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Abstract. This paper proposes the Stellar Mesh Simplification method, a fast implementation of the Four–Face
Cluster algorithm. In this method, a probabilistic optimization heuristic substitutes the priority queue of the
original method, which results in a 40% faster algorithm with the same order of distortion. It extends naturally
to a progressive and/or multi–resolution scheme for combinatorial surfaces. This work also presents a simple way
to encode the hierarchy of the resulting multi-resolution meshes. This work also focuses on important aspects for
the development of a practical and robust implementation of this simplification technique, and on the analysis of
the influence of the parameters.
Keywords: Computer Graphics. Computational Geometry and Object Modeling. Mesh simplification. Geometry
processing. Randomized algorithms.

(a) Original: 7400 faces. (b) Simpl.: 500 faces, d = 4. (c) Simpl.: 500 faces, d = 8. (d) Simpl.: 500 faces, d = 12.

Figure 1: Simplification of the Dinosaur model with different random choice panel sizes.

1 Introduction
The typical surface models handled by contemporary

Computer Graphics applications have millions of triangles.
Mesh Simplification has emerged as a critical step for han-
dling such huge meshes. On one hand, there is an evident
need for removing redundancies on meshes obtained by
surface reconstruction algorithms, such as Marching Cubes
[10]. On the other hand, meshes with a high level of de-
tail even without redundancies could be extremely expensive
to render, store or transmit [6]. In both cases, an efficient
simplification process would generate simpler models with
lower computational costs [2]. This paper proposes the Stel-
lar Mesh Simplification simplification scheme, a fast imple-
mentation of the Four–Face Cluster algorithm [15]. It uses
a probabilistic optimization heuristic based on the Multiple-
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Choice technique [16] that substitutes the priority queue of
the original algorithm. The result is a 40% faster algorithm
with the same order of distortion. It also induces naturally a
hierarchical multi–resolution structure that can be used in a
wide range of applications [13].

Prior work. Many efficient mesh simplification methods
are based on local topological operators [4, 15, 16]. The most
common is the Edge–Collapse, which consists in contracting
the two vertices of an edge onto a unique vertex, eliminat-
ing its two incident faces. The inverse of the Edge–Collapse
operation is called Vertex–Split. Simplification schemes con-
struct a sequence of edges to be collapsed, resulting in a hier-
archy of meshes of decreasing size. Traversing this sequence
in a reverse order, with Vertex–Split operations, it is possible
to recover details from the mesh of minimal size (base mesh).
Although topological tests can be performed to preserve the
topology of the surface during the simplification, its geome-
try will be distorted. To minimize this distortion, an energy
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function measuring the quality of the mesh is used to guide
the mesh simplification. An example of such function is the
quadric error metric [4]. For those algorithms [4, 15], the
priority queue is a natural data structure to store the order of
the edges to be simplified, since it allows a variety of oper-
ations (inclusion, access and removal of the largest, etc.) to
be efficiently performed.

Although the priority queue is efficient, it is necessary to
build it before starting the simplification process. Moreover,
at each step of the process a significant amount of time is
consumed not only to reprocess the geometrical change for
all edges involved in the local operation, but also to update
their position in the priority queue. In order to accelerate
this process, Wu and Kobbelt [16] presented a technique
called Multiple–Choice based on probabilistic optimization
where there is no use of a priority queue, but the edge to
be contracted is chosen among a small number of randomly
selected edges.

In [15], Velho proposed a mesh simplification method,
called Four–Face cluster (FFC), which produces a sequence
of Edge–Weld operations intercalated with Edge–Flip oper-
ations. Edge–Weld and Edge–Flip are two example of topo-
logical operators based on the Stellar Theory [1, 11]. The
Edge–Flip swaps an internal edge of a 2 face cluster. The
Edge–Weld removes a valence 4 vertex from a four–face
cluster and replaces it by the internal edge of a two–face
cluster. Edge–flips are required to change the valence of a
vertex to 4. Stellar theory proved that those two operators
forms a complete set for changing the connectivity of the
mesh without modifying its topology. Differently from the
other algorithms cited above, the FFC computes the energy
function on the vertices, and not on the edges.

Contributions. This work enhances the Four–Face Clus-
ters algorithm by substituting the priority queue by the Mul-
tiple-Choice technique. The result is an algorithm that is
about 40% faster than the original one and that requires less
memory. This algorithm is called Stellar Mesh Simplification
(SMS), because it is based on the stellar operators Edge–
Weld and Edge–Flip. To provide a formal definition for those
operators, an introduction to Stellar Theory is given.

In this SMS implementation, the Corner–Table data struc-
ture [14] is adopted, which allows a concise and simple im-
plementation of the algorithm. This paper also introduces a
new scheme to represent the hierarchy of meshes obtained
during the process of simplification. It is proposed a prac-
tical way to compress the hierarchy of the multi–resolution
mesh using the Corner–Table.

A very significant objective of this work is to point out im-
portant aspects to be considered when developing a practical
and robust implementation of this simplification technique,
and also analyses the influence of the algorithm’s parameters
on the quality of the result. Finally, this work also compares
the SMS method to important related works.

