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1 Introduction
Consider a collection of samples P of a planar or a spacial curve r, i.e., a finite sequence ofm sample points {p1,p2, ...,pm}

of r. We admit the presence of noise. In this report we describe and analyze a method for estimating the tangent line, the
curvature and the torsion of the curve r at a point of P.

The method is based on least squares parametric curve fitting. More precisely, we fit a parametric parabola to the data in the
planar case and a parametric cubic in the spatial case. We prove the convergence of our curvature estimations under reasonable
conditions over the sampling of the curve and the amplitude of the noise.

2 Model and notations
Consider a piecewise–linear approximation P of a smooth curve r in R2 or R3. We admit some noise in the samples. In

this theoretical analysis, we will assume that the curve is parameterized by arc–length. For curvature estimation, we need to
estimate the first and second derivatives of the coordinate functions x(s),y(s) and z(s), while for torsion estimation we need to
estimate the first, second and third derivatives of x(s), y(s) and z(s).

Let us fix a sample point p0 in P. We shall use a window of 2q + 1 points of P around p0, so we write P =
{p−q,p−q+1, ...,pq}. Assuming that p0 = r(0) is the origin, we can write





x(s) = x′(0) s+ 1
2 x

′′(0) s2 + g1(s)s3

y(s) = y′(0) s+ 1
2 y

′′(0) s2 + g2(s)s3

z(s) = z′(0) s+ 1
2 z

′′(0) s2 + g3(s)s3

for the second order approximation and




x(s) = x′(0)s+ 1
2x
′′(0)s2 + 1

6x
′′′(0)s3 + g1(s)s4

y(s) = y′(0)s+ 1
2y
′′(0)s2 + 1

6y
′′′(0)s3 + g2(s)s4

z(s) = z′(0)s+ 1
2z
′′(0)s2 + 1

6z
′′′(0)s3 + g3(s)s4

for the third order approximation, with gi(s) → 0 when s→ 0. In the case of planar curves, the equations corresponding to the
z coordinate should be omitted. Since pi are samples of the curve associated to the value of arc–length si, we can write





xi = x′(0) si + 1
2 x

′′(0) s2i + g1(si) s3i + ηx,i

yi = y′(0) si + 1
2 y

′′(0) s2i + g2(si) s3i + ηy,i

zi = z′(0) si + 1
2 z

′′(0) s2i + g3(si) s3i + ηz,i

in the first case and 



xi = x′(0)si + 1
2x
′′(0)s2i + 1

6x
′′′(0)s3i + g1(si)s4i + ηx,i

yi = y′(0)si + 1
2y
′′(0)s2i + 1

6y
′′′(0)s3i + g2(si)s4i + ηy,i

zi = z′(0)si + 1
2z
′′(0)s2i + 1

6z
′′′(0)s3i + g3(si)s4i + ηz,i

in the second case, where ηi is the noise corresponding to the point pi. We shall assume that the random variables ηi

are independent and identically distributed (i.i.d.) with zero mean and variance σ2. We aim to estimate, from the samples,
(r′(0), r′′(0)) for curvature estimation and (r′(0), r′′(0), r′′′(0)) for curvature and torsion estimation. To obtain these estimates
we shall follow a weighted least squares approach.
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3 The weighted least squares approach
First of all, we need an estimate for the arc–length si. Define ∆lk as the length of the vector pkpk+1, where k ranges from

−q to (q − 1). The arc–length estimator from p0 to pi is defined as li =
∑i−1

k=0 ∆lk, when i > 0, and li = −∑−1
k=i ∆lk, when

i < 0.

(a) Curvature Estimators

For curvature estimation, we shall look for a quadratic curve of the form



x(s) = x′(0)s+ 1
2x
′′(0)s2

y(s) = y′(0)s+ 1
2y
′′(0)s2

z(s) = z′(0)s+ 1
2z
′′(0)s2

that better fits the data in the weighted least squares sense. Our approach is to minimize the square error of each coordinate
independently. We shall look for x′0 and x′′0 that minimize

Ex(x′0, x
′′
0) =

q∑

i=−q

wi

(
xi − x′0li − 1

2x
′′
0 (li)2

)2
.

as our estimates of x′(0) and x′′(0), with a similar approach for the other coordinates.
The real numbers wi are the weight of the point pi. Such numbers are to be chosen positive, relatively large for small |li|

and relatively small for large |li|. We can consider weights of the form wi = α exp(−βi2)/ik, for example. Another possible
choice is simply wi = 1.

