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Abstract. This paper introduces Stellar Simplification, a fast implementation of the Four–Face Cluster algorithm.
In our version of this mesh simplification scheme, we adopt a probabilistic heuristic that substitutes the priority
queue of the original algorithm. This made our version, in average, 40% faster. In our implementation, we adopt
a very concise data structure which uses only two arrays of integers to represent the surface topology. We also
introduce a new scheme to encode and decode the hierarchy of meshes generated by the simplification algorithm.
This scheme can be used for progressive transmission and compression of meshes.
Keywords: Mesh simplification. Geometry processing. Randomized algorithms.
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Figure 1: Bunny model simplified with 5098, 2628, 696 and 260 faces.

1 Introduction
The typical surface models handled by contemporary

Computer Graphics applications have millions of triangles.
Mesh Simplification has emerged as a critical step for han-
dling such huge meshes. On one hand, there is an evi-
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dent need for removing redundancies on meshes obtained
by surface reconstruction algorithms, such as the Marching
Cubes [6]. On the other hand, meshes with a high level of de-
tail even without redundancies could be extremely expensive
not only for rendering, but also for storing or exchanging
them through the web [4]. In both cases, efficient simplifi-
cation process can get simpler models with lower computa-
tional costs [1]. Moreover, the hierarchical multi–resolution
structure produced by our simplification can be used in a
wide range of applications [7].
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Prior work. Many efficient mesh simplification methods
are based on local topological operators. The most common
is the Edge–Collapse, which consists in contracting the two
vertices of an edge onto a unique vertex, eliminating its two
incident faces. The inverse of the Edge–Collapse operation
is called Vertex–Split. Simplification schemes construct a se-
quence of edges to be collapsed, resulting in a hierarchy of
meshes of decreasing size. Traversing this sequence in a re-
verse order, with Vertex–Split operations, it is possible to re-
cover details from the mesh of minimal size (base mesh). Al-
though topological tests can preserve the topology of the sur-
face during the simplification, its geometry will be distorted.
To minimize this distortion, an energy function measuring
the quality of the mesh is used to guide the mesh simplifica-
tion. An example of such function is the quadric error met-
ric [3]. For those algorithms, the priority queue is a natural
data structure to store the order of the edges to be simplified,
since it allows a variety of operations (inclusion, removal of
the largest, etc.) to be efficiently performed.

Although the priority queue is efficient, it is necessary to
build it before starting the simplification process. Moreover,
at each step of the process a time is consumed not only to re-
process the geometrical change for all edges involved in the
local operation, but also to update their priority on the queue.
In order to solve this problem, Wu and Kobbelt [11] pre-
sented a technique called Multiple–Choice based on proba-
bilistic optimization where there is no use of a priority queue,
but the edge to be contracted is chosen among d randomly
selected edges.

Velho in [9] proposed a new method, called Four–Face
cluster mesh simplification, which produces a sequence of
Edge–Weld operations intercalated with Edge–Flip opera-
tions. Edge–Weld and Edge–Flip are stellar operators [10].
The Edge–Flip swaps an internal edge of a 2 face cluster.
The Edge–Weld removes a valence 4 vertex from a four–face
cluster and replaces it by the internal edge of a two–face clus-
ter. Edge flips are required to change the valence of a vertex
to 4. In this algorithm the energy functions are computed on
vertices, and not on edges.

Contributions. This work enhances the Four–Face Clus-
ters algorithm by substituting the priority queue by the Mul-
tiple-Choice technique. The result is an algorithm that is
about 40% faster than the original one and that requires less
memory. We call the new algorithm Fast Stellar Simplifica-
tion, because it is based on the stellar operators Edge–Weld
and Edge–Flip. For a complete presentation of stellar opera-
tors see [10].

We also introduce a new scheme to represent the hierar-
chy of meshes obtained during the process of simplification.
In this scheme we adopt the Corner–Table data structure [8],
which allows a concise and simple implementation of our
new algorithm. Finally, we propose two practical ways to en-
code and decode, in a compressed way, the hierarchy of the
multi–resolution mesh.