Paper outline. Section 2 Surface Topology and section 3 Stel-
lar Theory will review some basic concepts of topology and

Stellar Theory. Section 4 Extended Corner–Table Data Struc-
ture and section 5 Local Operators and Topological Validation
describe the data structure and the topological operators that
will be used in the algorithm. Section 6 Simplification crite-
rion presents the geometric criterion used to guide the sim-
plification. Section 7 The Four–Face Cluster Method presents
the original Four–Face cluster algorithm. Section 8 The Stel-
lar Mesh Simplification Algorithm introduces the Stellar Mesh
Simplification algorithm based on the multiple choice tech-
nique. Section 9 Simplification with Multi–Resolution presents
a scheme to encode and decode the hierarchy of the sur-
faces generated by the simplification algorithm. Finally, sec-
tion 10 Results shows some experimental results for the algo-
rithm’s parameters and comparisons.

2 Surface Topology
A simplex σp of dimension p (p-simplex, for short) is the

convex hull of p + 1 points {v0, ..., vp}, vi ∈ Rm, in general
position, i.e., when the vectors v1 − v0, v2 − v0, ..., vp − v0

are linearly independent. The points v0, ..., vp are called the
vertices of σ. A face of σ is the convex hull of some of the
vertices of σ and therefore is also a simplex. The simplices
of dimensions 2 and 1 will be called, respectively, triangles,
edges. If σ is a face of a simplex τ then σ is said to be
incident to τ . The boundary of a p-simplex σ, denoted by ∂σ,
is the collection of all of its proper faces, i.e., those different
from σ itself. Two k-simplices σ and ρ ∈ K are adjacent
when σ ∩ ρ 6= ∅, and independent otherwise. The valence of
a vertex v ∈ K is the number of edges which have v as a
vertex, and is denoted by val(v).

A simplicial complex K is a finite set of simplices to-
gether with all its sub–simplices such that if σ and τ belong
to K, then either σ and τ meet at a sub–simplex λ, or σ and
τ are independent.

The underlying polyhedron |K| ⊂ Rm corresponds to the
union of the simplices in K. A triangle mesh is the underly-
ing polyhedron of a 2-dimensional simplicial complex.

The join σ star τ of independent simplices σ and τ is the
simplex whose vertices are those of σ and τ . The join of
complexes K and L, written K star L, is {σ star τ : σ ∈
K, τ ∈ L} if the following holds:

1. If σ ∈ K and τ ∈ L, σ and τ are independent.

2. If σ1, σ2 ∈ K and τ1, τ2 ∈ L, then σ1 star τ1 ∩
σ2 star τ2 is either empty or a face of σ1 star τ1 and
σ2 star τ2.

Consider a simplicial complex K and σ ∈ K. The local
neighborhood of σ is described by the following elements:

– The open star of σ is ˙star(σ,K) = {τ ∈ K :
σ is a face of τ}.

– The star of σ is star(σ,K) = {τ ∈ K :
τ is a face of an element of ˙star(σ,K)}.

– The link of σ is link(σ,K) = {τ ∈ K :
τ and σ are independent and σ star τ ∈ K}.

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.
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Definition 1 (combinatorial surface) A triangular mesh
M is a combinatorial surface if: Every edge in M is bound-
ing either one or two triangles and the link of a vertex in M
is homeomorphic either to an interval or to a circle.

The edges in a combinatorial surface M incident to only
one face are called boundary edges. A vertex incident to
a boundary edge is called a boundary vertex. The set of
the boundary simplices forms the boundary of M and is
denoted by ∂M. The boundary of a combinatorial surface is
a collection of closed curves. The edges and vertices that are
not on the boundary are called, respectively, interior edges.
Observe that the link of an interior edge is the pair of opposite
vertices. and interior vertices. Figure 2 and Figure 3 illustrate
the star and the link of interior and boundary vertices on a
surface.

(a) Interior vertex (b) Boundary vertex

Figure 2: Vertex star.

(a) Interior vertex (b) Boundary vertex

Figure 3: Vertex link.

A combinatorial surface is orientable when it is possible
to choose a coherent orientation on its edges, i.e., two adja-
cent triangles induce opposite orientations on their common
edge.

From now on, a surface will always mean an oriented
combinatorial surface. This is the general case of manifold
triangle meshes embedded in R3. For more details on the
following definitions, see [1].

3 Stellar Theory
The previous section defined several concepts of topol-

ogy that will be used in this work. This section will show
how to manipulate the structure of a combinatorial surface
without modifying its topology, which is the main point of
the Stellar theory.Stellar theory was developed in the 1920’s,
by [1] and [11]. It combines the abstract and piecewise linear
approaches to combinatorial topology. More recently, [12]

consolidated the theory. The main point of Stellar theory is
the study of equivalences between simplicial complexes [8].

The link and the star of a simplex σ provide a combinato-
rial description of the neighborhood of σ. They can be used
to define certain changes in a triangle mesh, without modi-
fying essentially that neighborhood (i.e., perform a combi-
natorial modification taking care to do not “topologically”
change the topology of the surface in R3). The stellar opera-
tions provide a such change. They comprise bistellar moves
and stellar subdivision:
Definition 2 Let K be an n-dimensional simplicial complex.
Take an r-simplex σ ∈ K, and a (n − r)-simplex τ 6∈ K,
such that link(σ,K) = ∂τ . Then, the operation κ(σ, τ),
called bistellar move, consists of changing K by removing
σ star ∂τ and inserting ∂σ star τ .

The bistellar moves are atomic operations that make local
changes to the neighborhood of a simplex, while maintain-
ing the integrity of its combinatorial structure. In the case
of combinatorial surfaces, there are three types of bistellar
moves, for dim σ = 2, 1, 0, called 2-move, 1-move, and 0-
move. They are shown in Figure 4.

