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Abstract. Many applications of geometry processing and computer vision relies on geometric properties of curves,
particularly their curvature. Several methods have been proposed to estimate the curvature of a planar curve,
most of them for curves in digital spaces. This work proposes a new method for curvature estimation based on
weighted least square fitting and local arc–length approximation. Convergence analysis of this method and noise
impact on the estimator accuracy are given. Numerical robustness issues are addressed with practical solutions.
The implementation of the method is compared to other curvature estimation methods.
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Figure 1: Estimated curvatures (colour), tangent lines and normal vectors: (a) r(t) = (4 cos(t) − 2 sin(2t), 4 sin(t) + 2 cos(2t)) : t ∈
[−2π, 2π]; (b) r(t) = (sin(2t), sin(3t)) : t ∈ [−π, π]; (c) r(t) = ( t2−1

t2+1
, t t2−1

t2+1
) : t ∈ [−2, 2].

1 Introduction
Many applications of geometry processing and computer

vision relies on geometric properties of curves. In partic-
ular, the curvature measures how a curve bends, which is
one of the most characteristic property of a curve considered
for theoretical analysis and practical applications. For ex-
ample in CAGD [16] and in Computer Vision [15], curvature
motion [18], curve reconstruction [1, 3], curve compres-
sion [11], and adaptive curve approximation [14] requires
accurate curvature estimators.

Several methods have already been proposed for
curvature estimation, most of them in the particular case of
digital spaces, i.e. curves extracted from images [6]. In this
work, we shall consider piecewise–linear approximation of
planar curves, which is a general framework that includes
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those digital curves. This approach leads to a clear theoret-
ical analysis and serves directly to applications to geometric
modeling and computer graphics.

Problem statement. Discrete curves proceed from dif-
ferent sources: digital curves [6], parametric or implicit
curves [14], curve reconstruction [1, 3]. . . Piecewise–linear
approximations, provides a general framework that includes
the above cases. A piecewise–linear approximation P of
a planar curve r is a finite sequence of m sample points
{p1,p2, ...,pm} of r. We admit the presence of noise. In
this paper, we will try to estimate accurately the tangent line
and the curvature of the curve r at a point pj of P.

Contributions. In this paper, we introduce a new method
for curvature estimation based on weighted least square fit-
ting and local arc–length approximation. More precisely,
we fit a second–order polynomial for each coordinate, con-
sidered as a function of the arc–length. We prove the conver-
gence of our estimations under reasonable conditions over
the sampling of the curve and the amplitude of the noise. We
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provide a practical implementation of this method, address-
ing numerical issues with simple solutions. The preliminary
results show that our methods compare nicely to the state–
of–the–art, and that it has a strong stability over different
conditions of noise and sampling.
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Figure 2: The arc–length s(t) helps defining the tangent and the
normal vectors T(t) and N(t).

Paper outline. Section 2 Curvature of a planar parametric
curve introduces the concepts and notations from differential
geometry of curves that will be used in this work. Section
3 Previous and related works discusses the previous and related
works. The theoretical analysis of our method is presented
in Section 4 Theoretical framework. Section 5 Computational
framework details the implementation of our schemes, and in-
troduces improvements on the method numerical robustness.
Our algorithm is finally compared to the state–of–the–art in
the last section.

2 Curvature of a planar parametric curve
A parametric curve in the plane is a function r : I ⊂

R→ R2, t 7→ (x(t), y(t)), where x and y are functions from
I to R. The curve r is said to be regular if x and y are C1

and ṙ(t) = dr
dt (t) never vanishes on I .

From now on, let us suppose that r is a regular parameteri-
zed curve. The arc–length s from the point r(t0), t0 ∈ I, to a
given point r(t), t ∈ I, is by definition s(t) =

∫ t

t0
∥ṙ(t)∥dt.

When the curve is regular, s(t) is strictly increasing, and has
therefore an inverse t(s). The curve can be parameterized by
the arc–length by considering r(s) = r ◦ t(s). Along this
paper, we will denote the derivation with relation to the arc–
length s with a prime (r′), and the derivation with relation to
t by a dot (ṙ).