Paper outline. Section 2 Corner–Table Data Structure de-
scribes the Corner–Table data structure. Section 3 Local Oper-
ators and Topological Validation presents the topological oper-
ators that will be used in our algorithm. Section 4 The Four–
Face Cluster Method presents the original Four–Face cluster
algorithm. Section 5 The Fast Stellar Simplification Algorithm
introduces the Fast Stellar Simplification Algorithm based
on the multiple choice technique. Section 6 Simplification with
Multi–Resolution presents the scheme to encode and decode
the hierarchy of the surfaces generated by the simplification
algorithm. Finally, Section 7 Results shows some results and
comparison with the former Four–Face cluster algorithm.

2 Corner–Table Data Structure
Basic concepts. A simplex σp of dimension p (p-simplex,
for short) is the convex hull of p + 1 linearly independent
points in Rm, called its vertices. A p-simplex has p dimen-
sions and is composed of p + 1 simplices of dimension
(p− 1), called faces. The set of 2, 1 and 0 dimensional sim-
plices will be called, respectively, triangles, edges and ver-
tices. If σ is a subsimplex of a simplex τ then they are said
to be incident to each other.

A simplicial complex C is a finite set of simplices together
with all its subsimplices such that if σk and τp, k ≤ p belong
to C, then either σk and τp meet at a subsimplex λm, m ≤ k,
or are completely disjoint. A triangle mesh is a simplicial
complex whose simplices are at most dimension 2.

Combinatorial manifolds. We will consider an orientable
triangulated combinatorial surface S. This is the general case
of manifold triangle meshes embedded inR3, but we are only
concerned with their connectivity, e.g., the triangle/vertex
incidence and the triangle/triangle adjacency information.
For more details in the following definitions, see [2].

In a triangle mesh M , the star of a vertex v is a subset of
M composed by the union of simplices that are incident to
v, and is denoted by star(v). . The link of a vertex v, denoted
by link(v), is the frontier of star(v), or the union of 0 and 1
simplices of star(v) that are not incident to v.. The Link of
an edge (u, v) are the opposite vertices by the edge (u, v).

Definition 1 (combinatorial surface) A triangular mesh
M is a combinatorial surface if: Every edge in M is bound-
ing either one or two triangles and the link of a vertex in M
is homeomorphic either to an interval or to a circle.

Corner–Table. The Corner–Table is a very concise data
structure for triangular meshes. It uses the concept of corner
to represent the association of a triangle with one of its
bounding vertices, or equivalently the association a triangle
with its bounding edge opposite to that corner: it may be
viewed as a compact version of the half–edge representation
of triangular meshes.

In this data structure, the corners, the vertices and the tri-
angles are indexed by non–negative integers. Each triangle is
represented by 3 consecutive corners that define its orienta-
tion. For example, corners 0, 1 and 2 correspond to the first
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triangle, the corners 3, 4 and 5 correspond to the second tri-
angle and so on. . . As a consequence, a corner with index c
is associated with the triangle of index c.t = floor (c÷ 3).

The Corner–Table data structure represents the geometry
of a surface by the association of each corner c with its
geometrical vertex index V[c].

Assuming a counter–clockwise orientation, for each cor-
ner c, the next(c) and prev(c) corners on its triangle bound-
ary are obtained by the use of the following expressions:
next(c) = 3c.t + (c + 1) mod 3, and prev(c) = 3c.t +
(c + 2) mod 3.

The edge–adjacency between the neighboring triangles
is represented by associating to each corner c, its opposite
corner O[c], which has the same opposite geometrical edge.
This information is stored in two integer arrays, called the V
and O tables. Figure 2 shows an example of a Corner–Table
representation for a tetrahedron.

1

0

1

0 2 0

3

V[0] = 0 O[0] =   4

V[1] = 1 O[1] =   9

V[2] = 3 O[2] =   8

V[3] = 1 O[3] = 10

V[4] = 2 O[4] =   0

V[5] = 3 O[5] =   7

V[6] = 1 O[6] = 11

V[7] = 0 O[7] =   5

V[8] = 2 O[8] =   2

V[9] = 2 O[9] =   1

V[10] = 0 O[10] =   3

V[11] = 3 O[11] =   6

Figure 2: Tetrahedron example

3 Local Operators and Topological Validation
Our algorithm is based on two local topological operators:

the Edge–Flip, and the Edge–Weld. In this section we will
describe not only those two, but also the more classical
Edge–Collapse operator in order to compare them.