(a) dim σ = 2 →

(b) dim σ = 1 →

(c) dim σ = 0 →

Figure 4: Two dimensional bistellar moves.

The fundamental result of the Stellar theory is given by
the following theorem:
Theorem 3 [11, 12] Two combinatorial surfaces are piece-
wise linearly homeomorphic if and only if they are bistellar
equivalent.

The above result guarantees that bistellar moves can
change any triangulation of a closed piecewise linear man-
ifold to any other. A version of this theorem for manifolds
with boundary uses all stellar operations, including stellar
subdivision [12].
Definition 4 Let K be a 2-dimensional simplicial complex,
take an r-simplex σ ∈ K and a vertex ν in the interior of σ.

The operation (σ, ν), called a stellar subdivision, removes
star(σ,K) and replaces it with ν star ∂σ star link(σ,K).

The inverse operation (σ, ν)−1 is called a stellar weld.

Notice that, some of the stellar subdivision and welds are
also stellar moves, such as κ(σ, ν) on Figure 4(a) and κ(ν, σ)
on Figure 4(b) in the two dimensional case.
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The new operation in two dimensions, is the stellar sub-
division on edges, called 1-split. Figure 5 shows the interior
edge case and Figure 6 the boundary edge case.

(σ,ν)−→

Figure 5: Two dimensional stellar subdivision on interior edges.

(σ,ν)−→

Figure 6: Two dimensional stellar subdivision on boundary edges.

Stellar subdivision is a very powerful concept and it is the
cornerstone of Stellar theory. Here, only some results of the
stellar subdivision theory [1] will be mentioned.

Proposition 5 Any stellar move, κ(σ, τ), is the composition
of a stellar subdivision and a weld, namely (τ, ν)−1(σ, ν).

This result can be easily seen through an example as
shown in Figure 7.

κ(σ,τ)

(σ,a)−→ (τ,a)−1

−→

Figure 7: A bistellar move on an edge can be decomposed into a
subdivision and an weld.

Proposition 6 Any stellar operation can be decomposed
into a finite sequence of elementary stellar operations on
edges.

This result is even stronger than the previous one. It basically
allows one to restate the main theorem of Stellar theory only
in terms of operations on edges.

4 Extended Corner–Table Data Structure
The Corner–Table (CT) is a very concise data structure

for triangular meshes [14]. It uses the concept of corner to
represent the association of a triangle with one of its bound-
ing vertices, or equivalently the association of a triangle with
its opposite bounding edge to that corner: it may be viewed
as a compact version of the half–edge representation for tri-
angular meshes.

In this data structure, the corners, the vertices and the tri-
angles are indexed by non–negative integers. Each triangle is
represented by 3 consecutive corners that define its orienta-
tion. For example, corners 0, 1 and 2 correspond to the first
triangle, the corners 3, 4 and 5 correspond to the second tri-
angle and so on. . . As a consequence, a corner with index c is
associated with the triangle of index trig(c) = floor (c/3).

The Corner–Table data structure represents the geometry
of a surface by the association of each corner c with its
geometrical vertex index V[c].

Assuming a counter–clockwise orientation, for each cor-
ner c, the next(c) and prev(c) corners on its triangle bound-
ary are obtained by the use of the following expressions:
next(c) = 3 × trig(c) + [(c + 1) mod 3], and prev(c) =
3× trig(c) + [(c + 2) mod 3].

The edge–adjacency between the neighboring triangles is
represented by associating to each corner c, its opposite cor-
ner O[c], which has the same opposite edge. This information
is stored in two integer arrays, called the V and O tables. Fig-
ure 8 shows an example of a Corner–Table representation for
a tetrahedron.

1

0

1

0 2 0

3

V[0] = 0 O[0] =   4

V[1] = 1 O[1] =   9

V[2] = 3 O[2] =   8

V[3] = 1 O[3] = 10

V[4] = 2 O[4] =   0

V[5] = 3 O[5] =   7

V[6] = 1 O[6] = 11

V[7] = 0 O[7] =   5

V[8] = 2 O[8] =   2

V[9] = 2 O[9] =   1

V[10] = 0 O[10] =   3

V[11] = 3 O[11] =   6

Figure 8: Tetrahedron example.

The CT concisely represents the connectivity of a trian-
gular mesh using only the arrays O and V . To represent the
mesh geometry, an array G is used to store the geometry of
the vertices (coordinates, normals,...).

Notice that, the number of entries of the O and V arrays
is the number of corners on the mesh, i.e., three times the
number of triangles. And the number of entries of the G array
is the number of vertices on the mesh.

Where are the edges? The CT does not need an explicit
representation for edges because they are implicitly repre-
sented by its opposite corners. A corner c also represents an
edge whose endpoints are V [prev(c)] and V [next(c)].

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.
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To obtain the incidences and adjacencies of edges, two
arrays CE and EC could be temporary allocated. The first
array stores one corner c = CE[e] that associates the edge
e with one of its opposite corners c and the second array
stores the edge e = EC[c] that associates the corner c
with its opposite edge e. These arrays will be used only to
illustrate the incidences and adjacencies of an edge and can
be allocated in linear time from the arrays O and V .

a b

c de

f
g

h

k

j
nm

lp r

q

v1

a2

o

a1

i

Figure 9: Edge representation.

In Figure 9 the edge a1 is interior to the mesh and it could
be represented by the corners a or d, while the edge a2 is a
boundary edge and can only be represented by the corner i.

