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Abstract. Morse theory inspired several robust and well grounded tools in discrete function analysis, geometric
modeling and visualization. Such techniques need to adapt the original differential concepts of Morse theory in
a discrete setting, generally using either piecewise–linear (PL) approximations or Forman’s combinatorial formu-
lation. The former carries the intuition behind Morse critical sets, while the latter avoids numerical integrations.
Forman’s gradients can be constructed from a scalar function using greedy strategies, although the relation with
its PL gradient is not straightforward. This work relates the critical sets of both approaches. It proves that the
greedy construction on two-dimensional meshes actually builds an adjacent critical cell for each PL critical ver-
tex. Moreover, the constructed gradient is globally aligned with the PL gradient. Those results allow adapting the
many works in PL Morse theory for triangulated surfaces to Forman’s combinatorial setting with low algorithmic
complexity.
Keywords: Morse theory. Forman theory. Piecewise linear approximation. PL topology. Critical set.

Morse–Smale decomposition. Reeb graphs. Computational topology.

Figure 1: Critical cells obtained from the greedy construction (there is a critical face at the top), with f being the vertical projection (left).

The direction of the gradient is also coherent (right).

1 Introduction

Topological methods provide robust and well-grounded
techniques to analyze and process discrete geometric mod-
els [33]. Among those, Morse theory defines a very direct
framework to study scalar functions or gradient vector fields
on manifolds. Morse proved that the number and nature of
critical points of regular gradient fields is constrained by the
manifold on which it is defined [29]. Smale further exten-
ded those results to coherently decompose the manifold in
cells of trivial dynamic under the gradient field [40]. In prac-
tice, this theory allows to check the coherence of mesh data
structures [10, 27] and scalar functions analysis [41] such as
physical quantities in numerical simulation [8], and grounds
effective methods to visualize their main features [12, 3].

Morse’s theory were originally defined for differentiable
manifolds, and thus computer-aided applications rely on ap-
proximations or discrete versions of their concepts. The most
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straightforward approximation of a scalar function on a mesh
is given by piecewise-linear (PL) functions. Banchoff [2]
proposes a definition of critical points in that setting, which
has been extended to several applications, in particular for
visualization [3] and reconstruction [20, 45, 39]. The approx-
imation approach has the advantage of carrying most of the
intuition of the smooth setting.

Forman [15] developed a combinatorial formulation that
completely extends Morse results to general cell complexes.
This approach fits directly into the polygonal mesh set-
ting, which is common in modeling and graphics. However,
Forman’s definitions are rather combinatoric than geometric
(Figure 1), which complicates the construction of a discrete
vector field V directly from a smooth function f . In particu-
lar, a cell in Forman’s theory should contain points of similar
dynamics under the vector field, and its dimension must rep-
resent the nature of the critical element. For example, the
minima of f must be located at vertices, which in extreme
cases may turn the positioning of critical cells non-intuitive
(Figure 2).
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Figure 2: A discrete curve with a scalar function f defined as

the vertical projection. Forman’s restriction on the dimension of

critical cells may lead to non–intuitive position of critical cells.

(left) The complex is well adapted to f : minima are located at

vertices and almost all the maxima on edges. (right) The complex is

not adapted to f : the smooth minima occur out of the vertices, and

critical vertices cannot coincide with them.

Contributions In this paper, we study the properties of
greedy constructions of Forman’s discrete gradient vector
field from scalar functions defined on the mesh vertices [25,
5] as compared to PL approximations. We prove that, un-
der regularity restrictions, Forman’s critical cells defined by
the greedy construction are adjacent to Banchoff’s PL crit-
ical vertices (Figure 1). We further prove that the discrete
gradient globally follows the directions of ´rf . Those res-
ults open several computer applications of Morse theory cur-
rently based on PL approximations to Forman’s approach,
which would improve on simplicity and numerical stabil-
ity while keeping performance. In particular, we mention the
discrete Morse–Smale decomposition, persistence computa-
tion and Reeb graph construction.

Related work Banchoff’s definition of PL critical points [2,
38] brought Morse theory to several applications, among
which the effective construction of contour trees [4, 34],
persistence [11, 6] and visualization [14]. There have been
many works on PL Morse–Smale decomposition [12, 13]
with improvements for visualization [3, 30].

