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in Electrical Engineering, with minor in Opto-Electronics. He
worked during a semester at the Gávea Sensor laboratory in-
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Abstract

Rey, David; Lewiner, Thomas. Distributions and Immersions.
Rio de Janeiro, 2007. 60p. MScThesis — Department of Mathemat-
ics, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The challenge of studying shapes has led mathematicians to create power-

ful abstract concepts, in particular through Differential Geometry. However,

differential tools do not apply to simple shapes like cubes. This work is an

attempt to use modern advances of the Analysis, namely Distribution The-

ory, to extend differential quantities to singular objects. Distributions gen-

eralize functions, while allowing infinite differentiation. The substitution of

classical immersions, which usually serve as submanifold parameterizations,

by distributions might thus naturally generalize smooth immersion. This

leads to the concept of D-immersion. This work proves that this formula-

tion actually generalizes smooth immersions. Extensions to non-smooth of

immersions are discussed through examples and specific cases.

Keywords
Differential Geometry. Immersions. Distribution Theory. Geometric

Singularities. Discrete Differential Geometry.



Resumo

Rey, David; Lewiner, Thomas. Distribuições e Imersões. Rio de
Janeiro, 2007. 60p. Dissertação de Mestrado — Departamento de
Matemática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Os desafios de estudar formas levaram matemáticos a criar abstrações, em

particular através da geometria diferencial. Porém, formas simples como cu-

bos não se adequam a ferramentas diferenciáveis. Este trabalho é uma ten-

tativa de usar avanços recentes da análise, no caso a teoria das distribuições,

para estender quantidades diferenciáveis a objetos singulares. Como as dis-

tribuições generalizam as funções e permitem derivações infinitas, a subs-

tituição das parametrizações de subvariedades clássicas por distribuições

poderia naturalmente generalizar as subvariedades suaves. Isso nos leva a

definir D-imersões. Esse trabalho demonstra que essa formulação, de fato,

generaliza as imersões suaves. Extensões para outras classes de subvarieda-

des são discutidas através de exemplos e casos particulares.

Palavras–chave
Teoria de Morse. Teoria de Forman. Topologia Computacional. Ge-

ometria Computacional. Modelagem Geométrica. Matemática Discreta.
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Quelles sont les trouvailles qui sont des
déconvertes et celles qui sont des inventions?
La découverte est la trouvaille d’un objet
extérieur à nous, qui, même si nous ne l’avons
connu que récemment, a toujours existé et
existera après nous, et sur lequel notre pos-
sibilité de choix est minime. Au contraire,
l’invention est la trouvaille d’un objet nou-
veau, qui n’existait pas avant la trouvaille, et
sur laquelle nous avons une grande liberté de
choix. [...]
En outre, l’invention des nombres complexes
est venue à un certain moment de l’histoire
de l’Occident, mais, si cela ne s’était pas pro-
duit à ce moment là, elle serait sûrement
venue plus tard. Les espaces vectoriels de
dimensions ≥ 4, les espaces de Banach et
Hilbert, l’inversion et la transformation par
polaires réciproques, les distributions, les on-
delettes, l’ordinateur, sont des inventions.
Mais, une fois trouvés les espaces de Hilbert, la
théorie spectrale est une découverte. Une fois
trouvées les distributions, leur transformation
de Fourier est une découverte. La grotte est
une découverte, la hutte une invention, la
laine est une découverte, le tissage une inven-
tion. On peut jouer longtemps à ce petit jeu de
société pas très profond, et tout ce qui vient
d’être dit est contestable.
Mais cela montre d’une part que découverte
et invention s’entremêlent, qu’elles peuvent
être relatives aux objets les plus élementaires
comme les plus savants, et qu’il n’y a pas de
différence essentielle entre les mathématiques
et les autres sciences.

Laurent Schwartz, Un mathématicien aux prises avec le siècle.



1
Introduction

Geometry, one of the oldest kinds of sciences, was first recorded in the

ancient Mesopotamia when men needed to measure the variations of the tide

of a river. It was also used by the Egyptians, who studied shapes, and then

first put into an axiomatic form by Euclides in the third century B.C. In the

eighteenth century the study of intrinsic structure of geometrical objects made

great advances through the work of Euler and Gauß. Gauß’ Egregium Theorem

states a way for computing the curvature of a surface without considering

the ambient space in which the surface lies. In modern terms, this type

of surface would be called a manifold. With the emergence of infinitesimal

geometry and topology, a common way to describe particular manifolds

requires the concept of immersion. In particular we are interested along this

work in extending differential tools on immersions to singular geometrical

configurations. It is a challenge for mathematicians to study these singular

objects. In particular, Geometric Measure Theory (GMT) is a generalization

of differential geometry through measure theory. It was mainly created by

Federer (Federer 1996, Morgan 2000) to deal with maps and surfaces that are

not necessarily smooth. GMT uses tools similar to distribution theory defining

rectifiable sets as currents. Integral geometry (Santaló 1953, Langevin 2006) is

another way to deduce geometric invariants without differentiation. It has its

origin in the theory of geometrical probabilities.

This work is a tentative, among many others to develop a simple

formalism to study singular objects. We choose to use distribution theory to

extend differential geometry tools, since distributions already extend functions

and measures. More specifically, we want to develop a coherent structure that

allows substituting classical parameterizations of a differential submanifolds

by distributions. Distributions were invented by Schwartz at the end of 1944

to generalize the notion of function. At the time it was a challenge to be able

to define the derivative of any function at any point. By generalizing functions

with infinitely often differentiable objects, Schwartz’ discovery allowed solving

many differentials problems, since a distributional derivative always exists,

in contrast with the usual derivative. A similar generalization occurred in
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the history of mathematics when rational numbers were generalized by real

numbers in order to solve the square root problem. In that context another

generalization eventually emerged later because negative real numbers did not

have any polynomial root, the creation of complex numbers solved the problem.

The ergonomic aspect of distributions may be the key to unite differential and

singular geometry.

Along this work we sketch a formalization mixing distributions and

immersions. As distributions are can be infinitely derivable, they are the

natural candidates to substitute classical parameterizations. We define D-

immersions, a generalization of immersions in the sense that the distribution

associated to an immersion is a D-immersion. Besides, we observe that graphs

of L1 functions are D-immersions which motivated us to keep that definition

and look further. This would be a first step toward another distributional

extension of submanifolds. In particular, we study change of parameterizations

through D-immersions in this direction. Similarly, we propose a derivation of

tangent cones to the local image of a D-immersion, which match one of the

usual tangent cone for images of smooth immersions.

This work is organized as follows. We first introduce basic concepts

of differential geometry and distribution theory (Chapters I and II). We

then define D-immersions theory (Chapter III) and study some relations

with immersions as manifold parameterization (Chapter IV). Finally we show

some examples to illustrate this formulation and applications to geometric

approximations (Chapter V).



2
Basics of Differential Geometry

Figure 2.1: An immersion on a submanifold.

In this chapter we define some of the most basic tools of differentiable

geometry. We begin by defining immersions to parameterize differential sub-

manifolds. We finally state some useful theorems and definitions that we will

need along our work. Along this dissertation we will use the word “smooth” to

design C∞ objects. Further references on differential geometry may be found

in (do Carmo 2005).

2.1
Differential immersions and submanifolds

Definition 2.1. (Immersion) Let U be an open set of Rd. The function

f : U → Rn is called immersion if for all x ∈ U , f is differentiable and

the rank of Dxf is d.

The notion of submanifold is an important concept in modern geometry

since it allows complex structures to be expressed in terms of relatively well-

understood properties of simpler spaces such as the Euclidian space Rd. Every

point of a submanifold has a neighborhood diffeomorphic to the Euclidian
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space. It is easier to work on a submanifold than on some unstructured

geometrical object. If the local maps are compatible, it is possible to use

calculus on a differential submanifold, in particular to define a tangent space.

Definition 2.2. (Submanifold) M ∈ Rn is a regular submanifold of dimension

d if for all p ∈ M exists a neighborhood V ⊂ Rn and a map f : U → V ∩M
of an open set U ⊂ Rd (d < n) onto V ∩M such that:

– f is differentiable.

– f is a homeomorphism.

– ∀q ∈ U , Dqf : Rd → Rn is one-to-one.

In such case, f is called a parameterization of M around p.

Remark 2.3. Every submanifold is locally the image of an immersion (see

Figure 2.1).

This remark is a direct consequence of the definition of a regular

submanifold.

Definition 2.4. (Embedding) Let f be an immersion. If f is a homeomorphism

then f is called an embedding.

Theorem 2.5. The image of an embedding is a submanifold.

Theorem 2.6. Let U be an open set of Rd. Let f : U → Rn be an immersion.

For all x ∈ U , there exists a neighborhood W of x in U such that f |W : W → Rn

is an embedding.

This last theorem permits us to speak about immersed submanifold, i.e.

submanifolds which are the images of injective immersions.