It is important to notice that in the SMS algorithm the CE
and EC arrays are not necessary. But they can be very useful
to develop an efficient implementation of other algorithms
that are based on the edge–collapse operation.

Toward efficiency on vertex queries. In the SMS algo-
rithm, a very important step is to obtain the vertex star ef-
ficiently, since it is based on edge–weld. Therefore, it is pos-
sible to extend the original CT by allocating an extra integer
array V C that for each vertex v stores an index of a corner
whose vertex is v. For example, in the Figure 9 the vertex v1

can be represented by the corner o. Only one corner is suf-
ficient because all the incidence and adjacency relations can
be obtained through the use of the O and V arrays according
to the following algorithm.

Given a vertex v, the algorithm 1 gets the corner c asso-
ciated to v and, in time O(val(v)), obtain the list of adjacent
vertices and incident edges and faces, denoted respectively
by v < V >, v < E > and v < F >.

Algorithm 1: star(v)
c = j = V C[v];
v < V >= ∅; v < E >= ∅; v < F >= ∅;
Do

v < V >= v < V > +V [next(j)];
v < E >= v < E > +EC[next(j)]
v < F >= v < F > + bj/3c ;
j = next(right(j));

While (j! = c)

5 Local Operators and Topological Validation
The SMS algorithm is based on two local topological

operators: the Edge–Flip, and the Edge–Weld. This section
will describe not only those two, but also the more classical
Edge–Collapse operator in order to compare them.

Edge–Collapse: This operator consists in removing an
edge e = (u, v) of a surface S, identifying its vertices to a
unique vertex v. From a combinatorial viewpoint, this oper-
ator will remove 1 vertex, 3 edges and 2 faces from original
mesh, thus preserving its Euler characteristic. From a geo-
metric viewpoint, the new position of the vertex v can be
computed with the geometry around u and v.

u

s

v

t

s

v

t

Figure 10: Edge–Collapse.

Let s and t be the vertices opposite to e = (u, v), which
is the edge to be collapsed (see Figure 10). Choosing the
inner edges according to the following collapse condition
will guarantee the topological consistency of this operation .

Lemma 7 (Collapse Condition) [5] Let S be a combina-
torial 2–manifold. The collapse of an edge e = (u, v) ∈ S
preserves the topology of S if the following conditions are
satisfied:

1. link(u) ∩ link(v) = link(e);

2. If u and v are both boundary vertices, e is a boundary
edge;

3. S has more than 4 vertices if neither u nor v are
boundary vertices, or S has more than 3 vertices if
either u or v are boundary vertices.

Figure 11(left) shows a valid operation and Fig-
ure 11(right) an invalid. Figure 12 illustrates two examples
of invalid collapse operations on boundary edge.

u v

s

t

(a)

u v

s

t

w

(b)

Figure 11: Examples of a valid and an invalid collapse operation
by the first condition.
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Figure 12: Invalid edge-collapse operations by the second condi-
tion.

Edge–Flip: This operation consists in transforming a two–
face cluster into another two–face cluster by swapping its
common edge.

c4

vu

s

c3

c5

c2 c1

c0

a c

b d

u

s

v

t

c2

a c

b d

c3

c5

c4

c0

c1

t

Figure 13: Edge–Flip.

Let consider the interior edge e = (u, v) of a surface S
and s and t ∈ S the two vertices opposed to e (see Figure 13).
The Edge–Flip operation will replace e by (s, t), and replace
the 2 triangles incident to e by (u, s, t) and (v, t, s). The
condition to apply this operator is the following.

Lemma 8 (Flip Condition) [5] Let S be a combinatorial
2–manifold. The flip of an interior edge that replaces e =
(u, v) ∈ S by (s, t) preserves the topology of S if and only if
(s, t) 6∈ S.

In the Corner–Table data structure, each edge can be
univocally represented by one of its opposite corners. This is
used by the Algorithm 2 to perform the Edge–Flip operation
on the edge opposite to the corner c0.

Algorithm 2: Edge–Flip(c0)
// Label incident corners
c2 = prev(c0); c1 = next(c0);
c3 = O[c0]; c4 = next(c3); c5 = prev(c3);
a = O[c5]; b = O[c2]; c = O[c4]; d = O[c1];
// Label incident vertices
t = V [c0]; v = V [c1]; s = V [c3];
// Perform swap
V [c1] = s; V [c3] = v; V [c4] = s; V [c5] = t;
// Reset opposite corners
O[c2] = c3; O[c3] = c2;
O[c0] = a; O[a] = c0;
O[c4] = d; O[d] = c4;
O[c5] = c; O[c] = c5;

Edge–Weld. This operation consists in transforming a
four–face cluster into a two–face cluster by removing its cen-
tral vertex.

s

u

t

w

c3

c4
c5

c1

c0
c2

a

b

c4 c5

c1

c0

a

b

c3

c2
v

s

u

t

w

Figure 14: Edge–Weld.

Consider an interior valence–4 vertex v, adjacent to the
vertices s, t, w and u (see Figure 14). The star of v forms
a four–face cluster. The Edge–Weld operation removes the
vertex v and re–triangulates the quadrangle by splitting it.
The dividing edge e can be either (w, u) or (s, t). The result
is a two–face cluster made of the two faces incident to e.

Corollary 9 Consider a combinatorial 2–manifold M , and
an interior vertex v of M with valence 4. With the notations
of Figure 14, the removal of the vertex v by the Edge–Weld
operation preserves the topology of M if and only if there is
no edge in M connecting w to u.