Regarding Forman’s approach, early works propose to
construct discrete Morse functions with as few critical
cells as possible: using lexicographic orderings [1], greedy
strategies for undirected spanning trees [23, 25] and in-
teger programming [19]. Then, real applications pushed for
the construction of discrete Morse function representing a
sampled scalar function, using greedy strategies on direc-
ted spanning trees [25, 5, 26] of local cancellations or suc-
cessive, non-local cancellations in particular for volumet-
ric data [17, 18]. More recently, weighted graph match-
ing approaches cleverly approximate vector fields in multi–
resolution [35, 36, 37].

The present work uses a greedy strategy similar to [22,
25] but on undirected spanning trees, which is already used
in several applications [5, 43, 44]. To our knowledge, no
guarantee on the critical cells position has been presented
yet. This work represents part of the author’s PhD thesis [26].

Notation For cell complexes, we follow Forman’s nota-
tion [15]: A cell complex K is a coherent collection of cells.
We focus on surfaces, so the dimension p of cell �p is 0, 1
and 2 for vertices, edges and faces respectively. The incid-
ence relation is denoted by �p ° ⌧p´1. The scalar function
f is defined on the set of vertices K0, with real values. We
consider here K as a triangulated manifold without bound-
ary, although Forman’s results apply to more general com-
plexes.

2 Basics of Morse Theories

Morse theory relates the topology of a manifold M and
the dynamics of gradient vector fields V defined on M.
Basically, the topology of M constrains the number and
nature of critical elements of the gradient, and conversely
those elements may help characterizing the topology of M.
In this section, we briefly recall the original formulation
on smooth manifolds together with Banchoff’s definition
for piecewise-linear functions on triangulated manifolds [2]
and with Forman’s combinatorial matchings on general cell
complexes [15]. Although all those theories are valid in any
dimension, we focus here on two–dimensional manifolds to
state our main results.

(a) Smooth Morse Theory

Given a smooth surface M, classical Morse theory stud-
ies smooth scalar functions f : M Ñ R and the dynam-
ics of their gradient vector fields ´rf . The critical set of
f is the set of surface points where the gradient vanishes:
rfpxq “ 0. From the gradient dynamics, critical points are
the end points of the integral lines of ´rf . A function f is
valid if its critical set is discrete, i.e. critical points are isol-
ated. In that case, the Hessian matrix of f is non-singular at
the critical points.

Figure 3: Critical points for the vertical projection, marked as the

middle of the red region: (left) maximum (minimum for -f ) and

(middle) saddle. The standard torus has one minimum, two saddles

and a maximum: #0 ´ #1 ` #2 “ 1 ´ 2 ` 1 “ 0 “ �pMq.

The Morse lemma [28] classifies critical points according
to the local dynamic of ´rf . More precisely, since the
Hessian matrix at a critical point x is non-singular, it has p
negative eigenvalues and 2´ p positive ones, and the integer
p is called the index q pxq of x. Then, f near one of its critical
points x is locally similar to the quadratic form deduced from
its Hessian matrix. The index thus characterizes the critical
point: an index 0 means x is a local minimum, an index 2 that
x is a local maximum. Critical points of index 1 are saddle
points (Figure 3).

The corresponding work was published in Computer Aided Geometric Design, Elsevier, 2012..
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Figure 4: Two combinatorial fields on a 1–dimensional complex: the left one has a close V–path and is not a gradient. The right one is valid,

with its critical set (2 vertices, 2 edges) in red.

From this lemma, Morse deduced that all the level sets
f´1 ptq for t P ra, bs have the same homotopy type iff
they do not contain any critical point [28]. Moreover, the
change of level set topology at a critical value a is completely
characterized by the index of critical points x with fpxq “
a. This result leads to the Morse inequalities relating the
number #p of critical points of index p with the topology
of M. In particular, #0 ´ #1 ` #2 “ �pMq, the Euler
characteristic of M.

(b) Piecewise-Linear Morse Theory

Banchoff extended Morse inequalities to functions f
defined on polyhedrons K (without boundary) by piecewise
linear (PL) interpolation from scalar values fp⌧q at vertices
⌧ [2]. In order to preserve the behavior characterized by
Morse lemma, Banchoff defines critical points as a break in
the monotony of f . More precisely, a PL function is valid if
its values fp⌧q at vertices are pairwise distinct. The lower

star of vertex ⌧ is the set of edges and faces for which ⌧ is
the vertex with maximal value through f . The Banchoff in-

dex idx p⌧q of ⌧ is the Euler characteristic of its lower star.