2.2
Parameter independence

One of differential geometry main objectives is to study local properties

of regular submanifolds. Indeed, according to the definition, local coordinate

systems exist in the neighborhood of each point p of a regular submanifold. It

is thus possible to define local properties of the submanifold according to these

coordinates. For example we can define differentiability at a point p ∈ M . If

f is a function from M to another submanifold, an intuitive way to define the

differentiability of f onM is to choose a coordinate system in the neighborhood

of p and say that f is differentiable on M if its expression in the coordinates

of the chosen neighborhood system is a differential map. But a point p of a
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Figure 2.2: Change of parameterization.

regular submanifold belongs to various coordinate neighborhoods and we do

not want our definition of differentiability to depend on the chosen coordinate

system. Hence in order to define a local property such as differentiability on a

regular submanifold geometrically we have to make sure that it is independent

of the coordinate system chosen. The next proposition shows that the change

of parameters preserves the differential structures of the submanifold.

Proposition 2.7. Given p ∈M , M submanifold, let f and g be two parame-

terizations of M such that:

{
f : U −→M

g : V −→M
p ∈ f(U) ∩ g(V ) = W.

Define h = (f−1 ◦ g) : g−1(W ) → f−1(W ). h is a diffeomorphism (see

Figure 2.2).

2.3
Tangent space

Tangent spaces are the best linear approximation of the submanifold.

Once tangent spaces have been defined it is possible to define vector fields on
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Figure 2.3: Tangent space of a submanifold at a regular point.

a submanifold and, further on, differential equations. The tangent space at a

point p of a regular submanifold is a real vector space which intuitively contains

all the possible directions in which one can pass through p (see Figure 2.3).

Definition 2.8. A vector is tangent at p to M if it is the tangent vector α′(0)

of a differentiable parameterized curve:

α : (ε; ε) −→M with α(0) = p.

In order to define tangent spaces properly, we have to make sure that they

do not depend on the parameterization used to parameterize the submanifold,

this will ensured by the next proposition.

Proposition 2.9. Let f be a parameterization of an open set of M and q such

that f(q) = p.

The set of tangent vectors at a point p ∈M is equal to Dqf(Rd).

Proof. (⊂) If w is a tangent vector at f(q) = p we have w = α′(0) where

α : (−ε; ε) →M and f(q) = α(0).

Define:

β = f−1 ◦ α.

We have:

β′(0) = D(f−1 ◦ α)0 = (Df)−1
q ◦ α′(0).
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Hence:

Dqf(β′(0)) = α′(0) = w,

and w ∈ Dqf(Rd).

(⊃) If w = Dqf(v), v ∈ Rd. Define: γ(t) = t.v + q and α = f ◦ γ, we have:

α′(0) = D(f ◦ γ)0 = Dqf ◦ γ′(0) = Dqf(v) = w.

Hence w is a tangent vector to the parameterized curve α and therefore

is a tangent vector at the point p ∈M .

By the previous proposition, the space Dqf(Rd) can be calculated from

an immersion f , but it does not depend on a particular choice for f . This space

will be called the tangent space at p to M , and denoted TpM .



3
Basics of Distribution Theory

To introduce some basics concepts of Distribution theory we first define

the convolution product between two functions and then approximations of the

identity. Then we define distributions and see how they generalize functions.

The last section is dedicated to operations on distributions: the derivative of

a distribution and the convolution product of a distribution and function. For

further references and proofs see (Lebeau 1999) and see (Schwartz 1997) for

more information on the invention of distributions.

3.1
Function approximations

Figure 3.1: Convolution of a discontinuous function f with a smooth test
function g.

3.1.1
Convolution

Let L1(Rd) denote the normed vector space of integrable functions on

Rd, where Rd is equipped with its Lebesgue measure dx. Let f and g be two

function of L1(Rd).

Definition 3.1. (Basic convolution) For f, g ∈ L1(Rd), we call convolution

product of f and g, denoted by f ∗ g, the element of L1(Rd) defined for almost
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every z by: (
f ∗ g)(x) =

∫
f(z)g(x− z)dz.

Figure 3.1 illustrates the regularization effect of the convolution.

Lemma 3.2. Let f ∈ L1(Rd), g ∈ Ck(Rd). If g admits limited partial

derivatives ∂αg for all multi-indexes α, |α| ≤ k, then f ∗ g ∈ Ck(Rd) and

for |α| ≤ k we have:

∂α(f ∗ g) = f ∗ ∂αg.

3.1.2
Regularization

Let ϕ be a C∞ real-valued function with support in the ball {‖t‖ ≤ 1}
whose integral is equal to 1:

∫

Rd

ϕ(t)dt = 1.

Definition 3.3. (Approximation of the identity) We call approximation of the

identity the family of functions

(
ϕε : t 7−→ ε−dϕ(t/ε) , 0 < ε ≤ 1

)
.

Note that the ϕεs are C∞ functions with support in the ball {‖t‖ ≤ ε}
and of integral equals to 1, since

∫

Rd

ε−dϕ(t/ε)dt =

∫

Rd

ϕ(t)dt = 1.

Lemma 3.4. Let f be a continuous function with compact support on Rd. The

functions fε = f ∗ ϕε belong to C∞(Rd), have a compact support and converge

uniformly on Rd to f when ε tends to 0.

Theorem 3.5. For all f ∈ L1(Rd), the functions fε = f ∗ϕε belong to L1∩C∞,

and converge in the L1 norm to f when ε tends to 0.

(f ∗ ϕε) −−→
ε→0

f in L1.

In particular, the space of C∞(Rd) functions with compact support is dense in

L1(Rd).
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Figure 3.2: A distribution associates a point to a test function.

3.2
Distributions

For K compact of Rd, we denote by C∞K the space of C∞ functions of Rn

with support included in K. Let Ω be an open of Rd. C∞0 (Ω) is the union of

C∞K ’s where K is a compact in Ω. The elements of C∞0 (Ω), i.e. infinitely often

differentiable functions with compact support in Ω, are called test functions.

Definition 3.6. (Distributions) A distribution on Ω is a linear form T of

C∞0 (Ω)

ϕ 7−→ 〈T, ϕ〉 ∈ R ϕ ∈ C∞0 (Ω).

which satisfies the following property: for all compact K in Ω, there exists an

integer p and a constant C such that

∀ϕ ∈ C∞K |〈T, ϕ〉| ≤ C sup
|α|≤p
x∈K

|∂αϕ(t)|. (3-1)

We denote by D′(Ω) the space of distributions on Ω (see Figure 3.2). It is a

vector space. When the integer p can be chosen independently from K, we say

that the order of the distribution T is finite, and the smallest possible value of

p is called the order of T .

Distribution are “generalized functions”. Let L1
loc(Ω) be the space of

functions locally integrable on Ω. An element of L1
loc(Ω) is the data of a

Lebesgue-measurable function f on Ω, satisfying
∫

K
|f(x)|dx < ∞ for all

compact K ∈ Ω: two such functions are identified if and only if f(x) = g(x)

almost everywhere. We write Tf , the distribution associated to an element f ∈
L1

loc(Ω) i.e.

〈Tf , ϕ〉 =

∫

Ω

f(x)ϕ(x)dx ∀ϕ ∈ C∞K .

From definition 3.6, we have | 〈Tf , ϕ〉 | ≤ C supx∈K |ϕ(x)| with C =∫

K

|f(x)|dx, so the regularity condition (3-1) is satisfied for p = 0. The next
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lemma identifies L1
loc(Ω) with a subspace of D′(Ω).

Lemma 3.7. Let f and g be two functions locally integrable on Ω. The

following properties are equivalent:

– f(x) = g(x) almost everywhere.

–

∫
f(x)ϕ(x)dx =

∫
g(x)ϕ(x)dx for all ϕ ∈ C∞0 (Ω), i.e. Tf = Tg.

Example 3.8. Dirac’s distribution at a ∈ Rd, δa is defined by

〈δa, ϕ〉 = ϕ(a).

It is a distribution of order 0 on Rd. If χε(x) = ε−1χ(x/ε) is an approximation

of the identity, the χε’s converge point-wise in D′(Rd) to δ0 since

〈χε, ϕ〉 =

∫
ϕ(x)χε(x)dx =

(
ϕ ∗ χ̌ε

)
(0).

where χ̌ε(x) = χε(−x) = ε−1χ(−x/ε) is also an approximation of the identity,

hence by the lemma 3.4:

lim
ε→0

〈χε, ϕ〉 = ϕ(0) = 〈δ0, ϕ〉 .

Example 3.9. Another example of distribution, but of order > 0, is da defined

for a ∈ R by

〈da, ϕ〉 = ϕ′(a).

3.3
Operations on distributions

Definition 3.10. (Derivation) The partial derivatives
∂T

∂xi

of a distribution

T ∈ D′(Ω) are the distributions on Ω defined by:

〈
∂T

∂xi

, ϕ

〉
=

〈
T,− ∂ϕ

∂xi

〉
∀ϕ ∈ C∞0 (Ω).

Hence for T ∈ D′(Ω), ϕ ∈ C∞0 (Ω)

〈
∂

∂xi

(
∂T

∂xj

)
, ϕ

〉
=

〈
∂T

∂xj

,
∂ϕ

∂xi

〉
=

〈
T,

∂2ϕ

∂xi∂xj

〉
.