The above problems have a well-known solution. Consider the matrix

A =
[
a1 a2

a2 a3

]

and the vectors tx =
[
t1x
t2x

]
, ty =

[
t1y
t2y

]
and tz =

[
t1z
t2z

]
, where





a1 =
∑q

i=−q wi (li)2

a2 = 1
2

∑q
i=−q wi (li)3

a3 = 1
4

∑q
i=−q wi (li)4

t1x =
∑q

i=−q wi li (xi)
t2x = 1

2

∑q
i=−q wi (li)2 (xi)

t1y =
∑q

i=−q wi li (yi)
t2y = 1

2

∑q
i=−q wi (li)2 (yi)

t1z =
∑q

i=−q wi li (zi)
t2z = 1

2

∑q
i=−q wi (li)2 (zi)

.

Then the vectors x =
[
x′0
x′′0

]
, y =

[
y′0
y′′0

]
and z =

[
z′0
z′′0

]
are the unique solution of the equations A · x = tx, A · y = ty

and A · z = tz , respectively (see [1]).

Denoting r′0 =



x′0
y′0
z′0


 and r′′0 =



x′′0
y′′0
z′′0


, our curvature estimator is given by

κ̂(p0) =
r′0 × r′′0
||r′0||3

in the planar case and

κ̂(p0) =
||r′0 × r′′0 ||
||r′||3

in the spatial case.
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(b) Torsion Estimators

In the case of spatial curves, if we want to estimate the the torsion, we need to fit the data to cubic parametric curves. Assume
that p0 = r(0) = (0, 0, 0). We shall fit our data to curves of the form





x(s) = x′0 s+ 1
2 x

′′
0 s

2 + 1
6 x

′′′
0 s3

y(s) = y′0 s+ 1
2 y

′′
0 s

2 + 1
6 y

′′′
0 s3

z(s) = z′0 s+ 1
2 z

′′
0 s

2 + 1
6 z

′′′
0 s3

,

where s a parameter.
As in the planar case, we shall look for x′0, x′′0 and x′′′0 that minimize

Ex(x′0, x
′′
0 , x

′′′
0 ) =

q∑

i=−q

wi

(
xi −

(
x′0si + 1

2x
′′
0s

2
i + 1

6x
′′′
0 s

3
))2

. (1)

A similar approach is used to estimate y′0, y′′0 , y′′′0 , z′0, z′′0 and z′′′0 .
Considering the same estimative li of the parameter si proposed above, define

A =



a1 a2 a4

a2 a3 a5

a4 a5 a6




and the vectors tx =



t1x
t2x
t3x


, ty =



t1y
t2y
t3y


 and tz =



t1z
t2z
t3z


, where





a4 = 1
6

∑q
i=−q wi (li)4

a5 = 1
12

∑q
i=−q wi (li)5

a6 = 1
36

∑q
i=−q wi (li)6

t3x = 1
6

∑q
i=−q wi l

3
i (xi)

t3y = 1
6

∑q
i=−q wi l

3
i (yi)

t3z = 1
6

∑q
i=−q wi l

3
i (zi)

.

Then the vectors x =




x′0
x′′0
x′′′0


, y =




y′0
y′′0
y′′′0


 and z =




z′0
z′′0
z′′′0


 are the unique solution of the equationsA ·x = tx,A ·y = ty

and A · z = tz , respectively (see [1]).

Denoting r′′′0 =



x′′′0
y′′′0

z′′′0


 , our torsion estimator is given by

τ̂(p0) = −
(
r′0 × r′′0

) · r′′′0
||r′0 × r′′0 ||2

4 Convergence analysis of the curvature estimators
In the following, we shall denote:

δ = max {|l−q| , |lq|}
K0 = max{|κ(s)| ,−δ ≤ s ≤ δ},
K1 = max{|κ′(s)| ,−δ ≤ s ≤ δ},
T0 = max{|τ(s)| ,−δ ≤ s ≤ δ},

where κ(s) is the curvature and τ(s) the torsion of r at s.
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(a) Sampled curve without noise

There are some assumptions that we must consider in order to expect a good behavior of the curvature estimates. The first
one is that the product K0δ should be small, which corresponds to dense sampling in high curvature regions. If not, some
samples are too far from p0 to be correctly used in the estimate of the first derivatives of r at p0. The second is that K1δ and
T0δ should be small, which corresponds to dense sampling in regions where curvature is changing rapidly. If this does not
occur, some samples must be considered too far from the basic point to help in the second derivatives estimates.