(a) Minimum. (b) Maximum.

(c) Regular point. (d) Saddle. (e) Degenerated.

Figure 5: Banchoff’s classification of generic points on surfaces,

and a non–generic saddle (e), where the values of f on the vertices

is its height (z coordinate).

For a local minimum, the lower star is reduced to vertex
⌧ , and the Banchoff index is thus idx p⌧q “ 1 (Figure 5).
For a local maximum, the lower star is an open disk (all the
faces and edges incident to ⌧ , with ⌧ itself), which leads to
Banchoff index idx p⌧q “ 1. For a regular point, the lower

star is a semi-open disk, which gives a Banchoff index of
idx p⌧q “ 0. Finally, a regular saddle is a wedge sum on ⌧ of
two semi-open disks, leading to index idx p⌧q “ ´1.

Observe that this definition differs from the Morse in-
dex q p⌧q. However, for non–degenerated critical vertices,
idx p⌧q “ p´1qqp⌧q. Banchoff index relates to the Euler char-
acteristic by � pKq “ ∞

⌧PK0
idx p⌧q. This definition of crit-

ical points is also related with end points of integral lines ob-
tained by numerical integration on triangular meshes, which
is the starting point for PL Smale decomposition [12].

(c) Forman’s Discrete Morse Theory

Instead of functions, Forman grounds his interpretation
on vector fields, whose local direction is described as ver-
tex/edge and edge/face matchings [15]. More precisely, a
combinatorial vector field V is a collection

 `
⌧p † �p`1

˘(

of disjoint pairs of incident cells. We represent a matching`
⌧p † �p`1

˘
by an arrow from ⌧p to �p`1 (Figure 4). The

disjointness condition means that a cell is either the source
or the destination of at most one arrow.

The equivalent of the integral line is called a V–path. It is
a sequence of cells û⌧p0 �p`1

0 ⌧p1 �p`1
1 . . .�p`1

k´1 ⌧
p
k § where

⌧i and ⌧i`1 are distinct faces of �i and p⌧i,�iq P V . Observe
that a V–path contains cells of only two dimensions.

If a cell �p does not belong to any pair, it can only be
an endpoint of a V–path, and similarly to the smooth case,
it is said to be critical. The index of the critical cell is its
dimension p, and coincides exactly with the Morse index q.

A V–path is closed when the last cell equals the first cell:
⌧pk “ ⌧p0 (Figure 4). A valid discrete gradient vector field is
a combinatorial vector field with no closed V–path. All the
Morse inequalities are valid with that definition. However,
the construction of a combinatorial field from a function
sampled on the vertices is delicate.

3 Position of PL and Forman Critical Sets

We consider here a greedy approach [25, 5, 26] to build
a discrete vector field V , in Forman’s definition, from a
scalar function sampled on the vertices f : K0 Ñ R, as
in Banchoff’s PL setting. This approach successively adds
directed pairs

`
⌧p † �p`1

˘
of adjacent cells to V if neither

⌧p nor �p`1 is already matched and if this addition does not
close a V–path. The scalar function f is used to sort the pairs
to be added through a weight function: Wf pp⌧ † �qq “
¯f p�q ´ ¯f p⌧q, where ¯f is defined on a cell � as the mean
of the values of f on the vertices of �. The pairs with lower
weight are considered first.

Preprint MAT. 02/11, communicated on February 3rd, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.



Thomas Lewiner 4

Figure 6: Successive barycentric subdivisions preserve the PL

maximum (top vertex), while the greedy construction builds a dis-

crete Morse function with a critical cell adjacent to it. In this ex-

ample, the scalar function f corresponds to the coordinate of the

green axis (top row).

Although this procedure is efficient1, it is not clear a pri-

ori that it is able to capture the features of f . In this section,
we prove that the V–paths generated by the algorithm are
decreasing, i.e. aligned with ´rf . We further demonstrate
that, for surfaces under some regularity assumptions, the al-
gorithm builds a critical cell adjacent to each vertex that is
critical under the PL definition.