By Schwartz’s lemma:
∂

∂xi

(
∂T

∂xj

)
=

∂

∂xj

(
∂T

∂xi

)
. Therefore the order of

derivation does not affect the result of a successive derivation of a distribution,
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and for α ∈ Nn multi-index, we have:

〈∂αT, ϕ〉 = (−1)|α| 〈T, ∂αϕ〉 .

Besides, if T = f(x) is a C1 function, Definition 3.10 means that for all ϕ ∈ C∞0
we have:

〈
∂T

∂xj

, ϕ

〉
=

〈
T,

∂ϕ

∂xj

〉
= −

∫
f(x)

∂ϕ

∂xj

(x)dx =

∫
∂f

∂xj

(x)ϕ(x)dx.

Hence the distributional derivative,
∂Tf

∂xj

of Tf is the distribution associated to

the usual derivative
∂f

∂xj

(x) for f of class C1:
∂Tf

∂xj
= T ·∂f

∂xj
.

Example 3.11. Let H(t) be Heaviside’s function defined for t ∈ R by

{
H(t) = 1 for t ≥ 1

H(t) = 0 for t < 0

H ∈ L1
loc(R) and is thus associated to a distribution. Computing its distribu-

tional derivative we obtain:

〈T ′H , ϕ〉 = −〈TH , ϕ
′〉 = −

∫ ∞

0

ϕ′(t)dt = ϕ(0) = 〈δ0, ϕ〉 .

Hence:

T ′H = δ0.

Example 3.12. Let δa(t) be Dirac’s distribution defined for t ∈ R. We can

check that δ′a = −da:

〈δ′a, ϕ〉 = −〈δa, ϕ′〉 = −ϕ′(a).

Theorem and Definition 3.13. (Substitution formula) Let Ω1 and Ω2 be two

open subsets of Rd and φ : Ω1 → Ω2 a C∞ diffeomorphism. For T ∈ D′(Ω2),

the formula:

∀ϕ ∈ C∞0 (Ω1), 〈T ◦ φ, ϕ〉 = 〈T, ψ〉 with ψ(y) =
ϕ
(
φ−1(y)

)

| det J
(
φ−1(y)

)| .

defines a distribution on Ω1, called inverse image of T by the change of

parameter φ.

The above definitions match the usual formula for distributions associ-

ated to a function in L1.
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Now, we aim at calculating the convolution product of distributions, we

first define the convolution product of a distribution and a test function. Let

T ∈ D′(Rd) and ϕ ∈ C∞0 (Rd). We define a function of x by setting:

(
T ∗ ϕ)

(x) = 〈T, τxϕ̌〉 . (3-2)

where τxϕ̌ ∈ C∞0 (Rd) is the function z 7→ ϕ̌(z − x) = ϕ(x − z). For

T = f(x) ∈ L1
loc, the formula above is equivalent to the usual definition

(
f ∗ ϕ)

(x) =

∫
f(z)ϕ(x− z)dz. Observe that T ∗ ϕ is always a C∞ function.

Proposition 3.14. We denote by T ∗ ϕ the convolution product of T and ϕ.

It is a C∞ function on Rd satisfying for all α:

∂α(T ∗ ϕ) = T ∗ ∂αϕ.

Note that approximations of the identity also regularize distributions:

Proposition 3.15. If ϕε is an approximation of the identity, then we have the

convergence in D′: T ∗ ϕε −−→
ε→0

T , i.e.:

∀φ ∈ C∞0 (Ω1), 〈T ∗ ϕε, φ〉 = 〈T, φ ∗ ϕ̌ε〉 −−→
ε→0

〈T, φ〉 in R.



4
Building Immersions with Distributions

The main objective of this work is to use distribution derivation on non-

smooth immersions. Distributions are infinitely often differentiable objects,

similarly to smooth parameterization. Therefore they naturally extend class

conditions on immersions. In this chapter we set up a formulation for D-

immersions trying to preserve the main geometric properties of immersions.

4.1
Brute D-parameterization: a first attempt

Figure 4.1: Parameterization directly from D(Rd).

There is a very direct way to substitute classical parameterizations by

distributions. Distributions are defined on test functions spaces. Therefore,

if we use a distribution T instead of a parameterization f , we change the
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parameter space from a subset U of Rd to D(U). However test functions space

D(U) have infinite dimensions, and thus the submanifold parameterized on

a test function space could have as many dimensions as the co-domain of

the distribution used has (see Figure 4.1). This is clearly an undesirable fact.

Another drawback concerns the derivative of our parameterization; we do not

know how to interpret, in terms of tangent space, the derivation of T with

respect to the space of test functions:Dϕ0(T ). As a direct use of distributions as

parameterizations may not work mainly because of the non-finite dimension of

the parameter space, we propose to structure differently the parameter spaces,

in an approximation perspective.

4.2
Approximating by convolution

Figure 4.2: Convolution regularizes the parameterization.

On the one hand, defining differential properties from non-differential

objects is often handled as an approximation problem, usually requiring

convolution operations. On the other hand we saw in the previous chapter

that applying a distribution and convolution product are related operations

and that we could switch from one to another easily. Our approach lies in the

regularization properties of the convolution product. Indeed, when computing

the convolution product of a distribution with a test function, we obtain a

C∞ function (see Figure 4.2). Hence, convolution allows using distributions

as smooth parameterizations. Moreover, it is possible to think of a more

general parameterization not relying on an existing embedding: by taking
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an arbitrary distribution we can always generate a new parameterization by

computing its convolution product with a test function. More specifically, let

f be an immersion on U ⊂ Rd, parameterizing its image f(U) = M (M is a

submanifold of dimension d in Rn). Let Tf be the distribution associated to f ,

and ϕ be a test function on U . We define the function f̃ by:

f̃ :

{
U −→ M̃ ⊂ Rn

x 7−→ (
Tf ∗ ϕ

)
(x)

Since the convolution averages functions, the function f̃ does not map U

exactly on M , the image of the immersion f . Hence f̃ maps U on M̃ = f̃(U),

a mean set of M in Rn. Hence f̃ parameterizes a geometrical object that

corresponds to means of a classical submanifold M = f(U) and those means

depend on the test function ϕ used. In order to parameterize the original M ,

we need to choose the test function ϕ such that M̃ = M . This is in general

not possible directly, but at the limit as in the regularization seen in Section

3.1.2. Formally, we can define a sequence of ϕε of test functions such that(
Tf ∗ ϕε

)
(U) −−→

ε→0
M .

4.3
D-immersions

In the formalization of this approach, we will try to preserve the geometric

properties of the immersion f . We called the equivalent formulation for

immersion D-immersions (see Figure 4.3):

Definition 4.1. (D-immersions) T is a D-immersion if for all approximation

of the identity ϕε there exists ε0 > 0 such that for all ε ∈]0, ε0[, T ∗ ϕε is an

immersion.

To ensure that D-immersions actually generalize classical immersions in

the same way distributions generalize functions, we have to make sure that

the distribution associated to a smooth immersion is actually a D-immersion.

This is done in the following theorem.

Theorem 4.2. Let f be an immersion such that f : U → M , where U is an

open set of Rd such that U contains no singularity of f . If Tf is the distribution

associated to f then Tf is a D-immersion.

Proof. Let ϕε be an approximation of the identity, define fε such that:

fε(x) =
(
Tf ∗ ϕε

)
(x) =

∫

U

f(z) · ϕε(x− z)dz =
(
f ∗ ϕε

)
(x).
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Figure 4.3: Image of a D-immersion associated to an immersion.

We have to prove that for ε small enough fε is an immersion. For that, we will

show that Dxfε has maximal rank for all x ∈ U and 0 < ε < ε0. First observe

that Dxfε is actually an approximation of Dxf :

Dxfε :

{
Rd −→ Rn

x 7−→ (
Df ∗ ϕε

)
(x)

.

Since f is an immersion, Dxf has at least one non-vanishing minor, i.e. there

exists a d× d matrix [Dxf ]d extracted from Dxf such that det[Dxf ]d 6= 0 for

all x ∈ U . Denote by [Dxfε]d the matrix extracted from Dxfε in the same way

that [Dxf ]d is extracted from Dxf .

The smaller ε, the closer det[Dxfε]d is from det[Dxf ]d and the further

from 0. Formally, Theorem 3.5 ensures that det[Dxfε]d −−→
ε→0

det[Dxf ]d, since

det is a continuous function:

∀α > 0, ∃βα > 0 such that |ε− 0| < βα ⇒ | det[Dxfε]d − det[Dxf ]d| < α.
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Choose α0 to be:

α0 = inf
x∈U

(| det[Dxf ]d|
)
.

Since there are no singularities in U , α0 > 0.

Since a ball centered in det[Dxf ]d of radius inferior to α0 on the real line does

not contain 0, for all |ε| < βα0 we have that det[Dxfε]d 6= 0 and thus Dxfε

has maximal rank. Concluding for all x ∈ U , exists βα0 > 0 such that for all

ε < βα0 , fε is an immersion.