We shall now make precise these statements. Let

φ1 =
1

det(A)
li
4




q∑

i=−q

wili

q∑

i=−q

wil
4
i −

q∑

i=−q

wil
2
i

q∑

i=−q

wil
3
i




and

φ2 =
1

det(A)
l2i
4




q∑

i=−q

wil
2
i

q∑

i=−q

wil
2
i −

q∑

i=−q

wili

q∑

i=−q

wil
3
i




Proposition 1 (Convergence without noise) (a) Assume that K0δ ≤ ε. Then

|x′0 − x′(0)| ≤ φ1

(
d1(ε) +

∣∣∣∣
x′′(0)δ

2

∣∣∣∣
)
,

where d1(ε) is defined in lemma 3 below.
(b) Assume that K0δ ≤ ε, K1δ ≤ ε and T0δ ≤ ε. Then

|x′′0 − x′′(0)| ≤ φ2d2(ε),

where d2(ε) is defined in lemma 4 below.

We observe that φ1 and φ2 are homogeneous of degree zero, i.e., they do not change if we multiply all li by some constant.
The above proposition says that the curvature estimation is convergent in the sense that if we reduce sufficiently the value of δ
without changing the proportions of the li, the difference between the real and estimated will be arbitrarily small.

In order to prove this proposition, we need some lemmas:

Lemma 2 Assume that δK0 < ε. Then sinc(ε/2)|si| ≤ |li| ≤ |si|, where sinc(ε) = sin(ε)
ε .

Proof : For any i > 0, we have that si − li =
∑i−1

k=0 ∆ek, where ∆ek is the difference between the arc–length of the curve
between pk and pk+1 and the corresponding linear segment. Since the curvature is bounded by K0, the difference ∆ek is

maximum when the curve is a circle of radius
1
K0

. In this case, the corresponding central angle is K0∆sk and so

∆lk ≥
2 sin

(K0∆sk

2

)

K0
.

We conclude that

li =
i∑

k=1

∆lk ≥
i∑

k=1

2
K0∆sk

sin
(K0∆sk

2

)
∆sk ≥ sinc(ε/2)si,

thus proving the lemma. ¥

Lemma 3 Assume that δK0 < ε. Then
|xi − x′(0)li| ≤ d1(ε)|li| ,

where d1(ε) =
x′(0)(1− sinc(ε/2))

sinc(ε/2)
+

ε

sinc(ε/2)
.
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Proof : Since
|x′′(s)|δ ≤ K0δ ≤ ε

for s ∈ (−δ, δ), we obtain
|x′(s)− x′(0)| ≤ ε .

Hence, for any i
x′(0)− ε ≤ xi

si
≤ x′(0) + ε .

We can assume without loss of generality that x′(0) > 0. using lemma 2,

(x′(0)− ε)li ≤ xi ≤ (x′(0) + ε)
li

sinc(ε/2)
.

We can conclude then that
|xi − x′(0)li| ≤ d1(ε)|li| .

where d1(ε) =
x′(0)(1− sinc(ε/2))

sinc(ε/2)
+

ε

sinc(ε/2)
. ¥

Lemma 4 Assume that δK0 < ε, δK1 < ε and δT0 < ε. Then

∣∣∣xi − x′(0)li − x′′(0)(li)2

2

∣∣∣ ≤ d2(ε)
(li)2

2
,

where

d2(ε) = x′′(0)
1− sinc(ε/2)2

sinc(ε/2)2
+

ε

sinc(ε/2)2
(1 +

x′(0)K0

6
).

Proof : Using that K1δ ≤ ε and δT0 < ε we obtain that |x′′(s)− x′′(0)| ≤ ε, for any s ∈ (−δ, δ).
Then, for any i,

(x′′(0)− ε)
s2i
2
≤ xi − x′(0)si ≤ s2i

2
(x′′(0) + ε) .

By lemma 2

(x′′(0)− ε)
(li)2

2
≤ xi − x′(0)si + x′(0)li − x′(0)li ≤ (li)2

2sinc(ε/2)2
(x′′(0) + ε) .

It follows that
x′′(0)(li)2

2
− ε(li)2

2
≤ xi − x′(0)li ≤ x′′(0)(li)2

2sinc(ε/2)2
+

ε(li)2

2sinc(ε/2)2
+ x′(0)(si − li)

and so

−ε(li)
2

2
≤ xi − x′(0)li − x′′(0)(li)2

2
≤ x′′(0)(li)2

2sinc(ε/2)2
+

ε(li)2

2sinc(ε/2)2
− x′′(0)(li)2

2
+ x′(0)si(1− li

si
) .

By lemma 2

1− li
si
≤ 1−

sin
(K0si

2

)

K0si

2

.