More precisely, after one barycentric subdivision, PL
minima coincide with critical vertices of the greedy con-
struction. Moreover, after two barycentric subdivisions, for
each PL maximum, the triangle spanned by the PL max-
imum, its neighbor vertex with highest value and their com-
mon neighbor with highest value is critical by the greedy
construction (Figure 6). Finally, for each PL regular saddle,
there is a critical edge spanning the PL saddle and its neigh-
bor of lowest value in the component of the lower star not
containing the absolute minimum.

(a) Regularity of the Greedy Construction

On a triangulated surface, two consecutive cells of a V–
path combinatorially differ by a single vertex (Figure 7). A
V–path û⌧0 �0 ⌧1 . . .�k´1 ⌧k§ is said to be decreasing if the
value of f on the first vertex (i.e. the vertex of �0z⌧1) is
greater than the value of f on the last vertex of the gradient
step (i.e. the vertex of �k´1z⌧k´1). We first prove that,
on triangulated surfaces, f is globally decreasing on each
gradient path2:
Theorem 1. Let V be the discrete gradient on triangulated

surface K, obtained from the greedy construction ordered by

scalar function f . Then the longest non-decreasing V–path

has length one, i.e. there is no two consecutive increasing

steps.

Proof. The proof of the theorem works equally with gradient
path from vertex/edge or triangle/edge, and we detail here the
triangle/edge case.

Consider a gradient V–path û⌧0 �0 ⌧1 �1 ⌧2§, where ⌧0,
⌧1, ⌧2 are edges and �0, �1 are adjacent triangles (Figure 7).

1The acyclicity test may use a union-find structure [42], leaving the
bottleneck of the algorithm to the ordering of the pairs.

2Actually it is true for any dimension on regular V–paths, i.e.
û⌧p˘1

0 �p
0 ⌧p˘1

1 �p
1 . . .�p

r´1 ⌧p˘1
r § with �p

i incident to at most 2 (p˘1)–
cells matched with a p–cell [26].

⌧
0

⌧
1

⌧
2

�
1

�
0

v
0

v0
1

v
1

v
2

Figure 7: Notation for the proof of Theorem 1.

Denote by v0 and v1 the first and last vertices of û⌧0 �0 ⌧1§,
v1
1 and v2 the first and last vertices of û⌧1 �1 ⌧2§.

We will prove that either û⌧0 �0 ⌧1§ is decreasing, or
û⌧0 �0 ⌧1 �1 ⌧2§ are decreasing, i.e. either f pv0q ° f pv1q,
or f pv0q ° f pv2q.

The greedy construction considered the pairs p⌧0,�0q,
p⌧1,�1q, p⌧1,�0q and p⌧2,�1q, ordered by their weights:
Wf pp⌧ † �qq “ ¯f p�q ´ ¯f p⌧q with:

¯f p⌧0q“ 1
2

`
f pv0q`f

`
v1
1

˘˘
,

¯f p⌧1q“ 1
2

`
f pv1q`f

`
v1
1

˘˘
,

¯f p⌧2q“ 1
2 pf pv1q`f pv2qq

¯f p�0q“ 1
3

`
f pv0q`f pv1q`f

`
v1
1

˘˘
,

¯f p�1q“ 1
3

`
f pv2q`f pv1q`f

`
v1
1

˘˘
.

First, observe that pair p⌧1,�0q would not create a
cycle when the two other pairs were considered: if
pair p⌧1,�0q closed the cycle û⌧ 1

0 �
1
0 ⌧

1
1 �

1
1 . . .�1

k´1 ⌧
1
k§

with ⌧ 1
0 “ ⌧ 1

k “ ⌧1, �1
0 “ �0 and thus �1

k´1 “ �1,
then pairs p⌧0,�0q and p⌧1,�1q would close the cycle
û⌧1 �1 “ �1

k´1 ⌧
1
k´1 �

1
k´2 . . .�1

0 “ �0 ⌧
1
0 “ ⌧1§, but those

pair were valid during the construction. Similarly, p⌧2,�1q
would not create cycle at the time the other pairs were added,
and was thus not considered first.
The proof boils down to two cases, depending on which pair
was considered first:

case 1: pair p⌧0,�0q was considered before p⌧1,�1q. Accord-
ing to the observation above, pair p⌧1,�0q has been
considered after p⌧0,�0q. Since the pairs are ordered
by their weights, this implies that ¯f p�0q ´ ¯f p⌧1q °
¯f p�0q ´ ¯f p⌧0q, which gives f p⌧0q ° f p⌧1q and then
f pv0q ° f pv1q.

case 2: pair p⌧1,�1q was considered before p⌧0,�0q. Accord-
ing to the same observation, pair p⌧1,�0q is considered
after p⌧1,�1q. Then f p�0q ´f p⌧1q ° f p�1q ´f p⌧1q,
so f p�0q ° f p�1q, and thus f pv0q ° f pv2q.