Edge–Collapse: This operator consists in removing an
edge e = (u, v), identifying its vertices to a unique vertex v.
From a combinatorial viewpoint, this operator will remove
1 vertex, 3 edges and 2 faces from original mesh, without
changing its Euler characteristic. From a geometric view-
point, the new position of the vertex v can be computed with
the geometry around u and v. Let s and t be the vertices op-
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Figure 3: Edge–Collapse

posite to e = (u, v), which is the edge to be collapsed (see
Figure 3). Choosing edges according to the following link

condition will guarantee the topological consistency of this
operation [2] (see Figure 4).
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Figure 4: Link Condition

Lemma 2 (Link Condition) Let S be a combinatorial 2–
manifold. The contraction of an edge e = (u, v) ∈ S
preserves the topology of S if and only if link(u)∩ link(v) =
link(e).

Edge–Flip: This operation consists in transforming a two–
face cluster into another two–face cluster by swapping its
common edge. Let the edge e = (u, v) and s and t the
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Figure 5: Edge–Flip

two vertices opposed to e (see Figure 5). The Edge–Flip
operation will replace e by (s, t), and replace the 2 triangles
incident to e by (u, s, t) and (v, t, s). In the Corner–Table
data structure, each edge can be univocally represented by
one of its opposite corners. This is used by the Algorithm 1
to perform the Edge–Flip operation on the edge opposite to
the corner c0.

Algorithm 1: Edge–Flip(c0)
// Label incident corners
c2 = prev(c0); c1 = next(c0);
c3 = O[c0]; c4 = next(c3); c5 = prev(c3);
a = O[c5]; b = O[c2]; c = O[c4]; d = O[c1];
// Label incident vertices
t = V [c0]; v = V [c1]; s = V [c3];
// Perform swap
V [c1] = s; V [c3] = v; V [c4] = s; V [c5] = t;
// Reset opposite corners
O[c2] = c3; O[c0] = a; O[c3] = c2; O[c4] = d;
O[c5] = c; O[a] = c0; O[c] = c5; O[d] = c4;
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Figure 6: Edge–Weld

Edge–Weld. This operation consists in transforming a
four–face cluster into a two–face cluster by removing its cen-
tral vertex. Consider a valence 4–vertex v, adjacent to the
vertices s, t, w and u (see Figure 6). The star of v forms
a four–face cluster. The Edge–Weld operation removes the
vertex v and re–triangulates the quadrangle by splitting it.
The dividing edge e can be either (w, u) or (s, t). The result
is a two–face cluster composed by the two faces incident to
e.

Theorem 3 Consider a combinatorial 2–manifold M , and a
vertex v of M with valence 4. With the notations of Figure 6,
the removal of the vertex v by the Edge–Weld operation
preserves the topology of M if and only if there is no edge in
M connecting w to u.

Proof: Consider s, w, t and u, in this order, the vertices ad-
jacent to v. Removing v is equivalent to an Edge–Collapse
operation on the edge e = (v, u). Therefore, the topology
of M is preserved if and only if the link condition is satis-
fied: link(v) ∩ link(u) = {s, t} = link(e). As {u,w} =
link(v) \ link(e), this condition is valid if and only if w does
not belong to link(u). This means that there is no edge con-
necting w to u. ¤

Given a mesh represented by a Corner–Table, the Algo-
rithm 2 performs the removal of the vertex incident to the
corner c0:

Algorithm 2: Edge–Weld(c0)
// Assign incidences
c1 = next(c0); c2 = prev(c0);
c4 = next(O[c1]); c5 = prev(O[c1]);
a = O[next(O[c5])]; b = O[prev(O[c2])];
// Perform vertex removal
V [c0] = V [O[c2]]; V [c4] = V [c0];
// Reset opposite corners
O[c5] = a; O[a] = c5; O[b] = c2; O[c2] = b;

Luiz Velho proved in [9] that the Edge–Collapse opera-
tion can be decomposed into a sequence of Edge–Flips oper-
ations, followed by one Edge–Weld operation. The Figure 7
illustrates this process.
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Figure 7: Edge–Collapse decomposition.

4 The Four–Face Cluster Method
The Four–Face Cluster algorithm (FFC) is based on the

Edge–Weld and Edge–Flip operators. Since the Edge–Col-
lapse operation is equivalent to a sequence of those stellar
operators, the Four–Face Cluster method can implement an
Edge–Collapse based method. However, the stellar opera-
tions are more flexible. In the case of the Edge–Collapse /
Vertex–Split, there are many possible sequences of Edge–
Flips leading to a final Edge–Weld. Therefore, the order of
those Edges–Flips can be chosen to improve the quality of
the mesh (for example improving aspect ratio or preserving
dihedral angle), which is more tricky in the Edge–Collapse
operations. As a consequence, the Four–Face Cluster (FFC)
algorithm is more flexible than Edge–Collapse based algo-
rithms.