The vector T(s) = r′(s) is called the tangent vector. The
normal vector N(s) is directly orthogonal to the tangent vec-
tor T(s): N(s) = (−y′(s), x′(s)) (see Figure 2). Observe
that T′(s) and N(s) are colinear, because ∥T(s)∥ = 1 is
constant. If r is a curve of class C2 parameterized by the arc–
length, then the analytical definition of the curvature κ(s)
follows the Frenet’s formula: κ(s) = T′(s) · N(s). When
the curve r(t) is not parameterized by the arc–length, the
curvature is given by:

κ(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

(ẋ2(t) + ẏ2(t))
3
2

(1)

κ =
1

ρ
> 0

ρ κ =
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ρ
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ρ ≈ ∞

κ ≈ 0

ρ

Figure 3: The curvature is the inverse of the radius of the osculating
circle. Its sign corresponds to the local convexity of the curve.

The radius of curvature ρ(s) is the radius of the osculating
circle at r(s) (see Figure 3). The absolute value of the
curvature can also be defined geometrically by |κ(s)| =
1/ρ(s). The sign of κ(s) indicates whether the curve is
concave or convex at that point.

The curvature also corresponds to the variation of the
tangent direction with respect to the arc–length: κ(s) =
θ′(s), where θ(s) = ∠(T(s), (1, 0)).

3 Previous and related works
Several methods have already been proposed for estimat-

ing the curvature at point pj , most of them in the particular
case of digital spaces, i.e. curves extracted from images [6].
In this section, we will review the most significant to us. We
implemented those methods for the comparison of Section
6 Experimental results. Those approaches are classified in three
groups, according to which definition of curvature they are
using (as done in [20]): tangent direction, osculating circle,
derivation. Most methods use a sliding window of 2q + 1
points centered around pj .

Methods based on the tangent direction The methods of
the first group estimate the derivative of the tangent direction
with respect to the arc–length, i.e. κ(s) = θ′(s). For digital
images, this requires to estimate the gradient of a polygonal
approximation of an implicit curve. This is done in [20] in
three ways.

The first method (referred as line fitting) estimates the
tangent direction at the sides of a sample j by a Gaussian–
weighted linear fit centered at the left point at j − 1 and
right point at j + 1. The curvature is then estimated as the
difference of orientation divided by the distance between the
points at j − 1 and j + 1. This method is not very robust due
to the numerical imprecision on angle computation.

The second method (referred as chain code in [20]) eval-
uates the local angle θ̂(pi) = tan−1

(
yi+1−yi

xi+1−xi

)
around j :

i = j − q . . . j + q. The derivation is done by convolution
with a derived Gaussian Kernel Gσ: κ̂ = θ̂ ∗ Ġσ .

However, the curvature equals the derivation with respect
to the arc–length. Therefore, the third method ( referred
as resampling in [20]) first performs a resampling of the

The corresponding work was published in the proceedings of the Sibgrapi 2004, pp. 250–257. IEEE Press, 2004.
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curve by linear interpolations on the curve segments. This
introduces a bias of 1.107 which is explicitly corrected.

In [9], the angle is estimated as the external angle around
the sample points. This improves numerically the results
of [20] by avoiding right angles in the computation. This last
method only uses 3 points for the approximation.

Methods based on the radius of curvature. The second
group of methods compute the curvature by estimating the
osculating circle touching the curve (κ(s) = 1/ρ(s)).

In [5], the radius of the circle passing through pj−q, pj

and pj+q is estimated by: κ̂(pj) = ∠(pj−qpj ,pjpj+q)
∥pj−qpj∥+∥pjpj+q∥ .

This result was improved in [5] by the area formula for
the radius of the circle circumscribed to a triangle:

κ̂(pi) =
√

(b+c)2−a2·
√

a2−(b−c)2

abc , where a, b and c are,
respectively, the norm of the vectors pjpj−q, pjpj+q, and
pj−qpj+q.

In [19], the osculating circle is approximated by a dir-
ect least–square fitting of a circle, using an intermediate
Cholewsky decomposition for the optimisation [17].

Methods based on coordinate functions derivation. Fi-
nally, methods of the last group are based on the first and
second derivative estimation of the curve (see Equation (1)).

In [20], the path method obtains the derivatives by a
convolution with a derived Gaussian kernel.

In [2], the derivatives are estimated as weighted local
differences among three points centered at pj .

In [7], the derivatives are estimated by an imaginary mul-
tiplication in the frequency domain of a closed curve. This
approach combines efficiently with a multi–scale analysis by
convoluting the curve with different Gaussian kernels.

