes composed of well–
shaped cells. The usual definition for well–shaped tri-
angles are the aspect ratio Ga pτ � pv1, v2q , wq �
}v1�v2}2�}w�v1}2�}w�v2}2

areapv1,v2,wq and the Delaunay constraint
Gc pτ, wq � circumradius pτ � wq. The first one usu-
ally concerns rendering applications and for local mesh
improvement [2], whereas the second one is widely used
in reconstruction [6, 5, 10] and global remeshing [3, 4].

These criteria can also be used for the geometric function
R with an exponential quantisation, noticing that they are
bounded from below (by 16?

5
for the aspect ration and 1

2 for
the circumradius normalised by the edge length (Figure 8)).
We can observe that the Delaunay criterion mimics the
Ball Pivoting [6, 28] algorithm, where the geometric range
encodes the variations of the ball radius. In higher dimen-
sion, these criteria can be extended using the Cayley–Menger
determinant (especially for computing the circumradius [7])
or replaced by the cell volume for faster computation.

Figure 9: Traversal of a sphere and of a Klein bottle models, from
cold to hot colours: good orders can improve the compression.

Traversal strategy. The criterion G actually depends of
which front cell is chosen at each step. Therefore, the or-
der in which the complex is traversed has an influence on the
compression ratio, as in most advancing front (greedy) al-
gorithms. Normalised criteria as the distance or the circum-
radius will be a priori better quantised if the normalisation is
bigger. Since the volume of the front cell is the natural nor-
malisation (Figure 8), we store the front as a priority queue
ordered by the volume of the cells.

6 Results
Compression results. GEncode originally intended to
compress better meshes that have a nice geometry. The De-
launay criterion is particularly adapted to reconstruction al-
gorithms [6, 5, 10] or some techniques of re–meshing [3, 4].
The results of Tab. 1 shows this behaviour stands in prac-
tise, as the remeshed models and the scans sculptures are bet-
ter compressed than the other models (Figure 10). Although
the results presented here are of dimensions two and three,
the algorithm has been implemented for any dimension and

Preprint MAT. 02/06, communicated on March 17th, 2006 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.



T. Lewiner, M. Craizer, H. Lopes, S. Pesco, L. Velho and E. Medeiros 8

Quantised Range R Quantisation precision Geometric Criterion G
distance circumradius rough regular detailed distance volume aspect circumradius

animal 17% 83% 7% 17% 76% 100% 83% 77% 83%
art 5% 95% 43% 90% 0% 26% 31% 67% 54%
cad 45% 55% 96% 3% 1% 47% 19% 7% 50%
math 67% 33% 55% 21% 24% 54% 5% 22% 35%
medical 0% 100% 100% 0% 0% 61% 0% 0% 39%
sculpture 78% 22% 21% 41% 38% 80% 0% 1% 19%

Table 2: Percentage of best results obtained by each geometric function, range precision, geometric criterion on the models used for Tab. 1.
The best result can be reached by various geometric criteria, leading to a sum over 100%.

co–dimension, and the illustrations of this work represent
the models decoded by our implementation. The only two
features that were not implemented in high dimension are
the non–pure compression and the manifoldness recognition
(which is NP–hard).

Geometric priors. The adaptation power of GEncode al-
lows using different priors on the same model to check which
is the most efficient. Tab. 2 compares different methods on
the same range of models as Tab. 1, showing the percent-
age of best results for each quantised range, range precision
and geometric criterion. The range precision represents the
above–mentioned trade–off between range quantisation and
apex identifiers. The best result can be reached by various
geometric criteria, particularly when the mesh is very regu-
lar or when the quantised range encodes almost completely
the apex.

Comparison. GEncode compares nicely to existing com-
pression scheme, although it is able to compress a wider
range of models. Tab. 3 details some comparisons with the
Edgebreaker algorithm [29, 27, 23] for the meshes illustrat-
ing this work. These comparisons were made using the par-
allelogram prediction for the Edgebreaker, with the same
quantisation for the vertices (12 bits per coordinate). Ob-
serve that even for surfaces, connectivity–driven compres-
sion schemes handle with difficulty non–simple topology, as
for the mechanical piece, which has a pinched vertex or the

Geometry Connectivity
animal 19.343 1.980
art 19.561 1.491
cad 18.566 1.682
math 21.499 1.996
medical 21.220 2.411
scans 18.639 1.372
original 19.334 2.246
re–meshed 18.882 1.269
all 19.089 1.717

Table 1: GEncode compression ratio, in bits per vertex, using the
Delaunay constraint for both the quantised range and the geometric
criterion. These results are an average over 200 models, using an
order one arithmetic coder.