Algorithm’s outline. The FFC algorithm constructs a hi-
erarchy of meshes

(
M0,M1, . . . , Mn

)
with a decreasing

number of elements (vertices, edges and faces). In this hi-
erarchy, surface M0 is the original surface M , and each sur-
face M j , j = 1 . . . n, corresponds to the level of detail j
of M . We will now describe how we obtain such levels of
resolutions.

In the initialization step for each level of detail j, all the
vertices of M j−1 are marked as valid for removal. Then,
we select a marked vertex v to be removed from the surface
M j−1. When the valence of the vertex v is not 4, we apply
a sequence of Edge–Flip operations to bring its valence to
4. The four vertices on the star of the modified vertex v are
then unmarked. They will not be valid for further removal
until the next level of detail j + 1. Next, we remove the
valence 4 vertex v using an Edge–Weld operation. Figure 7
illustrates this sequence of operations. When all the vertices
are unmarked, the resulting surface M j corresponds to level
of detail j inside the hierarchy of surfaces. On entering the
next step, we mark all the remaining vertices of M j in order
to create M j+1 and so on.

Quadric Error Metric. Each local simplification intro-
duces a geometric error between the surfaces M j and M j+1.
This cost is computed in the original FFC algorithm using the
QEM [3], as follow.
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Let v be a vertex of M j , and fi ∈ star(v) a face incident
to v. Let ai be the area of fi and pi = (nx, ny, nz, d) the
plane supporting fi. The fundamental error quadric Qi is
defined in [3] by:

Qi = pip
T
i =




n2
x nxny nxnz nxd

nxny n2
y nynz nyd

nxnz nynz n2
z nzd

nxd nyd nzd d2




It can be used to compute the squared distance d (w) of a
point w to the plane pi:

di (w) = wT
(
pip

T
i

)
w = wT Qiw

Garland and Heckbert compute their quadric error metric by
adding all of those distances di (w) for all face fi.

Simplification criterion. The FFC algorithm assigns a
quadric Qv to each vertex v of the mesh, which is computed
as the weighted sum of the quadrics Qi associated with each
face fi incident to v:

Qv =
∑

aiQi

We compute the error introduced by removing a vertex v
from the mesh, considering each Edge–Flip and Edge–Weld
costs, by [9]:

E (v) = αC (v) + βS (v)

This cost balances the vertex removal distortion C (v) and
the swap distortion S (v). In our implementation, we chose
α = 0.75 and β = 0.25. The cost C (v) of removing a vertex
v of valence 4 is defined as:

C (v) = min
{
uT (Qv + Qu) u, u ∈ link(v)

}

The cost S (v) is the sum of the cost of Edge–Flips in
Star(v) used to bring v to valence 4. To compute this
cost, we compute the sequence of independent Edge–Flips,
minimizing the aspect ratio [12] and trying to preserve the
dihedral angle.

Implementation. The original implementation used a pri-
ority queue, which requires computing the costs of all ver-
tices before beginning the simplification. Moreover, at each
simplification step, we need to re–compute the cost of all ver-
tices involved in the local operation. With a priority queue,
we would have to update corresponding priorities. The Al-
gorithm 3 gives the pseudo–code for the Four–Face Clus-
ter Simplification Algorithm introduced in [9]. It generates
n levels of resolution of a given mesh M .

Algorithm 3: SimplifyFFC(M, n)
assign quadrics;
for all(v ∈ M) do

compute E (v)
for (j = 1 to n) do

mark all vertices as valid for removal
insert all vertices in the priority queue
while (queue is not empty) do

get v from queue
if (v marked) then

perform edge swaps to bring v to valence 4
unmark the vertices w ∈ link(v)
remove vertex (v)
re–compute the errors Qu and Qw

update queue for w ∈ link (u) ∪ link (w)

5 The Fast Stellar Simplification Algorithm

An alternative to simplification methods based on prior-
ity queue was presented by Wu and Kobbelt in [11]. They
propose, instead of using the priority queue, to choose the
element to be simplified inside a reduced, randomly selected
set of d elements. This probabilistic optimization strategy is
motivated by the fact that when simplifying high resolution
meshes, most of the vertices will be removed anyway. As a
consequence, it would not be necessary to choose a vertex
with lower cost among all possible candidates at each sim-
plification step.