In [4], one coordinate of the curve is approximated by a
polynomial in the second coordinate through a least–square
fitting, and the derivatives are estimated by the coefficient
of that polynomial. Our method also use least–square fit-
ting, but we approximate the curve with a rotated parabola,
whereas [4] restricts the parabola to be parallel to the x
or y axis. More generally, our method fits each coordinate
as a quadratic function of the arc–length, and estimates the
curvature by derivation of that function.

4 Theoretical framework
In this section, we describe our model and approach to

solve the problem of tangent line and curvature estimation.

(a) Model and notations

Consider a piecewise–linear approximation P of a C3

curve r in R2: P = {p1,p2, ...,pm}. We admit some noise
in the samples. In this theoretical analysis, we will assume
that the curve is parameterized by arc–length, although the
samples pi need not to be equally spaced. We will try to
estimate the first and second derivatives of the coordinate
functions x(s) and y(s).

pjpj−q

pj+q

pj+2

pj−2

σ
σ

σ

Figure 4: Sampled curve with noise.

Assuming that pj is the origin of the curve, i.e., r(0) =
pj , we can write:{

x(s) = x(0) + x′(0) s + 1
2 x′′(0) s2 + g1(s)s3

y(s) = y(0) + y′(0) s + 1
2 y′′(0) s2 + g2(s)s3

with gi(s)→ 0 when s→ 0. Since pi = (xi, yi) are samples
of the curve associated to the value of arc–length si, we can
write{

xi = xj + x′
j si + 1

2 x′′
j s2

i + g1(si) s3
i + ηx,i

yi = yj + y′
j si + 1

2 y′′
j s2

i + g2(si) s3
i + ηy,i

where ηi = (ηx,i, ηy,i) is the noise corresponding to the
point pi. We shall assume that the random variables ηi

are independent and identically distributed (i.i.d.) with zero
mean and variance σ2 (see Figure 4). We aim to estimate
x′

j , y
′
j , x

′′
j and y′′

j from the samples, i.e., the first and second
order derivatives of r at pj . To obtain those values we shall
use a weighted least squares (WLS) approach.

(b) The weighted least squares approach

Figure 5: Second–order weighted least square fitting.

First, we need an estimate for the arc–length si. Define
∆lk as the length of the vector pkpk+1, where k ranges from
1 to (m− 1). Since we have assumed that pj is the origin of
the curve, the arc–length estimator from pj to pi is defined
as ∆lji =

∑i−1
k=j ∆lk, when i > j, and ∆lji = −

∑j−1
k=i ∆lk,

when i < j.
In our approach we will restrict our calculus to a sliding

window of 2q+1 points centered around pj : we will only use

Preprint MAT. 12/04, communicated on March 30th, 2004 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(c) Dependent coordinate method with rotation.

Figure 6: Least–square fitting defect can be compensated by rotation: we drew big errors by wide line, the scale being the same on the three
figures.

the sample points pj−q, ...,pj+q of P. We will now describe
how to obtain the estimations of the derivatives x′

j and x′′
j ,

and the same solution is used to obtain y′
j and y′′

j .
Considering the distinct abscissas ∆ljj−q, ...,∆ljj+q

at which ordinates xj−q − xj , ..., xj+q − xj , yj−q −
yj , ..., yj+q − yj are assigned. We will look for the quadratic
functions. {

x(s) = xj + x′
j s + 1

2 x′′
j s2

y(s) = yj + y′
j s + 1

2 y′′
j s2

that better fits these data in the weighted least squares sense
(see Figure 5). In other words, we shall look for x′

j and x′′
j

that minimize

Ex(x′
j , x

′′
j ) =

j+q∑
i=j−q

wi

(
xi − xj − x′

j ∆lji − 1
2 x′′

j (∆lji )
2
)2

.

and similarly for y′
j and y′′

j . The real numbers wi are the
weight of the point pi. Such numbers are to be chosen
positive, relatively large for small |∆lji | and relatively small
for larges |∆lji |. For example, we can consider weights of the
form w(∆l) = α exp(−β∆l2)/∆lk.

When q > 1, the above WLS problems have a well–
known solution [10]. So we can write the following formulas
for the derivatives of r:{

x′
j = ce−bf

ac−b2 , x′′
j = af−be

ac−b2 ,

y′
j = cg−bh

ac−b2 , y′′
j = ah−bg

ac−b2 .

where :



a =
∑j+q

i=j−q w2
i (∆lji )

2

b = 1
2

∑j+q
i=j−q w2

i (∆lji )
3

c = 1
4

∑j+q
i=j−q w2

i (∆lji )
4

e =
∑j+q

i=j−q w2
i ∆lji (xi − xj)

f = 1
2

∑j+q
i=j−q w2

i (∆lji )
2 (xi − xj)

g =
∑j+q

i=j−q w2
i ∆lji (yi − yj)

h = 1
2

∑j+q
i=j−q w2

i (∆lji )
2 (yi − yj).