Klein bottle, which is not orientable, whereas these are han-
dled gracefully by the GEncode.

GEncode turns out to be very effective for volumes em-
bedded in R3 (Figure 11), as shown on Tab. 4. We com-
pared with the connectivity–driven compression of [32] for
the connectivity, and with the streaming compression of [16].
Although this latter method shows some similarity with this
work, the compression ratios of GEncode are in average
more than 35% superior to streaming compression, at the
cost of being slower.

7 Conclusion
This works proposed a new geometry–driven compres-

sion scheme that is, to our knowledge, the first compres-
sion method that encodes meshes of any dimension and ar-
bitrary topology, while being efficient compared to compres-
sion methods for triangulated surfaces. Prior knowledge on
the model is used independently by GEncode: as an input
for the geometric priors and as optimisation of the execution
and compression ratio for the topological priors. In particular
for scanned and re–meshed models, classical geometric pri-
ors such as the aspect ratio or Delaunay constraint improve
significantly the compression ratio.

There is a computational price for the gain in compres-
sion: the localisation procedure, which consumes the main
part of the execution time, is still slow for general geomet-
rical ranges. In particular when comparing with streaming

(a) geometric range (b) apex identifier

Figure 10: Compression of scanned models: the connectivity is
encoded almost at zero rate: # is not transmitted, and thus almost
only 0 codes are encoded.

The corresponding work was published in Computer Graphics Forum, volume 25, number 4, pp. 685–695. Blackwell, december 2006.
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nv EB GEncode
geom conn geom conn

terrain 16641 17.09 0.28 13.11 2.71
mechanical 71150 NA NA 15.86 0.82
david 24988 25.80 2.71 16.99 1.63
horse 19851 24.86 3.01 18.22 0.85
gargoyle 30059 20.99 2.32 18.38 0.58
bunny 34834 17.05 2.18 18.77 0.97
blech 4102 21.55 2.10 20.73 2.79
fandisk 6475 19.56 2.25 21.52 1.31
klein 4120 NA NA 22.11 2.63
sphere 642 27.98 2.27 24.65 0.03
rotor 600 31.67 3.69 24.08 5.18

Table 3: GEncode compression ratio (in bits per vertex) for tri-
angulated surfaces compared with Edgebreaker [29, 23]. The me-
chanical model is not manifold, and the Klein bottle is not ori-
entable, which prevented the Edgebreaker to work.

nv G&F Stream GEncode
conn geom conn geom conn

sph simul. 12229 76.36 34.00 75.87 22.50 12.76
iron piece 6103 51.93 29.90 25.17 18.17 10.45
molecule 5853 54.00 34.57 23.51 21.77 19.82
triceratops 4344 55.41 34.84 25.82 19.39 18.06
seismic fault 3403 63.50 36.17 35.15 22.57 11.97
dog 3286 55.50 34.31 17.13 20.13 16.86
fandisk 3000 64.85 36.23 18.11 24.26 9.06
turbine 2953 NA 33.91 11.80 22.95 14.71
rattle 2514 NA 33.84 11.40 22.48 13.12
solid torus 1004 60.52 41.04 15.69 26.68 9.22
sphere1000 986 65.01 41.19 18.76 31.46 10.01
points on S2 770 43.56 33.14 8.76 21.87 8.34
bended cube 400 57.86 42.52 15.36 23.54 14.59
gear 234 48.62 47.18 15.01 26.18 10.92
finite elem 141 53.22 53.05 19.29 29.77 11.98
sphere100 100 55.84 57.36 19.68 31.49 8.61

Table 4: GEncode compression ratio (in bits per vertex) for tetra-
hedral meshes compared with Grow & Fold [32] and streaming
compression [16].

compression methods, the 35% gain required a three or four
times more time in our experiments. Moreover, the separate
encoding of the geometry still limits the final compression
ratio. On one hand, the geometric compression can be im-
proved, and the synthesis proposed in this work is a first
attempt in that direction. On the other hand, improvements
based on mixed geometry/connectivity encoding are feasible
with GEncode.
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(a) A bended cube, decompressed from cold
to hot colours.

(b) A mesh of poor quality, generated from points
closed to the sphere S2, with the distribution of their
circumradii.

(c) A turbine model, similar to the rotor surface,
with the distribution of the apex identifiers during
the decoding.

Figure 11: Compression on tetrahedral meshes works exactly as for triangulated surfaces.
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