The corresponding work was published in Computer Aided Geometric Design, Elsevier, 2012..
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(b) Minima Positioning

We now prove the relation between PL minima and the
critical vertices given by the greedy construction. The result
is valid under the assumption that f is “smooth” enough on
the triangulated surfaces. The following theorem uses bary-
centric subdivision to supply to this smoothness requirement:

Theorem 2. Let K 1
be the first barycentric subdivision of

K, with scalar function f 1
linearly interpolated from f . Let

V be the discrete gradient on K 1
, obtained from the greedy

construction ordered by f 1
. Then the PL minima as defined

by Banchoff are critical vertices of V .

Proof. First note that the barycentric subdivision does not
affect Banchoff’s critical points, nor does it create any. In
particular Banchoff’s critical points always belong to K0,
and not to K 1

0zK0.
Suppose, to obtain a contradiction, that vm is a PL min-

imum but that it is not critical for V on K 1. Then, there is an
edge e “ pvmvq matched with vm. But vm is a PL minimum,
so f pvmq † f pvq, and thus the pair pvm, eq was considered
after pair pv, eq. Therefore, vertex v must have already been
matched with another edge e1 “ tvwu. Since f 1 is linearly
interpolated from f and vertex v is in-between vm and w, we
must have f pvq † f pwq. Then, ûvm e v e1 w§ would be an
increasing gradient path of length greater than 1, leading to
a contradiction with Theorem 1.

(c) Maxima Positioning

In order to position correctly the minima, we needed to be
sure that two minima are sufficiently far one from the other
in the mesh. The case of maxima is similar, but we need a
second barycentric subdivision, which is the same spacing
between critical points as for the discrete Handlebody de-
composition [38].

Theorem 3. Let K2
be the second barycentric subdivision

of K, with scalar function f obtained by linear interpola-

tion. Let V be the discrete gradient on K2
, obtained from

the greedy construction ordered by f . Then for each PL

maximum v, there is a critical triangle � in the star of v.

Moreover, � is the triangle subdivided from vwx, where w is

the adjacent vertex of v with the highest value and x is their

common neighbor with the highest value (Figure 8).

Proof. Let y be the other common neighbor of v and w. The
ordering f pvq ° f pwq ° f pxq ° f pyq generates a partial
ordering on the cells of the second barycentric subdivision,
and subsequently another partially ordered set (poset) P on
the pairs considered by the greedy strategy. The goal now is
to prove that poset P guarantees that each pair involving �
is invalidated before it is considered. We follow the notation
of Figure 8 for the vertices name, and denote each cell by
the vertices it spans. The proof relies on analyzing poset
P , represented in Figure 9 and summarized in Figure 10. A
poset arrow from one pair to another indicates that the first

v

w

x

y

b

c

a

m

n

o

pq

rs t

u

Figure 8: Second barycentric subdivision around a maximum.

one is always considered before the second, for any values of
f at v, w, x, y that satisfies f pvq ° f pwq ° f pxq ° f pyq.

For triangle mnv to be critical, it must not be matched
with any of its three bounding edges: mv, mn or nv. First,
we ensure that v is not matched with any of those edges.
Indeed, pairs pv, svq, pv, tvq and pv, ovq are the roots of the
poset, and thus if v is not matched outside the quadrilateral
vywx, it would be first matched with either s, t, u or o.

Now, we check that each pair involving mnv is invalid-
ated by another pair before it is considered.

pmv † mnvq: The pair pmv † mnvq is invalidated by the
matching of mv with mov, which is considered by
the greedy construction first. The pair pmv † movq
could have been prevented by matchings pm † mvq,
pv † mvq, pov † movq and pmo † movq. The first
two would also prevent the matching of mv with
mnv, and the two last ones (actually all of them)
are all considered after pmv † movq. Therefore either
pm † mvq, pv † mvq or pmv † movq is added to V
before, and thus prevent pmv † mnvq.