The basic idea of this Multiple–Choice technique is to
obtain a small random subset of d edges to be collapsed,
say d = 8, and perform the collapse for the edge with the
lower cost among them. Our implementation is an adaptation
of this idea, since we compute costs on vertices and not on
edges. We obtain a random subset of vertices to be simplified
and perform the simplification for the vertex with the lower
cost of this set. This strategy leads to a good choice of the
vertex to be simplified, except for a rare probability that all
d random vertices were among the vertices that should not
be removed. Assuming that we simplify a 3D model down to
5% of its original complexity, we hope that the resulting (not
removed) vertices will have high costs. The probability of
choosing one of the high–cost vertices on a random subset of
d = 8 vertices is actually small enough:

(
5

100

)8 ≈ 4×10−11.

Using this technique we do not need to sort the vertices
by their cost, avoiding the expansive use of a priority queue.
Since, at each randomly selected subset the costs of the d
vertices will be recomputed, it is also not necessary to re–
compute the cost for the vertices on the neighborhood of
the removed vertex. This allows a simpler implementation
and improves the algorithm’s performance. The Algorithm 4
shows the pseudo–code to generate n levels of resolution for
a mesh M using this process:
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Algorithm 4: SimplifyFS(M, n)
assign quadrics;
for (j = 1 to n) do

mark vertices as valid for removal
while (exist a valid vertex) do

for (i = 1 to 8) do
vi =valid random vertex
if E(vi) < E(v) then v = vi

perform edge swaps to bring v to valence 4
unmark the vertices w ∈ link(v)
remove vertex (v)
re–compute quadrics Qu and Qw

When the number of valid vertices is less then 8, one or
more vertices can be selected more than once in order to
remove all valid vertices.

6 Simplification with Multi–Resolution
One objective of this section is to introduce two strategies

to encode the hierarchy of meshes
(
M0,M1, .., Mn

)
gener-

ated by our Fast Stellar simplification algorithm: the parallel
and the sequential encoding. The main difference between
those two strategies relies in the type of hierarchical struc-
ture they produce. The parallel encoding produces a multi–
resolution mesh with separated levels of details, whose reso-
lution changes globally on each level. The sequential encod-
ing produces a progressive mesh, whose resolution changes
locally inside each level.

Multi–resolution representation. The Corner–Table data
structure uses only two arrays (O and V) of integers to
represent the surface topology and a third array (G) to store
the geometry of the mesh. In order to represent the hierarchy
of surfaces, in our implementation we adopt the following
strategy. The connectivity of the surface M j is represented
by the arrays Oj and Vj , while its geometry uses the original
array G for all levels of detail, since we do not modify
the indices of the vertices during the simplification process.
Therefore, in order to change from one level to another, we
simply allocate the arrays O and V corresponding to the
desired level.

Parallel Encoding. This strategy produces a multi–resolu-
tion mesh whose resolution changes globally at each level.
Parallel encoding is useful when the user wants to move
from one level of resolution to another. In such application,
we could allocate only the memory necessary to represent
the surface of a certain level. Thus, we simply need to
encode the surface M j . We implemented this encoding in a
compressed manner (with less than 2 bits per triangle) using
the Edgebreaker compression scheme.

We used Edgebreaker because there is a very concise and
simple implementation of this compression scheme for sur-
faces with handles using the Corner–Table data structure [5].
We modify this implementation by adding a fourth attribute
to vertex geometry, its index on the G table of the original
surface. Maintaining these indices for the vertices at each

level of detail enable us to interchange the use of parallel
and sequential encoding. For example, in the application we
can move directly to the level 5 of resolution using the par-
allel encoding, and then in a progressive way return to the
level 4 by the use of the sequential encoding.

Sequential Encoding. In the sequential case, we encode
each stellar operation: at each vertex simplification we store
the history of the Edge–Flips and Edge–Welds operations.
This strategy is similar to the Progressive Mesh encoding [4],
which encodes the history of Edge–Collapse operations for
their simplification algorithm. The main idea of this encod-
ing is to obtain a refinement process by reading in the reverse
order the history of stellar operations performed by the Fast
Stellar simplification algorithm.