4.4
Graph of a function: D-immersions from non-smooth immersions

In this section, we will prove that parameterizations of graph of func-

tions, even if only L1, are associated to D-immersions. This allows using D-

immersions for a much wider class of objects.

Theorem 4.3. Let M ∈ Rn be the graph of a function u ∈ L1 : Rn−1 → R.

Let U be an open of Rn−1 and f be the parameterization of M such that:

f :

{
U −→M

x 7−→ (
f1(x), . . . , fn(x)

)

Where ∀i ∈ {1, . . . , n− 1}, fi : x ∈ Rn−1 7→ xi ∈ R and fn(x) = u(x).

The distribution associated to f is a D-immersion.

Proof. Let ϕε be an arbitrary approximation of the identity. We have to prove

that the mean map of f is an immersion. Defines fε as being the mean map of

f , fε = Tf ∗ ϕε = f ∗ ϕε:

fε

{
U −→Mϕε

x 7−→
((
f1 ∗ ϕε

)
(x), . . . ,

(
fn ∗ ϕε

)
(x)

)

We have to show that the rank of the Jacobian matrix is n− 1. The Jacobian

matrix of fε is: 


∂(f1∗ϕε)
∂x1

. . . ∂(f1∗ϕε)
∂xn−1

...
...

∂(fn∗ϕε)
∂x1

. . . ∂(fn∗ϕε)
∂xn−1




n× n−1

.

Since ∀i ∈ {1, . . . , n− 1} fi(x) = xi

we have
∂(fi ∗ ϕε)

∂xj

=
∂(fi)

∂xj

∗ ϕε =
∂(xi)

∂xj

∗ ϕε.

∂(fi ∗ ϕε)

∂xj

=





1 ∗ ϕε =

∫
1 · ϕε(x)dx = 1 if i = j

0 ∗ ϕε = 0 if i 6= j
∀(i, j) ∈ {1, . . . , n−1}.
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Thus the Jacobian matrix of fε is:




1 0 . . . 0 0

0 1 . . . 0 0
... 0

. . . 0
...

0 0 . . . 1 0

0 0 . . . 0 1

fn ∗ ∂(ϕε)
∂x1

. . . fn ∗ ∂(ϕε)
∂xn−1




n× n−1

.

Hence the rank of the Jacobian matrix of fε is n − 1, and consequently fε is

an immersion.



5
Toward Geometric Properties of D-Immersions

In the previous chapter we managed to generalize the concept of immer-

sion by defining D-immersion. The choice of approximations of the identity as

test functions allows recovering of original parameterizations when parameter

ε tends to 0, in the case of a D-immersion associated with a smooth immersion.

We will now exhibit geometric properties of D-immersions. We want to know

what kind of structure is mapped through a D-immersion, and we will thus

focus on a possible structuration of D(U).

5.1
Structuring D(U)

Figure 5.1: A structure on part of D(U).

In this section, we will consider only the test functions φ ∈ D(Rd) with
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unit mass, denoting

D∗(U) = {φ ∈ D(U),

∫

U

φ = 1} .

An immersion maps the local structure of Rd onto its image. Similarly, a D-

immersion maps a certain structure of D∗(Rd) onto its image. This structure

is a collection of approximation curves: any φ ∈ D∗(Rd) can be seen as an

approximation of the identity φ = τzϕ̌ε for a certain z and ε (see Figure 5.1).

For fixed ε, varying z, the test functions τzϕ̌ε span a d-dimensional object in

D∗(Rd). Reducing ε generates approximations of the identity at each point of

this object. A D-immersion maps this structure in Rn: given a D-immersion T ,

the image 〈T, φ〉 ∈ Rn of an arbitrary test function with unit mass φ is mapped

onto an object Mϕε = T ∗ϕε(U) by T ∗ϕε(z) = 〈T, τzϕ̌ε〉 = 〈T, φ〉. If ε is small

enough, but not zero, Mϕε is a smooth d-submanifold. Intuitively, part of the

image of a D-immersion can be seen as a collection of smooth submanifold in

Rn, eventually tending to an object in Rn.

5.2
Compatible D-immersions: change of parameters

In the classical context, we are able to characterize if two immersions

define the same object. More precisely: f : Uf →M and g : Ug →M define the

same object if h = g−1◦f is a diffeomorphism. Applying h is called a change of

parameters, and two immersions are compatible if they locally define the same

object. Properties derived from immersions are geometric if they are invariant

by change of parameters, otherwise they are merely analytical. We would like

to state a similar characterization for D-immersions. Since we use distributions

as parameterizations, the change of parameters has to be done in spaces of test

functions (see Figure 5.2).

Definition 5.1. (D-change of parameters) We say that two D-immersions

T ∈ D′(U) and S ∈ D′(V ) define the same object if:

∃h : U → V and ∀ϕ ∈ D∗(U), ∃ε0 > 0 and ψ ∈ D∗(V ) such that :

∀ε ∈]0, ε0[, ∀u ∈ U, (T ∗ ϕε)(u) = (S ∗ ψε)(h(u)) .

This definition may be restrictive, but it extends the notion of compatible

immersions at least in the linear case, as stated in the next lemma:

Lemma 5.2. If f and g are two compatible C∞-immersions and h = g−1 ◦ f
is linear, then Tf and Tg are compatible D-immersions.
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Figure 5.2: Compatible D-immersions.

Proof. We know from Theorem 4.2 that Tf and Tg are D-immersions. We

have to check if they locally define the same object. Let h = g−1 ◦ f be the

diffeomorphism mapping the domains U and V of f and g respectively.

Given ϕ ∈ D∗(U), we want to determine ψ ∈ D∗(V ) such that 〈Tf , τuϕ̌ε〉 =〈
Tg, τh(u)ψ̌ε

〉
. We have:

〈Tf , τuϕ̌ε〉 =

∫

U

f(x) · ϕε(u− x)dx

=

∫

U

g ◦ g−1 ◦ f(x) · 1

εd
ϕ

(
u− x

ε

)
dx

=

∫

U

g ◦ h(x) · 1

εd
ϕ

(
u− x

ε

)
dx

=

∫

V

g ◦ h
(
h−1(y)

) · 1

εd
ϕ

(
u− h−1(y)

ε

)
·
∣∣det J

(
h−1

)∣∣−1
(y) dy

=

∫

V

g(y) · ϕε

(
u− h−1(y)

) ·
∣∣det J

(
h−1

)∣∣−1
(y) dy .
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We can define, for a given ε:

ψ(y) = ϕ
(
h−1(y)

) ·
∣∣det J

(
h−1

)∣∣−1
(y) .

Observe that since h is a C∞ diffeomorphism, ψ is C∞ with support in V .

Moreover, since we supposed that h is linear, we have that J (h−1) is a constant

matrix and

τh(u)ψ̌ε(y) =
1

εd
ψ

(
h(u)− y

ε

)
=

1

εd
ϕ

(
h−1

(
h(u)− y

ε

))
· ∣∣det J

(
h−1

)∣∣−1

= ϕε

(
u− h−1(y)

) ·
∣∣det J

(
h−1

)∣∣−1
.

Finally, Tf ∗ ϕε(u) = 〈Tf , τuϕ̌ε〉 =
∫

V
g(y) · τh(u)ψ̌ε(y)dy =

〈
Tg, τh(u)ψ̌ε

〉
=

Tg ∗ ψε(h(u)), with ψ ∈ D∗(V ).

From the last observation of the proof, the change of parameters works

efficiently for the C∞ case with linear domain mapping, but unfortunately the

substitution formula does not work directly for other classes of functions. Here

we face a delicate point of our proposal if we want to extend differential tools

to the C0 case.

5.3
The C1 case

We were not able to define D-change of parameters that extend directly

C0-subsitutions. However, it should be possible in the C1 case. Indeed, we

conjecture the D-immersions associated to compatible C1 immersions are D-

compatible. Follow elements of an eventual proof. Let f and g be two C1

embeddings and name Tf and Tg their associated distributions. Given ϕ ∈ C∞0
a test function, the C1 substitution is h = g−1 ◦f . By the substitution formula

of Theorem 5.2, we obtain ψ = ϕ ◦ h−1| det J(h−1)|−1. Since h is only C1, ψ

is only locally C1. Hence ψ is not a test function. Given δ > 0, there exists

ψ̃δ ∈ C∞0 such that: ∣∣∣
∫
g · ψ −

〈
Tg, ψ̃δ

〉 ∣∣∣ < δ.

In that case, ψ̃δ is a test function that may approximate the desired change of

parameters for the C1 case.

5.4
Tangent cones from D-immersions

In order to study singular objects we have to be able to define approxi-

mations spaces upon singularities. Since tangent spaces cannot be defined ev-
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erywhere on singular objects we propose a definition of tangent cone. We will

see that this definition matches the definition of the common tangent space on

regular objects.

5.4.1
Regular case

Figure 5.3: The tangent space at the images of the mean maps.