pmn † mnvq: The matching of mn with mnv is inval-
idated by the matching of mn with amn. The pair
pmn † amnq could be prevented by pm † mnq,
pn † mnq, pam † amnq and pan † amnq. The
first two also prevent pmn † mnvq, and the last
one is considered after pmn † amnq. Then, either
pmn † amnq is considered before pam † amnq, or
pam † amnq is invalidated either by pm † amq or by
pam † amoq. In that case, pam † amoq is considered
before pao † amoq and pmo † amoq. Therefore either
pm † mnq, pn † mnq or pmn † amnq occur before
and prevent pmn † mnvq.

pnv † mnvq: Last, the matching of nv with mnv is preven-
ted by the matching of nv with nrv. This matching
could be prevented by pn † nvq, pv † nvq, prv † nrvq
or pnr † nrvq. The first two would also prevent

Preprint MAT. 02/11, communicated on February 3rd, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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mn, 
mnv

mv, 
mnv

nv, 
mnv

mn, 
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mv, 
mov
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m, 
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n, 
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m, 
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v, 
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v, nv
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mov

ov, 
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nrv

rv, 
nrv

m, mo

am, 
amn

an, 
amn

am, 
amo

rv, 
rtv

ao, 
amo

mo, 
amo

r, rv

v, rv

rt, rtv

tv, rtv

a, 
am

b, bt

a, an

bn, 
bnr

a, ao

a, ap

r, rt

a, aq

p, bp

b, bn

c, cot, tv

b, bp

b, br c, cqq, aq

c, css, sv

an, 
anp

ao, 
aoq

ov, 
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n, nr

t, rt

br, 
brt

n, np

o, ov

o, oq
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sv, 
osv

aq, 
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r, nrbn, 
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m, 
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n, an

o, ao

o, 
mo p, ap
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nr, 
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r, br

o, co

q, cq os, 
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s, cs

p, np
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anp

q, oq

rt, 
brt

os, 
osv

oq, 
aoq

v, ov

v, sv v, tv

co, 
coq

co, 
cos
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brt

ap, 
anp

br, 
bnr

cq, 
coq

bp, 
bnp

cs, 
cos

np, 
bnp

oq, 
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Figure 9: Poset P generated by f pvq ° f pwq ° f pxq ° f pyq
onto the pairs of incident cells: the matchings that would forbid

mnv to be critical are marked by coloured diamonds, the one that

would prevent these diamonds are marked as circles of the same

colour, and the ones that would prevent the circles are marked with

rectangles.

pnv † mnvq, and the last one is considered after
pnv † nrvq. Then, pair prv † nrvq is invalidated
by prv † rtvq, since the latter is considered before
pr † rvq, prt † rtvq and ptv † rtvq and we know that
v does not match with rv.

All the possible matchings involving mnv are thus invalid-
ated before they are considered in the greedy order derived
from f . Therefore, mnv remains unmatched and is a critical
triangle at the end of the greedy construction.

(d) Saddle Positioning

The saddle case is very similar: PL saddle vertices gener-
ate critical edges in their star (Figure 11). The proof of the
following follows the same lines as the maximum case, and
is detailed in Lewiner’s thesis [26].
Theorem 4. Let K2

be the second barycentric subdivision of

K, with scalar function f obtained by linear interpolation.

Let V be the discrete gradient on K2
, obtained by greedy

construction from f . Then for each of Banchoff’s saddle v,

there is a critical edge in the star of v.







 







   




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Figure 10: Reduced version of the poset of Figure 9

Figure 11: The result of the greedy construction on a saddle with f

being the vertical projection. The critical vertices are drawn as red

balls, and the critical edge as a red cylinder. The vertex/edge pairs

are draw with yellow arrows, while edge/triangle are drawn with

blue arrows.

(e) Limitations and Extensions

The above results are limited by the regularity restriction
and the eventual extra critical cells generated by the greedy
approach. In practice, we very rarely observe critical cells
not adjacent to a PL critical point, and indeed the greedy
approach has been successfully used to generate discrete
Morse functions with as few critical cells as possible [23,
24].

Those results may be generalized to higher dimension.
On the one hand, the dimension mainly increases the poset
size but the analysis may be lead in a similar way. On the
other hand, it would greatly contribute to discrete Morse
theory applications since Banchoff’s classification from the
lower star gets much more intricate in higher dimension. The
proofs may also be adapted to other constructions, in particu-
lar varying the weight definition and matching strategy [35].