Proof : Consider s, w, t and u, in this order, the vertices
adjacent to the interior vertex v. Removing v is equivalent
to an Edge–Collapse operation on the edge e = (v, u).
Therefore, the topology of M is preserved if and only if the
collapse condition is satisfied: link(v) ∩ link(u) = {s, t} =
link(e). As {u,w} = link(v)\link(e), this condition is valid
if and only if w does not belong to link(u). This means that
there is no edge connecting w to u. ¥

Given a mesh represented by a Corner–Table, the Algo-
rithm 3 performs the removal of the vertex incident to the
corner c0:

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.
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7 Stellar Mesh Simplification

Algorithm 3: Edge–Weld(c0)
// Assign incidences
c1 = next(c0); c2 = prev(c0);
c4 = next(O[c1]); c5 = prev(O[c1]);
a = O[next(O[c5])]; b = O[prev(O[c2])];
// Perform vertex removal
V [c0] = V [O[c2]]; V [c4] = V [c0];
// Reset opposite corners
O[c5] = a; O[a] = c5;
O[b] = c2; O[c2] = b;

When an edge–weld is applied to remove a boundary
vertex with valence 3, the edge-collapse condition should be
observed.

As a consequence of proposition 5, one can prove that
the Edge–Collapse operation can be decomposed into a se-
quence of Edge–Flips operations, followed by one Edge–
Weld operation. Figure 15 shows a sequence example.

v

s

u

t

s

u

t

v

s

u

t

v

s

u

t

Figure 15: Edge–Collapse decomposition

The combination of Edge–Weld and Edge–Flip stellar
operations provides more flexibility than the edge–collapse
operation itself, as another sequence could remove the vertex
v with a different configuration of the star of vertex u.

To illustrate that fact, consider the example of Figure 15.
First, by some geometric criteria, some Edge–Flip operations
are used to reduce the valence of vertex v to four. After that,
an Egde–Weld operation is applied.

6 Simplification criterion
Simplification algorithms such as the Four–Face Cluster

algorithm (FFC) try to remove the maximal number of faces
while minimizing the geometrical distortion. This is a diffi-
cult optimization problem, essentially because there are dif-
ferent measures of the geometrical distortion. On one side,
global error measures such as the volume or the Hausdorff
distance imply a global optimization strategy, which involves
more expensive techniques such as re-meshing. On the other
side, local error measures such as the Quadric Error Metric
(QEM) allow efficient greedy strategies which give generally
low total distortion.

Quadric Error Metric. In the original FFC algorithm, each
local simplification introduces a geometric error which is
computed using the QEM [4], as follow:

Let v be a vertex of M j , and fi ∈ star(v) a face incident
to v. Let ai be the area of fi and pi = (nx, ny, nz, d) the
plane supporting fi. The fundamental error quadric Qi is
defined in [4] by:

Qi = pip
T
i =




n2
x nxny nxnz nxd

nxny n2
y nynz nyd

nxnz nynz n2
z nzd

nxd nyd nzd d2




It can be used to compute the squared distance d (w) of a
point w to the plane pi:

di (w) = wT
(
pip

T
i

)
w = wT Qiw

Garland and Heckbert compute their quadric error metric by
adding all of those distances di (w) for all face fi.

For boundary edge collapse, the QEM should be modified
in order to preserve the geometrical aspect of the boundary.
[4] suggests to construct, for each boundary edge, a quadric
that corresponds to the plane perpendicular to the boundary
(see 16) and adds each quadric related to the extreme vertices
of such edge. Using this strategy, the edges that contribute to
the geometric aspect of the boundary are penalized with a
high cost of contraction.

Figure 16: Plane perpendicular to the boundary.

Vertex cost. The FFC algorithm assigns a quadric Qv

to each vertex v of the mesh, which is computed as the
weighted sum of the quadrics Qi associated with each face
fi incident to v:

Qv =
∑

aiQi

The error introduced by removing a vertex v from the mesh,
according to [15], considers each Edge–Flip and Edge–Weld
cost:

E (v) = αC (v) + βS (v)

This cost balances the vertex removal distortion C (v) and
the swap distortion S (v). Velho, in its original work [15],
suggests to adopt α = 0.75 and β = 0.25 as default values
for the weights. Section 10 shows experimental results for
different values of α and β and one can observe that the
values α = 0.2 and β = 0.8 also show nice rate/distortion
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curves. In pratice, there are many different conbination for α
and β in order to obtain nice results, which suggests that they
are, separatlly, good strategyes for local error estimation.

The cost C (v) of removing a vertex v of valence 4 is
defined as:

C (v) = min
{
uT (Qv + Qu) u, u ∈ link(v)

}

The cost S (v) is the sum of the cost of each Edge–Flips in
Star(v) used to bring v to valence 4. The cost of each Edge–
Flip is based on two measures: the aspect ratio [17] and the
dihedral angle. The sequence of independent Edge–Flips to
bring v to valence 4 are chosen in such a way to minimize
the cost.

7 The Four–Face Cluster Method
The Four–Face Cluster algorithm (FFC) is based on the

Edge–Weld and Edge–Flip operators. Since the Edge–Col-
lapse operation is equivalent to a sequence of those stellar
operators, Edge–Collapse based method is a special case of
the FFC method. However, stellar operations are more flex-
ible. In the case of the Edge–Collapse / Vertex–Split, there
are many possible sequences of Edge–Flips leading to a final
Edge–Weld. Therefore, the order of those Edges–Flips can
be chosen to improve the quality of the mesh (for example
improving aspect ratio or preserving dihedral angle), which
is more tricky in the Edge–Collapse operations. As a conclu-
sion, the Four–Face Cluster (FFC) algorithm is more flexible
than Edge–Collapse based algorithms.