In the sequential encoding, we store a string of integers to
represent the sequence of operations performed on each ver-
tex simplification. Figure 8 illustrates a vertex simplification
with the encoding of the corresponding operations. Let call v

1 2

6 3

45

7

1 2

6 3

45

7

1 2

6 3

45

7

1 2

6 3

45

1 14 1463-7

Figure 8: Encoding of a vertex simplification

the vertex to be removed, and e = (u, v) ∈ star(v) an edge
to be swapped. Since each e has v as extremity, we encode
only the index of u to represent an Edge–Flip operation. The
Edge–Weld operation is encoded by 3 integers 2 integers for
encoding the resulting edge of the vertex removal and 1 in-
teger to encode the original index of the removed vertex.

In order to interchange the parallel encoding with the se-
quential encoding, we write each level of detail in a separated
file. As a consequence, we start the progressive refinement
process at any level of detail obtained by the simplification.
In the Progressive Mesh [4], the starting surface for refine-
ment is restricted to be the base mesh.

7 Results
The results presented in [11] shows that the performances

of mesh simplification algorithms using the Multiple–Choice
technique are 2.5 times faster than using a priority queue,
with similar outputs. Furthermore, the Multiple–Choice
technique leads to a simpler implementation, since there is
no need for a priority queue construction or of re–compu-
tation at each simplification step. Similarly, the experiments
below show that the Fast Stellar simplification is 40% faster
than the original Four–Face Cluster algorithm.

Table 1 shows the running time of each routine during
the simplification, using the Four–Face Cluster (FFC) and
Fast Stellar (FS) algorithms. Table 2 shows the total running
time comparison (in sec) for simplifying some models. No-
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FFC FS
Operation t(s) % t(s) %
Assign Quadrics 0.110 1.26 0.110 1.95
Compute E (v) 7.880 90.51 4.930 87.54
Update Queue 0.360 4.14 – –
Choose d random v – – 0.340 6.04
Edge Swaps 0.165 1.90 0.088 1.56
Vertex Removal 0.170 1.95 0.141 2.50
Recompute Qu/Qw 0.021 0.24 0.023 0.41
Total 8.706 100 5.632 100

Table 1: algorithm’s steps comparison.

# Triangles Running time Ratio
Model Input Output FFC FS ffc/fs
Bunny 9672 260 7.320 4.130 1.77
Cow 5804 202 4.680 2.780 1.68
Terrain 5708 190 4.520 2.690 1.68
Torus 14144 344 9.100 5.110 1.78

Table 2: Total time comparison.

tice that the total time for the Stanford’s Bunny model in Ta-
ble 1 is greater then in Table 2 because of we did some more
measures of time spent by each routine. Figure 9 compares
the absolute maximum geometric error, based on QEM, in-
troduced for the Bunny model in various levels of details by
the two different algorithms.

In Figure 10 we present two examples of models to visu-
ally compare the two algorithms. Notice that, as in [11], the
results got in both methods are similar. For the first exam-
ple, we chose the Stanford’s Bunny model. Figure 1 shows
the levels of detail 2, 4, 8 and 11 obtained using the FFC and
the FS. Figure 11 shows the simplification of cow model, our
second example. We show in this figure the levels of detail
6, 8, 10 and 12 obtained using both algorithms.

Figure 9: Geometric error comparison

8 Conclusions and Future works
In this paper we presented the Fast Stellar simplification

algorithm, which is a fast implementation for the Four–
Face cluster algorithm. We adopted the Corner–Table data
structure to represent the surface, which shows to be very
suitable not only for the stellar operators’ implementation
but also for the encoding. We pointed out the conditions
to safely apply the Edge–Weld and Edge–Flip operators.
We also proposed two strategies to encode and decode the
hierarchy of surfaces generated by the simplification.

We plan to continue this work in three directions. First,
we will try to create an efficient compression scheme for the
sequential encoding. Second, we intend to use this simpli-
fication algorithm to obtain a parameterization scheme for
surfaces, which is a very active area of research in Computer
Graphics. Finally, we will investigate a hardware implemen-
tation of this algorithm taking advantage of the simplicity of
the Corner–Table data structure.
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(a) level 6 – FFC (b) level 8 – FFC (c) level 10 – FFC (d) level 12 – FFC

(e) level 6 – FS (f) level 8 – FS (g) level 10 – FS (h) level 12 – FS
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