Observe that when the weights are symmetrical and the
samples are equally spaced around pj the term b vanishes.
The 4–connected digital curves are examples of such situ-
ation. With those results, our curvature estimator is given by:

κ̂(pj) =
eh− fg

ac− b2
.

(c) Convergence analysis: sampled curve without noise

In the following, we shall denote by δ the maximal dis-
tance between samples: δ = max

{∣∣∣∆ljj−q

∣∣∣ ,
∣∣∣∆ljj+q

∣∣∣}, and
by K0 and K1 the maximum of the curvature and its deriv-
ative around pj : K0 = max{|κ(s)| , |s| ≤ δ} and K1 =
max{|κ′(s)| , |s| ≤ δ}, where κ(s) is the curvature of r

at s. Let ϕ =
(
ac + 1

2 |b|
∑

w2
i |∆lji |3

)
/

(
ac− b2

)
and

θ(ε) = sin(ε/2)
ε/2 .In the technical report [12], we give precise

proofs of the following results.

Proposition 1 (Convergence without noise) (a) If δK0 ≤
ε. Then the estimation error is bounded:∣∣x′

j − x′(sj)
∣∣ ≤ ϕ 1−θ(ε)

θ(ε) x′(sj) + ϕ ε
θ(ε) .

(b) Suppose that δK0 ≤ ε and δK1 ≤ ε. Then:∣∣x′′
j − x′′(sj)

∣∣ ≤ ϕ
1− θ2(ε)

θ2(ε)
x′′(sj)+ϕ

ε

θ2(ε)
(1 + x′(sj)K0) .

In other terms, the products δK0 and δK1 should be small,
which corresponds to the intuition that the sampling must be
denser in regions of high curvature. If not, some samples are
too far from pj to be correctly used in the estimate of the
first derivatives of r at pj .

(d) Convergence analysis: noisy curve

Let :

Γ0 =
(
c2

∑
w4

i (∆lji )
2 + b2

4

∑
w4

i (∆lji )
4
)

/(ac− b2)2

Γ1 =
(

b2

4

∑
w4

i (∆lji )
2 + a2

∑
w4

i (∆lji )
4
)

/(ac− b2)2

In the particular case where the samples are symmetrically
distributed around pj and the weights wi are equal, we have
b = 0 and Γ−1

0 = a ≈ δ2q, and Γ−1
1 = c ≈ δ4q, where we

assumed that q is big in the approximation.

Proposition 2 (Convergence with noise) (a) Assume that
σ2 Γ0 ≤ γ. Then the error of estimation

∣∣x′
j − x′(sj)

∣∣ is
bounded by the sum of the errors of proposition 1(a) and a
random variable of zero mean and variance less than γ.

The corresponding work was published in the proceedings of the Sibgrapi 2004, pp. 250–257. IEEE Press, 2004.

http://www.inf.ufpr.br/sibgrapi2004/
http://csdl.computer.org/comp/proceedings/sibgrapi/2004/2227/00/22270250abs.htm


5 Arc–length based curvature estimator

(b) Assume that: σ2 Γ1 ≤ γ. Then the error of estimation∣∣x′′
j − x′′(sj)

∣∣ is bounded by the sum of the errors of propos-
ition 1(b) and a random variable of zero mean and variance
less than γ.

In other words, the products σ2Γ0 and σ2Γ1 should be
small, which again corresponds to the intuition that the num-
ber of points 2q + 1 considered for the approximation must
increase with the noise. If not, the noise is too strong for us
to guarantee the estimation for

(
x′

j , y
′
j

)
and

(
x′′

j , y′′
j

)
.

Algorithm 1 Set Weighted Least Squares Variables (j).