Algorithm’s outline. The FFC algorithm constructs a hi-
erarchy of meshes

(
M0, M1, . . . , Mn

)
with a decreasing

number of elements (vertices, edges and faces). In this hi-
erarchy, surface M0 is the original surface M , and each sur-
face M j , j = 1 . . . n, corresponds to the level of detail j of
M . The following paragraph describes how to obtain such
hierarchy.

In the initialization step for each level of detail j, all the
vertices of M j−1 are marked as valid for removal. Then,
the FFC algorithm selects a marked vertex v to be removed
from the surface M j−1. When the valence of the vertex v
is not 4, it is necessary to apply a sequence of Edge–Flip
operations to bring its valence to 4. The four vertices on
the star of the modified vertex v are then unmarked. They
will not be valid for further removal until the next level of
detail j+1. Next, the algorithm removes the valence 4 vertex
v using an Edge–Weld operation. Figure 15 illustrates this
sequence of operations. When all the vertices are unmarked,
the resulting surface M j corresponds to level of detail j
inside the hierarchy of surfaces. On entering the next step,
the algorithm marks all the remaining vertices of M j in order
to create M j+1 and so on. The selection of the vertices to be
removed is performed according to geometrical costs, such
as the Quadric Error Metric [4].

Implementation. The original implementation uses a pri-
ority queue, which requires computing the costs of all ver-
tices before beginning the simplification. Moreover, at each
simplification step, the FFC algorithm needs to re–compute
the cost of all vertices involved in the local operation and to
update the corresponding positions in the priority queue. Al-
gorithm 4 gives the pseudo–code for the Four–Face Cluster
Simplification Algorithm introduced in [15]. It generates n
levels of resolution of a given mesh M .

Algorithm 4: SimplifyFFC(M, n)
assign quadrics;
for all(v ∈ M) do

compute E (v)
for (j = 1 to n) do

mark all vertices as valid for removal
insert all vertices in the priority queue
while (queue is not empty) do

get v from queue
if (v marked) then

perform edge swaps until Deg(v) = 4
unmark the vertices w ∈ link(v)
remove vertex (v)
re–compute the errors Qu and Qw

update queue for w ∈ link (u) ∪ link (w)

8 The Stellar Mesh Simplification Algorithm
An alternative to simplification methods based on prior-

ity queue was presented by Wu and Kobbelt in [16]. They
propose, instead of using the priority queue, to choose the
element to be simplified inside a reduced, randomly selected
set of d elements. This probabilistic optimization strategy is
motivated by the fact that, when simplifying high resolution
meshes, most of the vertices will be removed anyway. As a
consequence, it would not be necessary to choose a vertex
with lower cost among all possible candidates at each sim-
plification step.

Algorithm’s outline. The basic idea of this Multiple–
Choice technique is to obtain a small random subset of d
edges to be collapsed, say d = 8, and perform the collapse
for the edge with the lower cost among them. The imple-
mentation proposed in this work is an adaptation of this idea,
since it computes costs on vertices and not on edges. It ob-
tains a random subset of vertices to be simplified and per-
forms the simplification for the vertex with the lower cost of
this set of candidates. This strategy leads to a good choice of
the vertex to be simplified, except for a rare probability that
all d random vertices were among the vertices that should
not be removed. Assuming that it simplifies a mesh down to
5% of its original complexity, it is expected that the resulting
(not removed) vertices will have high costs. The probability
of choosing one of the high–cost vertices on a random subset
of d = 8 vertices is actually small enough:

(
5

100

)8

≈ 4× 10−11

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.
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Implementation. Using this technique it is not necessary
to sort the vertices by their cost, avoiding the expensive use
of a priority queue. Since, at each randomly selected subset
the costs of the d vertices will be recomputed, it is also
not necessary to recompute the cost for the vertices on the
neighborhood of the removed vertex. This allows a simpler
implementation and improves the algorithm’s performance.
The Algorithm 5 shows the pseudo–code to generate n levels
of resolution for a mesh M using this process:

Algorithm 5: SimplifySMS(M, n)
assign quadrics;
d = 8;
for (j = 1 to n) do

mark vertices as valid for removal
while (exist a valid vertex) do

for (i = 1 to d) do
vi =valid random vertex
if E(vi) < E(v) then v = vi

perform edge swaps until Deg(v) = 4
unmark the vertices w ∈ link(v)
remove vertex (v)
re–compute quadrics Qu and Qw

At the end of a level, when the number of valid vertices is
less then d, one or more vertices can be selected more than
once in order to remove all valid vertices.

9 Simplification with Multi–Resolution
One objective of this section is to introduce two strategies

to encode the hierarchy of meshes
(
M0,M1, .., Mn

)
gener-

ated by the SMS algorithm: the parallel and the sequential
encoding. The main difference between those two strategies
resides in the type of hierarchical structure they produce. The
parallel encoding produces a multi–resolution mesh with
separate levels of details, whose resolution changes glob-
ally on each level. The sequential encoding produces a pro-
gressive mesh, whose resolution changes locally inside each
level.