4 Applications

Forman’s discrete Morse theory is computationally effi-
cient: the dominant execution time of the greedy construc-
tion is essentially the sorting of the pairs, which has asymp-
totic complexity Opn log nq, where n is the number of cells
multiplied by the average cell valence. It also gains robust-
ness from avoiding numerical integration, and this guar-
antees the topological coherence of the result. This turns

The corresponding work was published in Computer Aided Geometric Design, Elsevier, 2012..



7 Critical sets in discrete morse theories

Forman’s definition more suitable for large-scale data ana-
lysis [8]. However, it lacked an intuitive connection with
smooth Morse theory. The results of the previous section
guarantee that the greedy construction correctly captures the
features of f (at least in the PL sense), provided f is smooth
enough. This allows building on the intuition of approximate
critical points in applications using Forman’s approach.

This opens the variety of applications of PL Morse the-
ory [12, 3, 30, 17, 18] to Forman’s case. We mention three of
them, each one emphasizes a different aspect of this opening:
the Morse-Smale decomposition, since the greedy algorithm
is straightforward in any dimension, while PL approaches are
delicate [12, 13] ; the persistence computation, for the sim-
ilarity with its first computational formulation [9, 11]; and
Reeb graphs since the algorithmic complexity is similar to
the optimal ones [21, 4, 7, 34].

Figure 12: Unstable basins on a knotted torus obtained from the

greedy construction with f being the vertical projection. Saddles

are outlined, together with their separatixes (left) and the combin-

atorial structure of the KM: faces (maxima) are colored in red,

edges (saddles) in green and vertices (minima) in blue (right).

(a) Morse-Smale Decomposition

The Morse-Smale decomposition [40, 31] is a cell com-
plex KM built out of an original surface M with identical
geometric realization, where each cell correspond to the
largest set with similar dynamics under ´rf . It is con-
structed from the intersection of the stable and unstable
basins of each critical point ⌧ , where the stable basin is
the union of all integral lines ending at ⌧ and the unstable
basin is the union of all integral lines starting near ⌧ 3. For
computer applications, this Morse-Smale decomposition has
been previously built in the PL setting using numerical in-
tegration [12, 13], and in the Forman setting by fixing first
the critical points [25, 5, 26] or detecting them during the
construction [18].

Once the gradient field has been constructed by the greedy
strategy, the computation of this decomposition is straight-
forward. Since there is no closed V–path, the set of V–paths

3Indeed this is possible if adding a regularity condition on f , namely not
having tangential integral lines at critical points.

starting or ending at a critical cell is essentially a set of trees,
which is traversed in linear time. During the traversal start-
ing (resp. ending) at a critical cell ⌧ , each cell of the path is
marked by ⌧ as origin (resp. destination). This gives the basin
decomposition as defined by Forman [16]. However, vertices
are never marked by a maximum, since maxima generate
edge/triangle paths, and similarly triangles are never marked
by a minimum. We can copy the mark of a triangle to its
vertices and partition the set of vertices by grouping all ver-
tices having the same start/end mark. Those basins can also
be constructed from the critical edges, by looking in the path
tree the V–paths linking the saddle to minima and maxima.
Those paths are the separatrices [43, 44] and the basins are
obtained by a vertex conquer algorithm starting from those
(Figure 12). The complexity of both constructions is linear
in execution time and memory, once the discrete gradient has
been computed, with simple algorithms [26].

(b) Persistence

Persistence is a widely used tool to filter out noise on the
function f or on the sampling of K that generated spurious
critical points. It has been used in Smale’s proof of Poin-
caré’s conjecture [40] and then introduced in a computational
setting [11], with recent stability guarantees [6].

Persistence diagram took inspiration in the incremental
algorithm to compute Betti numbers [9], where cells are suc-
cessively added to the cell complex and can form cancella-
tion pairs with previously inserted cells that increase or de-
crease certain Betti numbers, similarly to the greedy con-
struction. The persistence diagram is then the graphs of each
Betti number during the construction, when reducing to po-
tential cancellation pairs of critical points.

Figure 13: Cancellation of the left critical edge with the right

critical face (left) by inverting the unique V–path between them

(right).