1: ∆l[] = a = b = c = e = f = g = h = 0 ;
2: for i = 1 . . . 2q do
3: ∆l[i]←∆l[i-1] + ∥pj−q+i−1pj−q+i∥ ;
4: end for
5: m = ∆l[j] ;
6: for i = 0 . . . 2q do
7: ∆l[i]←∆l[i] - m ; // Centering dl on j
8: w = weight( ∆l[i] )2 ;
9: a← a + w (∆l[i])2 ;

10: b← b + w (∆l[i])3 ;
11: c← c + w (∆l[i])4 ;
12: e← e + w (∆l[i]) (xj+i-xj) ;
13: f ← f + w (∆l[i]) (yj+i-yj) ;
14: g← g + w (∆l[i])2 (xj+i-xj) ;
15: h← h + w (∆l[i])2 (yj+i-yj) ;
16: end for
17: d = ac− b2 ; // determinant

5 Computational framework

The method we introduced is extremely simple to imple-
ment. It has two variants we called Independent coordinates
and Dependent coordinates. Moreover, the numerical results
can be improved by a simple rotation on the data, in order
to have the tangent direction close to the horizontal (see Fig-
ure 6).

Our algorithm follows directly from the analysis of Sec-
tion 4 Theoretical framework: we compute the coefficient
a, b, c, e, f, g, and h and solves the WLS method (see Al-
gorithm 1).

(a) Independent coordinates method

This method computes the estimations for x′
j , y

′
j , x

′′
j and

y′′
j . To do so we find the solution for the two WLS prob-

lem independently for x and y. The resulting tangent vec-
tor T = (x′

j , y
′
j) is not constrained to be unitary, and the

vector (x′′
j , y′′

j ) is not constrained to be orthogonal to T.
We normalize the normal vector estimate in the direction
of sign(κ)(x′′

j , y′′
j ). The solution is then carried out by Al-

gorithm 2.

Algorithm 2 Independent coordinates WLS Solution (j)

1: call Set Weighted Least Squares Variables (j);
2: Tx = (ce− bf)/d ;
3: Ty = (cg − bh)/d ;
4: Nx = (af − be)/d ;
5: Ny = (ah− bg)/d ;
6: κ = (eh− fg)/d ;
7: N = sign(κ) (N/∥N∥) ;

(b) Dependent coordinates method

We observe that when the curve is parameterized by the
arc–length, we must have:{

x′2 + y′2 = 1
x′x′′ + y′y′′ = 0

Thus, with those two equations we can use estimates for x′
j

and x′′
j to obtain estimates for y′

j and y′′
j , or vice–versa. This

selection depends whether |Tx| < |Ty|. The algorithm 3
solves the WLS problem for one coordinate, and deduces the
estimations of the other coordinate. Algorithm 3 guarantees

Algorithm 3 Dependent coordinates WLS Solution (j)

1: call Set Weighted Least Squares Variables (j);
2: Tx = (ce− bf)/d ;
3: Ty = (cg − bh)/d ;
4: if |Tx| < |Ty| then // Considering x(y)
5: Ty = sign(Ty)

√
(1−T2

x) ;
6: Nx = (af − be)/d ;
7: Ny = -(TxNx)/Ty ;
8: else // Considering y(x)
9: Tx = sign(Tx)

√
(1−T2

y) ;

10: Ny = (ah− bg)/d ;
11: Nx = -(TyNy)/Tx ;
12: end if
13: κ = TxNy - TyNx ;
14: Nx = -Ty; Ny = Tx ;

the geometrical properties of the tangent and the normal
vector, that is, T is unitary and that N is orthogonal to T.
The use of the above algorithm is well suited when the curve
is almost the graphic of a function in the axis: y = f(x).
The best axis is chosen at line 4 of Algorithm 3. However, a
simple rotation helps getting closer to that case.

(c) Rotation

Least–square fitting works very well when the input
points are well distributed. However even on basic cases such
as a simple circle, the input points can be almost aligned ver-
tically. To avoid this situation, following [4], we choose one
of the x or y axis as reference for the parameterisation (see
Section 5(b) Dependent coordinates method). Even though, in
the case of [4], the parabola degenerates to a line when the
tangent direction is at 45o (see Figure 6). In the dependent
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coordinates method (not in the independent one), the numer-
ical precision is decreasing with the angle. To compensate
this numerical error, we can compute first an estimation of
the tangent with one of our methods, and then use this tan-
gent to better distribute the samples. This operation is simply
performed by a rotation on the input points before the sum-
mation (before line 12 of Algorithm 1):[

xi − xj

yi − yj

]
7→

[
Tx Ty

−Ty Tx

] [
xi − xj

yi − yj

]
.

(d) Boundary conditions.