Consider a smooth immersion f and its associated D-immersion Tf , and

a fixed parameter q ∈ U . As recalled in Section 2.3, the tangent plane at f(q) is

the vector space tg(f, q) = Tf(q)f(U) = Dq f(Rd). Since Tf is a D-immersion,

for ϕ ∈ D∗(U) and for ε small enough, fε = Tf ∗ϕε is a smooth immersion. We

can thus define tg(fε, q) = (Dq fε)(Rd). In the smooth case, we would expect

tg(fε, q) to tend to tg(f, q) (see Figure 5.3):

Proposition 5.3. The derivative of fε = Tf ∗ ϕε is :

Dqfε = Dq(f ∗ ϕε) = (Dqf ∗ ϕε).

Moreover: lim
ε→0

Dqfε = Dqf .

Proof. This is a direct consequence of Lemma 3.2 and Theorem 3.5.
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5.4.2
Singular case: classical approach

A simple definition for tangent cones on continuous objects can be stated

as:

Definition 5.4. Given a set K ∈ Rn, we say that w ∈ Rn belongs to

the tangent cone at s to K, denoted by T (s,K), if there exists a sequence

(hm)m ∈ (Rn)N where hm 6= 0 and a sequence (λm)m ∈ (R)N where λm > 0,

such that: 



hm −−−→
m→∞

w

λm −−−→
m→∞

0
and ∀m, s+ λmhm ∈M.

5.4.3
D-tangent cone

Now, we intend to define a tangent cone directly from a D-immersion.

Following the regular case, the tangent cone of a D-immersion T from param-

eter q ∈ U would be the limit of DqTε(Rd), where Tε = T ∗ ϕε is a smooth

immersion for small ε. This brute idea must overcome three delicate points:

First, it would be a vector space convergence, and the tangent cone may not

be a vector space. To overcome this, we can look at the function limit of DqTε.

Second, for a general distribution, this may not converge to a function. We

will thus look at the accumulation points instead of the limit. Last, this defi-

nition may depend of the approximation of the identity ϕε used. Therefore we

consider the union of the limits for all the approximations of the identity. This

leads to the following definition:

Definition 5.5. (D-Tangent Cone) Let T be a D-immersion, q ∈ U a fixed

parameter. The D-tangent cone of T at q denoted by tgD(T, q), by:

tgD(T, q) =
⋃
ϕε

(
Acc {Dq Tε}

)
(Rd),

where Acc denote the set of accumulation points in the L1 topology.

The D-tangent cone can be restricted by applying conditions on ϕε.

Definition 5.6. (D+-Tangent Cone) Let T be a D-immersion, q ∈ U a fixed

parameter. The restricted D-tangent cone of T at q denoted by tg+
D(T, q), by:

tg+
D(T, q) =

⋃
ϕε>0

(
Acc {Dq Tε}

)
(Rd) .
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Similarly to this positive tangent cone, we can define the symmetric

tangent cone by restricting the test functions ϕε to be symmetric with respect

to the origin.

Remark 5.7. The D-tangent cone is invariant by D-change of parameters.

Remark 5.8. Proposition 5.3 ensures that, if f is an immersion, tgD(Tf , q) =

tg+
D(Tf , q) = tg(f, q), i.e. the D-tangent cone extends the classical tangent cone.

5.5
Intuitive proposal for D-submanifold

The next step would be to combine D-immersions in atlases to form D-

submanifolds, and to give an intrinsic definition for these objects. This section

proposes a description of such objects in an informal way. We could define a

D-submanifolds M as a subset of Rn which is locally the limit of the images

of D-immersions:

M⊂ Rn is a D-submanifold of dimension d if, for all point x ∈M, there

exists :

– an open neighborhood V of x in Rn,

– a compact K around V (x ∈ V ⊂ K ⊂ Rn),

– an open set U in Rd,

– a D-immersion T .

such that ∀ϕ ∈ D∗(U),
(
(T ∗ ϕε)(U)

) ∩K dH−−→
ε→0

M∩K, where dH(A,B) =

max{supa∈A(d(a,B), supb∈B(d(b, A)} is the Hausdorff distance.

Moreover, if T and S satisfy the above criteria, then they must be compatible

D-immersions. This definition may be less restrictive if imposing only the

existence of ϕ ∈ D∗(U), instead of having the condition on all test function.

The main challenge for this definition is to prove that a smooth submanifold is

a D-submanifold. This may be easier with the convergence in K, as suggested

above, since the Hausdorff distance is reached on compacts.



6
Examples

We experiment our constructions on three submanifolds immersed in the

plane: a parabola as an example of a smooth submanifold and a V-function

and a cusp for non-smooth submanifolds.

6.1
Test functions

To experiment the concept of D-immersions, we need some test functions

in order to evaluate our maps.

To do so, we use combinations of the following standard test function:

φ : t 7−→
{

exp(t2/(t2−1))
NORM

if t2 < 1 ,

0 otherwise .

From this test function it is possible to generate many others using a very

simple trick: averaging several copies of φ translated to different points on the

ϕ ε = 0.1 ε = 0.01 ε = 0.001

φ(t) K0,10 K0,05 0 0,05 0,10

1
2
3
4
5
6
7
8

K0,10 K0,05 0 0,05 0,10

10
20
30
40
50
60
70
80

K0,10 K0,05 0 0,05 0,10

100
200
300
400
500
600
700
800

2
3
φ(t) + 1

3
φ(t+ 2) K1,0 K0,5 0 0,5 1,0

1

2

3

4

5

K1,0 K0,5 0 0,5 1,0

10

20

30

40

50

K1,0 K0,5 0 0,5 1,0

100

200

300

400

2φ(t)− φ(t+ 2)

K2 K1 0 1 2

K5

5

10

15

K2 K1 0 1 2

K50

50

100

150

Table 6.1: Some of the approximations of the identity used in the examples.



Distributions and Immersions 36

real line we get a new test function (see Table 6.1). We can easily then create

an approximation of the identity by:

ϕε : t 7−→ 1

εd
·
∑
αi · φ( t−ti

ε
)∑

αi

.

Through our work we used different test functions to examplify D-immersions

upon two criterias: their positiveness and their symmetry with respect to the

origin. In paricular, we expect positive test functions to respect convexity

properties, in particular for the positive tangent cone, and symmetric test

functions to respect the symmetries of the immersion. That leads us to consider

five types of test functions: a basic gaussian-like test function (ϕ1), a positive

and symmetric one (ϕ2), a non-positive and symmetric (ϕ3), a positive and

non-symmetric one (ϕ4) and finally a non-positive and non-symmetric one

(ϕ5). Here is their expression in function of φ:

ϕ1 = φ(t),

ϕ2 =
φ(t− 1) + φ(t+ 1)

2
,

ϕ3 =
2φ(t− 1) + φ(t+ 1)

3
,

ϕ4 = −φ(t− 1) + 3φ(t)− φ(t+ 1),

ϕ5 = 2φ(t− 1)− φ(t+ 1).

6.2
Experimental setup

In order to estimate the direction of the tangent plane and the curvature

at a given point of an approximated immersion in the plane we use a Maple-

based program (see appendix A). We use the five test functions ϕ1 . . . ϕ5

described previously to proceed with the tests. Three parameters are to be

set to compute a test. The main one is the value of ε, the parameter relative to

the approximation of the identity. We fixed three values for ε along our tests:

0.1, 0.05 and 0.01. Another parameter named translation sets the overlapping

between the different bumps a test function can have. We set it to 9
10

in order to

have a small overlapping between the bumps. As a matter of fact, we observed

that a small overlap allows a cleaner convolution between the test function

and the immersion. The last parameter to set is the number of digits we want

Maple to work with for numerical evaluations, although Maple tries to perform

most of the evaluations formally. A greater number of digits oftenly leads to

computational issues and we thus try to optimize the value of this parameter
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Mϕ ε = 0.1 ε = 0.01 ε = 0.001

φ(t)

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

2
3
φ(t) + 1

3
φ(t+ 2)

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

K2 K1 0 1 2

K2

K1

1

2

3

4

2φ(t)− φ(t+ 2)

K2 K1 0 1 2

K2

K1

1

2

3

4

K0,10 K0,05 0 0,05 0,10

K0,10

K0,05

0,05

0,10

Table 6.2: Mean manifolds with the mean tangent line for the parabola.

for each test. We fix it according to the value of the ε parameter: 5, 8 and 10

digits for ε = 0.1, 0.05, 0.01 respectively.

Finally, we choose a parabola, a V-function and a cusp to be our

experimental immersions. All three of them are D-immersions since they are

all graphs of functions. Both non-smooth immersions are representative of low

order singularities in classical geometry, and are thus two interesting samples

in discrete geometry. In particular, the V-function is the typical example of

polygonal curves which have many applications in discrete modelling.

We try the three dimensional case (see appendix B) as well, meanwhile

we encountered several issues when executing the Maple data-sheet. Although

we managed to produce correct three dimensional test functions from the

base function φ, we could not have Maple compute numerical values of the

convolution. This is due to the lack of numerical methods for double integrals

in Maple. Actually, Maple computes the double integral of the convolution

by iterated integrals, requiring a formal integration followed by a numerical

integration. Since φ has no simple primitive, Maple is not able to perform the

formal integration and thus cannot evaluate or plot the required convolutions.