The greedy construction is similar in nature from this ap-
proach, and Forman’s framework facilitates the reduction to
critical pairs. The cancellation of a critical pair is performed
by inverting a V–path between the two critical cells (Fig-
ure 13). In order to maintain a valid discrete gradient, no
closed path should be generated, and therefore it must be as-
serted that there is a unique V–path between the critical cells.
Contrarily to numerical integration, this test is extremely
simple due to the graph structure of the set of all V–paths,
which is summarized by KM (Figure 12). The structure is
directly updated for subsequent cancellations. The complex-
ity is similar to the PL case, where the dominant time is con-
sumed by maintaining an ordered list of cancellation pairs.

Preprint MAT. 02/11, communicated on February 3rd, 2010 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) Original complex with color coding of the geometric function.
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(b) The Morse–Smale diagram have two loops made of double edges (dotted
lines).
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(c) First rotation: from 0Ñ3 and 0Ñ2, 0Ñ3 is replaced by 2Ñ3.
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(d) Second rotation: from 1Ñ4 and 1Ñ2Ñ3, 1Ñ4 is replaced by 3Ñ4.
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(e) Third rotation: from 9 Ñ 6 and 9 Ñ 7, 9 Ñ 6 is replaced by 7 Ñ 6.
Fourth rotation: from 8Ñ5 and 8Ñ7Ñ6, 8Ñ5 is replaced by 6Ñ5.
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(f) Last reductions: 0 Ñ 5, 0 Ñ 7 Ñ 6 Ñ 5 and 0 Ñ 2 Ñ 3 Ñ 4,
8 Ñ 7 Ñ 6 Ñ 5 and 8 Ñ 3 Ñ 4, 9 Ñ 4 9 Ñ 2 Ñ 3 Ñ 4 and
9Ñ7Ñ6Ñ5, and 0Ñ5 and 0Ñ2Ñ3Ñ4 all lead to 4Ñ5. Finally,
1Ñ6 and 1Ñ2Ñ3Ñ4 lead to 4Ñ6.

Figure 14: Transforming a Morse–Smale decomposition in Reeb graph.

The corresponding work was published in Computer Aided Geometric Design, Elsevier, 2012..
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(c) Reeb Graphs

Reeb graphs and contour trees have received a lot of at-
tention from the visualization community [14, 32], where it
is used to resume the behavior of a scalar function, typic-
ally to guess the topology of its isosurfaces [20, 45]. Reeb
graphs are obtained by identifying two points with the same
image f0 through f and lying in the same connected com-
ponent of f´1 pf0q. It is interpreted as a graph with nodes at
bifurcations, which are exactly the critical points according
to Morse lemma.

The main observation here is that Reeb graphs are es-
sentially a reduction of Morse-Smale diagrams: in the latter,
saddles are connected to the minima and maxima of the adja-
cent basins, while in Reeb graphs saddles with one common
minimum or maximum are directly connected, according to
their values through f . More precisely, consider two saddles
s1 and s2, f ps1q † f ps2q, incident in the Morse diagram
to minima v1 and v2 for s1, and v2 and v3 for s2. The Reeb
graph only represent the incidence of s2 onto s1 and v3, and
does not detail whether s2 is also incident to v1 or v2.

We obtain the Reeb graph by successive rotation in the
graph that replace links similar to s2v2 for s2s1, similarly
to contour tree approaches [21] (Figure 14). Only loop con-
nection between saddles [7] (dotted lines in Figure 14(b)),
which mark the presence of two V–paths between critical
points, generate multiple rotations (Figure 14(f)). The com-
plexity of the whole algorithm is dominated by the construc-
tion of V , which is Opn lognq, similarly to other optimal
techniques [4, 34].

5 Conclusions and Future Work

In this work, we proved that, under mild regularity con-
ditions, the greedy construction of discrete vector fields ac-
tually captures the critical features in the piecewise-linear
sense. We point out several applications that could gain from
the robustness of Forman’s setting without loosing the intu-
ition behind critical points thanks to our theoretical results.

The approach used here can be extended in two dir-
ections. First, by constructing similar posets for three–
dimensional meshes, those guarantees may be extended to
volumetric meshes, where the greedy approach is signific-
antly simpler than PL constructions [13]. Second, other ap-
proaches have been devised to construct discrete gradient
fields, in particular using geometric weights or other match-
ing strategies [35]. The analysis may be more complex, since
it would depend on the shape of the triangles, but with the
sophistication of Reininghaus’ algorithms should help in ob-
taining sharper guarantees.
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