Multi–resolution representation. The Corner–Table data
structure uses only two arrays (O and V) of integers to rep-
resent the surface topology and a third array (G) to store the
geometry of the mesh. In order to represent the hierarchy of
surfaces, the following strategy is adopted. The connectivity
of the surface M j is represented by the arrays Oj and Vj ,
while its geometry uses the original array G for all levels of
detail, since the simplification process does not modify the
indexes of the vertices. Therefore, the procedure that changes
from one level to another simply restores the O and V arrays
corresponding to the desired level.

Parallel Encoding. This strategy produces a multi–resolu-
tion mesh whose resolution changes globally at each level.
Parallel encoding is useful when the user wants to move
from one level of resolution to another. In such application,
it is sufficient to allocate the memory necessary to represent

the surface of a certain level. Thus, parallel encoding sim-
ply needs to encode the surface M j . This encoding is im-
plemented in a compressed manner (with less than 2 bits per
triangle) using the Edgebreaker compression scheme.

The Edgebreaker is adopted because there is a very con-
cise and simple implementation of this compression scheme
for surfaces with handles using the Corner–Table data struc-
ture [9]. A simple modification of this implementation has
been done to add a fourth attribute to vertex geometry, its in-
dex on the G table of the original surface. Maintaining these
indexes for the vertices at each level of detail enable us to
interchange the use of parallel and sequential encoding. For
example, in the application one can move directly to the level
of resolution 5 using the parallel encoding and then, in a pro-
gressive way, return to the level 4 by the use of the sequential
encoding.

Sequential Encoding. The main idea in the sequential case
is to encode each stellar operation, in order to recover the
history of the Edge–Flips and Edge–Welds operations at
each vertex simplification. This strategy is similar to the
Progressive Mesh encoding [6], which encodes the history of
Edge–Collapse operations for their simplification algorithm.
The main idea of this encoding is to obtain a refinement
process by reading in the reverse order the history of stellar
operations performed by the SMS algorithm.

In the sequential encoding, a string of integers is gener-
ated to represent the sequence of operations performed on
each vertex simplification. Figure 17 illustrates a vertex sim-
plification with the encoding of the corresponding opera-
tions.

1 2

6 3

45

7

1 2

6 3

45

7

1 2

6 3

45

7

1 2

6 3

45

1 14 146 -7

Figure 17: Encoding of a vertex simplification.

Let v be the vertex to be removed, and e = (u, v) ∈
star(v) an edge to be swapped. Since each e has v as extrem-
ity, the scheme encodes the numbers index of u in star(v) to
represent an Edge–Flip operation. The Edge–Weld operation
is encoded by the use of two more integers: one for the re-
sulting edge of the vertex removal and the other integer to
encode the original index of the removed vertex.

In order to interchange the parallel encoding with the se-
quential encoding, the scheme writes each level of detail in a
separate file. As a consequence, one can start the progressive
refinement process at any level of detail obtained by the sim-
plification. In the Progressive Mesh [6], the starting surface
for refinement is restricted to the base mesh.
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A. Vieira, T. Lewiner, L. Velho, H. Lopes and G. Tavares 10

FFC SMS
Operation t(s) % t(s) %
Assign Quadrics 0.110 1.26 0.110 1.95
Compute E (v) 7.880 90.51 4.930 87.54
Update Queue 0.360 4.14 – –
Choose d random v – – 0.340 6.04
Edge Swaps 0.165 1.90 0.088 1.56
Vertex Removal 0.170 1.95 0.141 2.50
Recompute Qu and Qw 0.021 0.24 0.023 0.41
Total 8.706 100 5.632 100

Table 1: Algorithm’s steps comparison.

# Triangles Running time Ratio
Model Input Output FFC SMS SMS

FFC
Cow 5804 202 4.680 2.780 0,59
Terrain 5708 190 4.520 2.690 0,59
Torus 14144 344 9.100 5.110 0,56

Table 2: Total time comparison.

10 Results
The results presented in [16] shows that the performances

of mesh simplification algorithms using the Multiple–Choice
technique are 2.5 times faster than using a priority queue,
with similar outputs. Furthermore, the Multiple–Choice
technique leads to a simpler implementation, since there is
no need for a priority queue construction or of re–computa-
tion at each simplification step. Similarly, the experiments
below show that the SMS is 40% faster than the original
Four–Face Cluster algorithm with the same order of distor-
tion.

Table 1 shows the running time of each routine during the
simplification, using the Four–Face Cluster (FFC) and Stellar
Mesh Simplification (SMS) algorithms. Table 2 shows the
total running time comparison (in sec) for simplifying some
models.

The rate/distortion curve illustrated in Figure 18(a) is used
to study the influence of the α and β parameters on both FFC
and SMS algorithm compare the FFC and SMS algorithms.
They correspond, respectively, to the weights for the Edge–
Welds and Edge–Flips operations. In the example, the Bunny
model is simplified to 10% of its size. The parameters α and
β are studied in the following way: the α parameter varies
from 0.0 to 1.0 by a step of 0.1, and β is set as 1 − α. As
a conclusion, there are many different good conbinations for
α and β that gives better results. It is important to notice that
all rate/distortion curves generated in this work are obtained
by the use of METRO [3].