6.3
Tests on a parabola

The first example is a C∞ submanifold of dimension 1 immersed in the

plane; namely a parabola parameterized as the graph of the square function



Distributions and Immersions 38

ε = 0.1 ε = 0.05 ε = 0.01
Test function Tang Curv Tang Curv Tang Curv

ϕ1 0 2 0 2 0 2
ϕ2 0 2 0 2 0 2
ϕ3 -0.06 1.98 -0.03 1.99 -0.006 1.99
ϕ4 0 2 0 1.99 0 1.99
ϕ5 -0.54 1.36 -0.27 1.79 -0.054 1.99

Table 6.3: Tangent plane direction and curvature estimation for the parabola.

(see Table 6.2). Define:

M =
{

(t, t2), t ∈ R
}
.

Let U be an open of R, define f such that:

f :

{
U −→M ,

t 7−→ (t, t2) .

The function f is an immersion on M and as being the graph of a function

theorem 4.3 ensures that Tf is a D-immersion. Now let’s see how this is related

to the classical theory. We define fε as before:

fε :

{
U −→Mϕε ,

x 7−→ (f ∗ ϕε)(x) .

For all ϕε such that fε is an immersion, Mϕε is a mean submanifold of the

plane. We can observe on Table 6.2 nice approximations for positive test

functions, while non-positive test functions may generate some instabilities.

Table 6.3 gives the estimations of the direction of the tangent plane Tang and

the curvature Curv at parameter value 0 of the immersion, based on the five

test functions listed previously.

Tang =
y′(0)

x′(0)
Curv =

x′(0)y′′(0) − x′′(0)y′(0)

(x′(0)2 + y′(0)2 )
3
2

Notice that for all symmetric test functions (i.e, ϕ1, ϕ2, ϕ4) the tan-

gent plane and the curvature are well approximated. For non-symmetric test

functions, both the tangent plane and the curvature converge to their original

values when ε tends to 0.

6.4
Tests on a V-function

To test our theory on topological submanifolds, we study the graph of the

absolute value function. We are interested in studying the unique singularity
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Mϕ ε = 0.1 ε = 0.01 ε = 0.001

φ(t) K0,4 K0,2 0 0,2 0,4

0,1

0,2

0,3

0,4

0,5

K0,4 K0,2 0 0,2 0,4

0,1

0,2

0,3

0,4

0,5

K0,4 K0,2 0 0,2 0,4

0,1

0,2

0,3

0,4

0,5

2
3
φ(t) + 1

3
φ(t+ 2)

K0,10 K0,05 0 0,05 0,10

K0,10

K0,05

0,05

0,10

K0,10 K0,05 0 0,05 0,10

K0,10

K0,05

0,05

0,10

2φ(t)− φ(t+ 2)

K0,4 K0,2 0 0,2 0,4

K0,4

K0,2

0,2

0,4

K0,4 K0,2 0 0,2 0,4

K0,4

K0,2

0,2

0,4

K0,4 K0,2 0 0,2 0,4

K0,4

K0,2

0,2

0,4

Table 6.4: Mean manifolds with the mean tangent line for the V-shape.

of this submanifold which stands at the origin of the plane (see Table 6.4).

Define:

N =
{

(t, |t|), t ∈ R
}
.

Let V be an open of R, define g such that:

g :

{
V −→ N ,

t 7−→ (t, |t|) .

The function g is a parameterization of N but it fails to be an immersion at

t = 0. However by Theorem 4.3 Tg is a (non-trivial) D-immersion. Now define

gε as being the mean map of g:

gε :

{
V −→ Nϕε ,

x 7−→ (g ∗ ϕε)(x) .

Therefore Nϕε is a mean submanifold of the plane for all ε > 0, i.e, a tangent

plane can be defined at any point. We can observe on Table 6.4 that non-

symmetric test functions generate non horizontal tangent planes, even when ε

is reduced. While symmetric test functions respect the symmetry of the right

angle. We can actually prove this fact: Name s the unique singularity of N .
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When ε tends to 0, we can compute the D-tangent cone of Tg at s:

tgD(Tg, s) =
⋃

ϕε>0

(
Acc {Ds gε}

)
(R) .

Now looking at the D+-tangent cone of Tg at s, we have:

Proposition 6.1. tg+
D(Tg, s) respects the convexity of the submanifold N : all

its elements are directions below N at s.

Proof. Since N is a graph in the plane, it can parameterized by two functions,

x(t) = t and y(t) = |t|. Here tg+
D(Tg, s) is below N when: −1 ≤ y′(0)

x′(0)
≤ 1.

Theorem 4.3 ensures that x′(0) = 1:

x′(0) = −
∫ ∞

−∞
t · ϕ′ε(t) dt = −

[
t · ϕε(t)

]∞
−∞

+

∫ ∞

−∞
ϕε(t) dt = 1.

Now, the derivative of y at 0 is:

y′(0) = −
∫ ∞

−∞
|t| · ϕ′ε(t) dt

= −
∫ 0

−∞
(−t) · ϕ′ε(t) dt−

∫ ∞

0

t · ϕ′ε(t) dt

=
[
t · ϕε(t)

]0

−∞
−

∫ 0

−∞
ϕε(t) dt−

[
t · ϕε(t)

]∞
0

+

∫ ∞

0

ϕε(t) dt

=

∫ ∞

0

ϕε(t) dt−
∫ 0

−∞
ϕε(t) dt+

∫ 0

−∞
ϕε(t)−

∫ 0

−∞
ϕε(t)

= x′(0)− 2 ·
∫ 0

−∞
ϕε(t)

We obtain:
y′(0)

x′(0)
= 1− 2 ·

∫ 0

−∞
ϕε(t).

Since

∫ ∞

−∞
ϕε(t) dt = 1,

∫ 0

−∞
ϕε(t) dt ≤ 1. Moreover, since ϕε ≥ 0, 1 ≥

∫ 0

−∞
ϕε(t) dt > 0, we get:

−1 ≤ 1− 2 ·
∫ 0

−∞
ϕε(t) < 1.

And finally

−1 ≤ y′(0)

x′(0)
≤ 1.
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ε = 0.1 ε = 0.05 ε = 0.01
Test function Tang Curv Tang Curv Tang Curv

ϕ1 0 16.57 0 33.14 0 165.7
ϕ2 0 0.23 0 0.46 0 2.33
ϕ3 -0.33 0.19 -0.33 0.39 -0.33 1.99
ϕ4 0 49.24 0 98.48 0 492.4
ϕ5 -2.99 0.007 -2.99 0.014 -2.99 0.073

Table 6.5: Tangent plane direction and curvature estimation for the V-function.

Similarly to the previous example, Table 6.5 gives the estimations of the

direction of the tangent plane and the curvature at parameter value 0 of the

immersion. Here it can be observed that the curvature is inversely proportional

to ε: when ε is divided by a certain amount, the curvature is multiplied by the

same amount. This was an expected result since when ε tends to 0 the mean

submanifold approximates the right angle with increasing precision linearly

and thus the curvature rises linearly. Notice that here again symmetric test

functions generate good approximations of the tangent plane.

6.5
Tests on a cusp

For the cusp, we only computed the estimations for the direction of the

tangent plane and the curvature at parameter value 0 of the immersion (see

Table 6.6). Once again due to the symmetry of the immersion, the direction of

the tangent plane is well approximated when using symmetric test functions.

The curvature explodes in absolute value when ε tends to 0: this behaviour

corresponds to the non-linear structure of the cusp. Since it is a highly singular

curve at its origin, approximating with convolution with a low valued ε results

in a bad approximation of the curvature. When ε decreases the curvature rises

rapidly. We can observe a lack of information around the point we focused on

when testing with ϕ3 since it has no symmetry. Moreover for test function ϕ5,

the weight on negative parts lead to a very low convergence and high numerical

instability for the tangent plane, and flat approximations for the curvature. We

ε = 0.1 ε = 0.05 ε = 0.01
Test function Tang Curv Tang Curv Tang Curv

ϕ1 0 36.29 0 102.6 0 1147.8
ϕ2 0 -18.06 0 -51.09 0 -571.3
ϕ3 -0.62 -11.04 -0.88 -21.57 -1.97 -52.95
ϕ4 0 145.03 0 410.2 0 4586.1
ϕ5 -5.60 -0.097 -7.93 -0.1 -17.7 -0.101

Table 6.6: Tangent plane direction and curvature estimation for the cusp.
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would expect a similar result as property 6.1 for the positive tangent cone of

the cusp, although in that case the tangent cone should be reduced to a single

direction. Finally, it is trivial to see that the symmetric tangent cone for this

immersion is actually reduced to the vertical direction.



7
Conclusion

Along this dissertation we developed a formulation through which we

extend geometric quantities to non-smooth objects. In particular we address

the delicate task to define a tangent object at a singularity. Although there

exists many ways to approximate such tangent spaces, most of them are

rather complex and intricate. Starting from classical geometric theory where

submanifolds are parameterized through differential applications, we propose

to use distributions in order to differentiate raw continuous parameterizations.