We introduced our algorithm for computing the curvature
at a point pj with 2q+1 samples centered at that point. How-
ever, for points close to the boundary of a curve, this condi-
tion cannot be not verified. In that case we can either reduce
the width q of our sliding window, or simply compute the
curvature using a non–centered window. In the last case, we
do not have the theoretical guarantees of Section 4 Theoret-
ical framework: the coefficient ϕ of Proposition 1. Neverthe-
less, our experimental results remain coherent, although less
precise.

6 Experimental results
We have implemented our method with four variants:

the independent and dependent coordinate method with or
without a rotation to make the tangent line close to hori-
zontal. In this section, we will discuss our results and we
will compare our performance to some important methods in
the literature.

(a) Experimental setting

We will discuss our tests using three curves:
– Circle: r(t) = (cos(t), sin(t)) : t ∈ [0, 2π];
– Ellipse: r(t) = (2 cos(t), sin(t)) : t ∈ [0, 2π];
– Spiral: r(t) = ( 2√

t
cos(t), 2√

t
sin(t)) : t ∈ [10, 50].

All of them were uniformly sampled in time, and therefore,
the samples were equally spaced for the circle, but not for the
ellipse and the spiral. The noise was simulated as a uniform

(a) Curve trace (b) Curve detail

Figure 7: Noisy spiral curve (1000 samples, σ = 1).

random variable in the disk of radius σ, where σ is a pro-
portion to the average distance between consecutive samples
(see Figure 7). We considered the width q of our sliding win-
dow between 1 and 30. We have also experimented the al-
gorithm with weights given by the formula presented in Sec-
tion 4 Theoretical framework (see Figure 9).

Since we have the parametric formula for those examples,
we computed the real curvature using automatic differenti-
ation [8]. We have measured the relative error between the
unbiased estimated curvature k̂ and the real value k by the
formula:

RE(pj) =
∣∣∣∣ (κ̂(pj)− κ̂mean)− (κ(pj)− κmean)

κ(pj)

∣∣∣∣
and considered the arithmetic mean of this relative error
along the curve.

(b) Results

Our experimental results confirm the convergence ana-
lysis: our methods improve when increasing the number of
samples (inside the same time domain), i.e. when reducing
the average distance ∆l between consecutive samples(see
Figure 10). In the noiseless case (σ = 0), we have observed
that, for all curves (not restricted to those 3) and methods
considered, the relative error RE increase with q (see Fig-
ure 8). This is not surprising, since the curvature estimation
should be better if we use points closer to the base point.
We observe that the behaviour of our method is similar to
the other ones, and that considering non–constant weights
can improve those results (see Figure 9). In the noisy case
we observed that the use of more sample points can improve
the estimates. The ideal number of points q depends on the
curve, on the sampling and on σ (see Figure 11). But we ob-
served that even if we take more points than the ideal value,
the relative error does not grow too much.

7 Conclusion
The curvature estimators that we have proposed per-

formed experimentally close to the best in the literature.
They are also robust with respect to noise and work in a great
variety of sampling conditions. Notice that our method does
not only estimate the curvature, but also the tangent line, the
normal vector, and the osculating circle (see Figure 1).

A very important advantage is that it can be immediately
generalized for the estimation of curvature and torsion of
curves in R3. Other advantage of our method is that it can be
easily implemented. The program we used for comparison is
available at [13].

We plan to generalize our method to the case of point
clouds in plane and also in space.
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Figure 8: Noiseless spiral with 2000 sample points (w(∆l) =
1) (legend on Figure 10(a)).
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(a) Legend.
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(b) Ellipse.
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(c) Spiral.

Figure 10: Convergence when the sampling rate increases (σ = 0, w(∆l) = 1): Not all the methods we introduced in the prior work
converges when ∆l → 0, especially for irregularly sampled curves as (c).
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(a) Circle: m = 200, σ = 0.5.
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(b) Ellipse: m = 500, σ = 0.5.
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(c) Spiral: m = 2000, σ = 0.5.
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(d) Circle: m = 200, σ = 1.5.
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(e) Ellipse: m = 500, σ = 1.5.
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(f) Spiral: m = 2000, σ = 1.5.

Figure 11: Noise in the samples (w(∆l) = 1) (legend on Figure 10(a)): the circle fitting of [19] minimizes its error for a specific value of q as
specified in [19], however the minimization sometimes degenerates ((a),(d)). The FFT–based method of [7] is very robust to noise, although
not being always optimal for larger q. Our results are never far from the best ones, although the best methods differ from case to case.
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