Since 1− sin(v)
v ≤ v2

3 , we conclude that

x′(0)si(1− li
si

) ≤ x′(0)siK
2
0s2

i

12 ≤ x′(0)K0εs2
i

12 ≤ x′(0)K0ε
6

(li)
2

2sinc(ε/2)2 .

Returning to the main calculations we have

∣∣∣xi − x′(0)li − x′′(0)(li)2

2

∣∣∣ ≤ d2(ε)
(li)2

2
,
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where

d2(ε) = x′′(0)
1− sinc(ε/2)2

sinc(ε/2)2
+

ε

sinc(ε/2)2
(1 +

x′(0)K0

6
),

thus proving the lemma. ¥

We can now prove the main proposition. Simple matrix calculations show that
[
x′0 − x′(0)
x′′0 − x′′(0)

]
=
xi − x′0li − 1

2x
′′
0 l

2
i

det(A)

[ 1
4 (

∑q
i=−q wili

∑q
i=−q wil

4
i −

∑q
i=−q wil

2
i

∑q
i=−q wil

3
i )

1
2 (

∑q
i=−q wil

2
i

∑q
i=−q wil

2
i −

∑q
i=−q wili

∑q
i=−q wil

3
i )

]

Now the proposition follows easily from lemmas 3 and 4.

(b) Sampled curve with noise

We are assuming that the noise at each sample is a random vector ηi, independent for each sample, with mean 0 and standard
deviation σ. In order to have a good estimate of the derivatives, we must assume that the noise is not too big relatively to the
distance between samples. In this section, we shall make this statement more precise.

Denote by δ1 = min (|l1|, |l−1|). If we want to use the above estimations in the noisy case, the ratios σ
δ1

and σ
δ

2
1

should be
small. If not, the noise is too strong for us to guarantee the estimation for (x′(0), y′(0)) and (x′′(0), y′′(0)), respectively. This
is the content of the following proposition:
Proposition 5 (Convergence with noise) (a) Assume that σ ≤ γδ1. Then the error of estimation |x′0 − x′(0)| is bounded by
the sum of the errors of proposition 1(a) and a random variable of zero mean and variance less than ψ1γ, where

ψ1 =
δ1

4 det(A)




q∑

i=−q

w2
i l

2
i




q∑

i=−q

wil
4
i




2

+
q∑

i=−q

w2
i l

4
i




q∑

i=−q

wil
3
i




2



1/2

.
(b) Assume that σ ≤ γδ1

2. Then the error of estimation |x′′0 − x′′(0)| is bounded by the sum of the errors of proposition 1(b)
and a random variable of zero mean and variance less than ψ2γ, where

ψ2 =
δ21

2 det(A)




q∑

i=−q

w2
i l

4
i




q∑

i=−q

wil
2
i




2

+
q∑

i=−q

w2
i l

2
i




q∑

i=−q

wil
3
i




2



1/2

.

We observe that ψ1 and ψ2 are homogeneous of degree zero, i.e., they do not change if we multiply all li by some constant.
The above proposition says that the curvature estimation is convergent in the sense that if we reduce sufficiently the noise
standard deviation σ without changing the proportions of the li, the difference between the real and estimated will be arbitrarily
small.

In the particular case where the samples are symmetrically distributed around p0 and the weights wi are equal to 1, we have
ψ1 = δ1

4(Pq
i=−q l2i )

1/2 and ψ2 = δ2
1

2(Pq
i=−q l4i )

1/2 . If q is big, ψ1 = O(q−3/2) and ψ2 = O(q−5/2).

Proof : We have to analyze the effect of noise in the calculations of proposition 1 . If we change xi by xi+ηx,i in the formulas
for x′0 and x′′0 , the estimates will change by the random variables e′x and e′′x satisfying the equation

[
a1 a2

a2 a3

] [
e′x
e′′x

]
=

[ ∑q
i=−q wiliηx,i

1
2

∑q
i=−q wil

2
i ηx,i

]

Hence the errors have zero mean and standard deviation given by




std(e′x) = σ
4 det(A)

(∑q
i=−q w

2
i l

2
i

(∑q
i=−q wil

4
i

)2

+
∑q

i=−q w
2
i l

4
i

(∑q
i=−q wil

3
i

)2
)1/2

std(e′′x) = σ
2 det(A)

(∑q
i=−q w

2
i l

4
i

(∑q
i=−q wil

2
i

)2

+
∑q

i=−q w
2
i l

2
i

(∑q
i=−q wil

3
i

)2
)1/2

thus proving the proposition. ¥
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