Although there exists a great difference between differential and singular

geometry, our main objective was to build up a direct geometric formulation

to reduce that difference.

The D-geometric notions were designed via distribution theory precisely

for that purpose. As distributions generalize functions, we used them to substi-

tute classical parameterizations in order to obtain a new type of parameteriza-

tions. Building up on the concept of immersion, we managed to generalize some

fundamentals tools of differential geometry. D-immersions generalize classical

immersions, in the sense that the distribution associated to an immersion is

a D-immersion. Moreover they strictly extend immersions as we exhibit non-

trivial D-immersions such as graphs of L1 functions.

D-submanifolds would generalize smooth submanifolds in the sense that

D-immersions associated to parameterizations of a smooth submanifold M

define the D-submanifold associated to M . However we have not managed to

extend classical submanifolds as we thought we could do. A great difficulty

remains when trying to extend our results from C1 to C0 and define flexible

notions for compatible D-immersions. This happens here mainly because

of the proper distribution theory which does not allow C1 test functions.

Meanwhile this work provided answers and lead us to new questions. We further

experimented these notions applying them to tangent cone approximations and

curvature estimations.

Other properties of D-immersions might be discovered and we may hope

that D-submanifolds could someday extend classical differential submanifolds.

We ended the fourth chapter by introducing a new notion of tangent cone, in
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our attempt to study singularities. It is beyond the scope of this dissertation to

proceed to a deeper analysis of this definition but it is a stimulating problem for

future works. In particular, we would like to further study the relations between

different definitions of tangent cones especially in the light of applications to

singularities analysis.
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2005.

HTTP://WWW.MATH.BROWN.EDU/FACULTY/FEDERER.HTML
HTTP://MATH.U-BOURGOGNE.FR/IMB/LANGEVIN/
http://math.u-bourgogne.fr/IMB/langevin/06_10_introdintegral
http://math.u-bourgogne.fr/IMB/langevin/06_10_introdintegral
http://www.polytechnique.fr
HTTP://WWW.WILLIAMS.EDU/GO/MATH/FMORGAN/
http://www.academicpress.com
HTTP://WWW.MATH.POLYTECHNIQUE.FR/
HTTP://WWW.ABC.ORG.BR/ENGLISH/ORGN/ACAEN.ASP?CODIGO=MANFREDO


A
Maple worksheet for the 2d case

A.0.1
Global parameters

Accuracy

Digits := 5 :

Epsilon

epsilon := 0.1 :

Overlapping

trans := 9/10 :

Graphics viewport

xm := -1.1 - trans : xM := +1.1 + trans : ym := -1.1 : yM := +3.1 :

Immersion

X := t -> t ; Y := t -> sqrt(abs(t)) ;

X := t 7→ t

Y := t 7→
√
|t|

A.0.2
Test functions

> phi unnorm := t-> piecewise( -1<t and t<1, exp((-t^2)/(1-t^2)),

0 );

phi unnorm := (s, t) 7→



e
− s2+t2

1−s2−t2 s2 + t2 < 1

0 otherwise

> Digits cpy := Digits :

> Digits := max( Digits, 20 ) :

> norm phi := evalf( Int( phi unnorm(t), t=-1..1 ) ) ;

> Digits := Digits cpy :

norm phi := 1.2069003224378761753
> phi := t -> phi unnorm(t) / norm phi :

> plot( phi unnorm(x), x=xm..xM, y=ym..yM, scaling=constrained )

;

φ := t 7→ phi unnorm(t)
norm phi
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2.0

1.2

0.4

x

1

y

2.8

2.4

1.6

0.8

0.0

−0.4

−0.8

20−2 −1

> TFonction := proc( a,m )

> local A, f, fe, dfe, ddfe ;

> global phi, epsilon, trans ;

>

> A := sum( a[i], i=1..nops(a) ) ;

>

> f := simplify( t -> sum( a[i]*phi(t+m[i]*trans),

i=1..nops(a) ) / A ) ;

> fe := t -> f(t/epsilon) / epsilon ;

> dfe := simplify( t -> subs( u=t, diff( fe(u),u ) ) ) ;

> ddfe := simplify( t -> subs( u=t, diff( dfe(u),u ) ) ) ;

>

> print( plot( [ epsilon * fe( epsilon * x ), epsilon^2 *

dfe( epsilon * x ), epsilon^3 * ddfe( epsilon * x ) ], x=xm..xM,

y=ym..yM, scaling=constrained, color=[red, navy, green] ) ) ;

> return fe, dfe, ddfe ;

> end proc :

A.0.3
Convolutions
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> convole := proc( phi, dphi, ddphi, q )

> global X,Y, trans, xm,xM,ym,yM, epsilon ;

> local x,y, dx,dy, ddx, ddy, x0,y0, dx0,dy0, ddx0, ddy0, tg,

ntg, crv, tm,tM ;

>

> tm := epsilon * (-1.0-trans) ;

> tM := epsilon * ( 1.0+trans) ;

>

> x := z -> evalf( Int( X(z-t) * phi (t), t=tm..tM ) ) ;

> y := z -> evalf( Int( Y(z-t) * phi (t), t=tm..tM ) ) ;

> dx := z -> evalf( Int( X(z-t) * dphi (t), t=tm..tM ) ) ;

> dy := z -> evalf( Int( Y(z-t) * dphi (t), t=tm..tM ) ) ;

> ddx := z -> evalf( Int( X(z-t) * ddphi(t), t=tm..tM ) ) ;

> ddy := z -> evalf( Int( Y(z-t) * ddphi(t), t=tm..tM ) ) ;

>

> x0 := x (q) ;

> y0 := y (q) ;

> dx0 := dx (q) ;

> dy0 := dy (q) ;

> ddx0 := ddx(q) ;

> ddy0 := ddy(q) ;

>

> tg := evalf( dy0 / dx0 ) ;

> ntg := sqrt( dx0^2 + dy0^2 ) ;

> crv := evalf( ( dx0*ddy0 - dy0*ddx0 ) / ntg^3 ) ;

>

> print( "At ", x0,y0, " tg=", tg, " crv=", crv ) ;

>

> plot( [ [x(z),y(z),z=-1..1], tg*(z-x0) + y0, [x0-dy0/crv/ntg

+ sin(theta)/crv,y0+dx0/crv/ntg - cos(theta)/crv,theta=0..2*Pi]

], x=epsilon*xm..epsilon*xM, y=epsilon*ym..epsilon*yM, scaling=constrained,

color=[red,navy,green], thickness=[3,5,2] ) ;

> end proc :

A.0.4
Results

Basic test function

phie, dphie, ddphie := TFonction( [3],[0] ) : convole( phie, dphie,

ddphie, 0 ) ;
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“At′′, 0.0, 0.17085, “tg =′′, 0.0, “crv =′′, 36.299

0.2
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0.08

−0.04

−0.08

x

y

0.28

0.1

0.16

−0.1

0.0

0.20.0

0.24

−0.2

0.04

Positive and symmetric double bump test function

phie 2sym, dphie 2sym, ddphie 2sym := TFonction( [1,1], [-1,+1] )

: convole( phie 2sym, dphie 2sym, ddphie 2sym, 0 ) ;
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1

“At′′, 0.0, 0.29122, “tg =′′, 0.0, “crv =′′, −18.065

0.2

0.12

0.08

−0.04

−0.08

x

y

0.28

0.1

0.16

−0.1

0.0

0.20.0

0.24

−0.2

0.04

Positive and non-symmetric double bump test function

phie 2dis, dphie 2dis, ddphie 2dis := TFonction( [2,1], [-1,+1] ) :

convole( phie 2dis, dphie 2dis, ddphie 2dis, 0 ) ;
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Warning, unable to evaluate 1 of the 3 functions to numeric

values in the region; see the plotting command’s help page to

ensure the calling sequence is correct
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Non-positive and symmetric triple bump test function

phie nsym, dphie nsym, ddphie nsym := TFonction( [-1,3,-1], [-

1,0,+1] ) : convole( phie nsym, dphie nsym, ddphie nsym, 0 ) ;
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Non-positive and non-symmetric double bump test function

phie ndis, dphie ndis, ddphie ndis := TFonction( [2,-1], [-1,+1] ) :

convole( phie ndis, dphie ndis, ddphie ndis, 0 ) ;
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Warning, unable to evaluate 1 of the 3 functions to numeric

values in the region; see the plotting command’s help page to

ensure the calling sequence is correct
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B
Maple worksheet for the 3d case

B.0.5
Global parameters

Accuracy

Digits := 10 :

Epsilon

epsilon := 0.1 :

Overlapping

trans := 9/10 :

Graphics viewport

xm := -1.1 - trans : xM := +1.1 + trans : ym := -1.1 - trans : yM

:= +1.1 + trans : zm := -1.1 : zM := +3.1 :

Immersion

X := (s,t) -> s ; Y := (s,t) -> t ; Z := (s,t) -> sˆ2 + tˆ2 ;