Figure 18 and Figure 1 show the influence of parameter d
in the algorithm, where d is the number of vertices used on
the multiple-choice step. For each d from 2 to 20, the algo-
rithm is executed in order to simplify the Dino original sur-
face with 7400 triangles to a surface with 500 triangles. Fig-
ure 18 shows the algorithm total time and the absolute max-
imum geometric error, both as a function of d. The absolute
maximum geometric error was computed using METRO [3].
Figure 1 shows the original Dino model and its simplified
versions using 3 different valued for d. As a conclusion, set-

ting d as 8 is really a nice decision, since the total time varies
linearly with d and there is no substantial gain on error reduc-
tion for d greater than 8.

Figure 20 shows two interesting implicit surfaces exam-
ples obtained by the use of a Marching Cube algorithm [7].
Notice that the surfaces on those figures have the same topo-
logical type. One can visually observe that the geometry of
both objects are very well preserved after simplification, in-
cluding the sharp edges, although the algorithm is perform-
ing a probabilistic optimization.

Figure 19 shows the rate/distortion curves to compare the
Garland and Heckbert’s [4], Wu and Kobbelt’s [16], FFC and
SMS algorithms applied to the Bunny model. Notice that on
both figures the order of distortion are basically the same
for all algorithms and that the original algorithm of Garland
and Heckbert [4] has a better rate/distortion performance
when compared to the multiple-choice technique proposed
by Wu and Kobbelt [16]. In opposition to this fact, the
SMS algorithm shows to have a better performance when
compared to the original FFC. Actually, this observation
holds for all tested examples illustrated in this work.

Finally, Figure 21 illustrates four surface models and its
simplified versions to visually compare the FFC and the SMS
algorithms. Notice that, as in [16], the results got in both
methods are similar. The examples given are Bunny model,
Cow model, linked tori model and other implicit surface
model.

11 Conclusions and Future works
This paper presented the Stellar Mesh Simplification

method, which is a fast implementation for the Four–Face
cluster algorithm. Its implementation was described using
the Corner–Table data structure to represent the surface
topology, which is very suitable to obtain a simple and con-
cise implementation of the method. The new strategy pro-
posed to encode and decode hierarchy of surfaces generated
by the mesh simplification is a very practical tool for a wide
range of applications. This work also describes some ele-
ments of Stellar Theory, which is powerful mathematical tool
for topological mesh operations that helped in stating con-
ditions to safely apply the Edge–Weld and Edge–Flip op-
erators. In conclusion, this work is a practical combination
of several techniques to obtain a robust and efficient imple-
mentation of a nicely working scheme. Moreover, it provides
an analysis of the parameters, that completes both works of
Velho [15] and Wu and Kobbelt [16].

There are three directions to continue this work. One
would consist in enhancing the efficiency of compression
scheme for the sequential encoding. Another one would use
this simplification algorithm to obtain a parameterization
scheme for surfaces, which is a very active area of research in
Computer Graphics. The last one would investigate an out–
of–core implementation of this algorithm, taking advantage
of the simplicity of the Corner–Table data structure.

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.
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(b) Total algorithm time as a function of d.

 0

 2

 4

 6

 8

 10

 2  4  6  8  10  12  14  16  18  20

D
is

to
rt

io
n 

(%
) 

Number of random choices (d)

(c) Geometric error as a function of d.

Figure 18: Influence of parameters
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Figure 19: Bunny rate/distortion curves for Garland and Heckbert’s, Wu and Kobbelt’s, FFC and SMS algorithms.
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(a) Implicit surface original: 8.000 faces (b) Implicit surface simplified: 1.000 faces

(c) CSG model original: 8.000 faces (d) CSG model simplified: 800 faces

Figure 20: Simplification examples.
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[17] A. Guéziec, F. Bossen, G. Taubin and C. Silva. Efficient
compression of non–manifold polygonal meshes. Com-
putational Geometry: Theory and Applications, 14(1–
3):137–166, 1999.

The corresponding work was published in Computer Graphics Forum, volume 23, number 4, pp. 825–838. Blackwell, october 2004.

http://w3.impa.br/~lvelho/
http://www.visgraf.impa.br/RefBib/Data/PS_PDF/smi01/paper_velho_l.pdf
http://www-i8.informatik.rwth-aachen.de/people/people.html
http://www-i8.informatik.rwth-aachen.de/
http://www-i8.informatik.rwth-aachen.de/publications/downloads/mcd_vmv02.pdf
http://www-i8.informatik.rwth-aachen.de/publications/downloads/mcd_vmv02.pdf
http://www.gueziec.org/
http://ltssg3.epfl.ch/staff/bossen.html
http://www.research.ibm.com/people/t/taubin/
http://www.cse.ogi.edu/~csilva/
http://www.research.ibm.com/people/t/taubin/pdfs/gueziec-etal-cgta99.pdf
http://www.research.ibm.com/people/t/taubin/pdfs/gueziec-etal-cgta99.pdf
http://www.eg.org/EG/Publications/CGF
http://www.eg.org/EG/CGF/volume23/issue4/v23i4pp825-838.pdf.abstract.pdf


13 Stellar Mesh Simplification

(a) Bunny model with 8000 faces (b) Simplified to 800 faces using FFC (c) Simplified to 800 faces using SMS

(d) Cow model with 6000 faces (e) Simplified to 600 faces using FFC (f) Simplified to 600 faces using SMS

(g) Link model with 8000 faces (h) Simplified to 2000 faces using FFC (i) Simplified to 2000 faces using SMS

(j) Implicit surface model with 5000 faces (k) Simplified to 1000 faces using FFC (l) Simplified to 1000 faces using SMS

Figure 21: Visual comparisons of FFC and SMS algorithms results.
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