X := (s, t) 7→ s

Y := (s, t) 7→ t

Z := (s, t) 7→ s2 + t2

B.0.6
Test functions

> phi unnorm := (s,t)-> piecewise( (s^2) + (t^2) <1, exp(-(s^2 +

t^2)/(1-s^2 - t^2)), 0 );

phi unnorm := (s, t) 7→



e
− s2+t2

1−s2−t2 s2 + t2 < 1

0 otherwise

> Digits cpy := Digits :

> Digits := max( Digits, 10 ) :

> norm phi := evalf( Int(Int( phi unnorm(s,t), s=-1..1), t=-1..1

) ) ;

> Digits := Digits cpy :

norm phi := 1.268112161
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> phi := (s,t) -> phi unnorm(s,t) / norm phi :

> plot3d( phi unnorm(x,y), x=xm..xM, y=ym..yM, scaling=constrained,

axes=boxed ) ;

−2

x

0

2

−2

0

y

2

> TFonction := proc( a,m,n )

> local A, f, fe, dfeu, dfev, ddfeu, ddfev, ddfeuv ;

> global phi, epsilon, trans ;

>

> A := sum( a[i], i=1..nops(a) ) ;

>

> f := simplify( (s,t) -> sum( a[i]*phi(s+m[i]*trans,

t+n[i]*trans), i=1..nops(a) ) / A ) ;

> fe := (s,t) -> f(t/epsilon, s/epsilon) / epsilon ;

> dfeu := simplify( (s,t) -> subs( u=s, v=t, diff( fe(u,v),u

) ) ) ;

> dfev := simplify( (s,t) -> subs( u=s, v=t, diff( fe(u,v),v

) ) ) ;

> ddfeu := simplify( (s,t) -> subs( u=s, v=t, diff( fe(u,v),u,u

) ) ) ;

> ddfev := simplify( (s,t) -> subs( u=s, v=t, diff( fe(u,v),v,v

) ) ) ;

> ddfeuv := simplify( (s,t) -> subs( u=s, v=t, diff( fe(u,v),u,v

) ) ) ;

>

> print( plot3d( [ epsilon * fe ( epsilon * x, epsilon * y )

], x=-2..2, y=-2..2, scaling=constrained ) ) ;

> return fe, dfeu, dfev, ddfeu, ddfev, ddfeuv ;

> end proc :

B.0.7
Convolutions
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> convole := proc( phi, dphiu, dphiv, ddphiu, ddphiv, ddphiuv,

q, p )

> global X,Y,Z, trans, xm,xM,ym,yM, epsilon ;

> local x,y,z, dxu,dxv,dyu,dyv,dzu,dzv, ddxu,ddxv,ddxuv,ddyu,ddyv,ddyuv,ddzu,ddzv,ddzuv,

x0,y0,z0, dxu0,dxv0,dyu0,dyv0,dzu0,dzv0, ddxu0,ddxv0,ddxuv0,ddyu0,ddyv0,ddyuv0,ddzu0,ddzv0,ddzuv0,

tg, tm, tM, crv ;

>

> tm := epsilon * (-1.0-trans) ;

> tM := epsilon * ( 1.0+trans) ;

>

> x := (u,v) -> evalf( int(int( X(u-s,v-t) * phi (s,t),

s=tm..tM), t=tm..tM ) ) ;

> y := (u,v) -> evalf( int(int( Y(u-s,v-t) * phi (s,t),

s=tm..tM), t=tm..tM ) ) ;

> z := (u,v) -> evalf( int(int( Z(u-s,v-t) * phi (s,t),

s=tm..tM), t=tm..tM ) ) ;

>

> dxu := (u,v) -> evalf( int(int( X(u-s,v-t) * dphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> dxv := (u,v) -> evalf( int(int( X(u-s,v-t) * dphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> dyu := (u,v) -> evalf( int(int( Y(u-s,v-t) * dphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> dyv := (u,v) -> evalf( int(int( Y(u-s,v-t) * dphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> dzu := (u,v) -> evalf( int(int( Z(u-s,v-t) * dphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> dzv := (u,v) -> evalf( int(int( Z(u-s,v-t) * dphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

>

> ddxu := (u,v) -> evalf( int(int( X(u-s,v-t) * ddphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddxv := (u,v) -> evalf( int(int( X(u-s,v-t) * ddphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddxuv := (u,v) -> evalf( int(int( X(u-s,v-t) * ddphiuv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddyu := (u,v) -> evalf( int(int( Y(u-s,v-t) * ddphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddyv := (u,v) -> evalf( int(int( Y(u-s,v-t) * ddphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddyuv := (u,v) -> evalf( int(int( Y(u-s,v-t) * ddphiuv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddzu := (u,v) -> evalf( int(int( Z(u-s,v-t) * ddphiu

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddzv := (u,v) -> evalf( int(int( Z(u-s,v-t) * ddphiv

(s,t), s=tm..tM), t=tm..tM ) ) ;

> ddzuv := (u,v) -> evalf( int(int( Z(u-s,v-t) * ddphiuv

(s,t), s=tm..tM), t=tm..tM ) ) ;

>
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> x0 := x (q,p) ;

> y0 := y (q,p) ;

> z0 := z (q,p) ;

>

> dxu0 := dxu (q,p) ;

> dxv0 := dxv (q,p) ;

> dyu0 := dyu (q,p) ;

> dyv0 := dyv (q,p) ;

> dzu0 := dzu (q,p) ;

> dzv0 := dzv (q,p) ;

>

> ddxu0 := ddxu(q,p) ;

> ddxv0 := ddxv(q,p) ;

> ddxuv0 := ddxuv(q,p) ;

> ddyu0 := ddyu(q,p) ;

> ddyv0 := ddyv(q,p) ;

> ddyuv0 := ddyuv(q,p) ;

> ddzu0 := ddzu(q,p) ;

> ddzv0 := ddzv(q,p) ;

> ddzuv0 := ddzuv(q,p) ;

>

> tg := linalg[matrix](2,2,[evalf (dzu0 / dxu0), evalf(dzv0

/ dxv0), evalf(dzu0 / dyu0), evalf(dzv0 / dyv0)]);

>

> crv := linalg[matrix](3,3,[ddxu0, ddxuv0, ddxv0, ddyu0,

ddyuv0, ddyv0,ddzu0, ddzuv0, ddzv0]);

>

>

> print( "At ", x0,y0,z0, " tg=", tg , "crv=", crv) ;

>

> end proc :

B.0.8
Results

Basic test function

phie, dphieu, dphiev, ddphieu, ddphiev, ddphieuv := TFonction(

[1],[0],[0] ) ; convole( phie, dphieu, dphiev, ddphieu, ddphiev, dd-

phieuv, 0, 0 ) ;
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phie, dphieu, dphiev , ddphieu, ddphiev , ddphieuv := fe, dfeu, dfev , ddfeu, ddfev , ddfeuv

Error, (in evalf/int) unable to convert to pwlist

Positive and axis symmetric test function

phie sym, dphieu sym, dphiev sym, ddphieu sym, ddphiev sym, dd-

phieuv sym := TFonction( [1,1,1,1],[1,0,-1,0],[0,1,0,-1] ) ; convole(

phie 2sym, dphie 2sym, ddphie 2sym,phie 2sym, dphie 2sym, dd-

phie 2sym,0, 0 ) ;

phie sym, dphieu sym, dphiev sym, ddphieu sym, ddphiev sym, ddphieuv sym := fe, dfeu, dfev , ddfeu, ddfev , ddfeuv
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Positive and non-symmetric test function

phie dis, dphieu dis, dphiev dis, ddphieu dis, ddphiev dis, dd-

phieuv dis := TFonction( [1,1], [0,+1], [0,1] ) : convole( phie dis,

dphieu dis, dphiev dis, ddphieu dis, ddphiev dis, ddphieuv dis, 0, 0

) ;

Error, (in evalf/int) unable to convert to pwlist

Non-positive and axis symmetric test function

phie nsym, dphieu nsym, dphiev nsym, ddphieu nsym, dd-

phiev nsym, ddphieuv nsym := TFonction( [2,2,-1,-1],[1,-

1,0,0],[0,0,1,-1] ) ; convole( phie nsym, dphieu nsym, dphiev nsym,

ddphieu nsym, ddphiev nsym, ddphieuv nsym,0, 0 ) ;

phie nsym, dphieu nsym, dphiev nsym, ddphieu nsym, ddphiev nsym, ddphieuv nsym := fe, dfeu, dfev , ddfeu, ddfev , ddfeuv
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Error, (in evalf/int) unable to convert to pwlist

Non positive and non-symmetric test function

phie ndis, dphieu ndis, dphiev ndis, ddphieu ndis, ddphiev ndis,

ddphieuv ndis := TFonction( [2,-1], [0,+1],[0,1] ) ; convole(

phie ndis, dphieu ndis, dphiev ndis, ddphieu ndis, ddphiev ndis,

ddphieuv ndis,0, 0 ) ;

phie ndis , dphieu ndis , dphiev ndis , ddphieu ndis , ddphiev ndis , ddphieuv ndis := fe, dfeu, dfev , ddfeu, ddfev , ddfeuv

Error, (in evalf/int) unable to convert to pwlist

>
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