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Abstract. Many applications of geometry processing and computer vision rely on geometric properties of curves,
particularly their curvature. Several methods have already been proposed to estimate the curvature of a planar
curve, most of them for curves in digital spaces. This work proposes a new scheme for estimating curvature and
torsion of planar and spatial curves, based on weighted least–squares fitting and local arc–length approximation.
The method is simple enough to admit a convergence analysis that take into acount the effect of noise in the
samples. The implementation of the method is compared to other curvature estimation methods showing a good
performance. Applications to prediction in geometry compression are presented both as a practical application and
as a validation of this new scheme.
Keywords: Differential Geometry. Curvature Estimation. Weighted Least–Squares. Geometry Processing.
Geometry Compression and Predictors.
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Figure 1: Spatial curves used for testing: Clelia, Conical Helix, Baseball and Toric Solenoid. The color indicates curvature.

1 Introduction
Many applications of geometry processing [19] and com-

puter vision [18] rely on geometric properties of curves. Two
of the most fundamental characteristics of a curve are its
curvature and torsion, which measure how a curve bends.
Curvature motion [22], curve reconstruction [1, 3], adaptive
curve approximation [17] and geometry compression [13]
are examples of contemporary computer graphics applica-
tions that require accurate curvature estimation.

Motivation. Several methods have already been proposed
for curvature estimation, most of them for the particular case
of digital spaces, i.e. curves extracted from images [8]. This
work studies sampled curves, i.e. piecewise-linear approxi-
mations of a smooth curve. This general framework, which
includes the digital curves, permits a clear theoretical analy-
sis. Moreover, it is well suited for applications to geometric
modelling and computer graphics. In the context of these two
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The corresponding work was published in Computers & Graphics, volume
29, number 5, pp. 641–655. Elsevier, october 2005.

areas, sampled curves may proceed from different sources:
polygonal approximation of parametric or implicit curves,
curve acquisition, curve reconstruction, among others.

The original motivation of this work was to develop an
accurate curvature and torsion estimator to serve as predic-
tor for geometric encoding, particularly for implicit curve
compression schemes [13] and triangular mesh compression
schemes, such as the Edgebreaker [21, 14]. In both situations
the predictor must guess the position of the next vertex to be
encoded based on the sequence of points that have already
been transmitted.

Problem statement. A piecewise linear approximation of
a curve r is an ordered finite collection of points {pi} of
the curve, called samples. This sampled curve may contain
some noise, i.e., the points pi stay close to the curve, but not
necessarily lie on it. This paper presents estimators for the
tangent vector and the curvature of a curve r at a sample
point p of {pi}. For the case of spatial curves, it also
proposes a torsion estimator.

Contributions. This paper introduces a new method for
curvature and torsion estimation based on weighted least–
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squares fitting. More precisely, the method approximate the
samples by a parametric curve that have one of its coordinate
functions given by a second (or third)–order polynomial. The
paper shows the convergence of the estimators under reason-
able conditions over the sampling of the curve and the am-
plitude of the noise. It also provides a practical implemen-
tation of this method. The results show that the proposed
method compares nicely to the state–of–the–art, and that it
has a strong stability over different conditions of noise and
sampling.

Paper outline. Section 2 Curvature and torsion of a parametric
curve introduces the concepts and notations from differential
geometry of curves that will be used along this work. Sec-
tion 3 Previous and related works discusses the previous and
related works. Section 4 Theoretical framework presents the
theoretical analysis of the new method. Section 5 Computa-
tional framework gives details of the implementation of the
scheme. The algorithm is compared to the state–of–the–art
in section 6 Experimental results. Finally, section 7 Applications
to compression introduces an application of the proposed cur-
vature estimator to geometry compression.
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Figure 2: The arc–length s(t) helps defining the tangent and the
normal vectors T(t) and N(t).

2 Curvature and torsion of a parametric curve
A parametric curve is a smooth function r : I ⊂ R →

Rn. When n = 2 it is called a planar curve and when n = 3
it is called spatial curve. The parametric curve r is said to be
regular if r′(t) = dr

dt (t) never vanishes on I . From now on,
r will denote a regular parameterized curve.

The arc–length s from the point r(t0), t0 ∈ I , to a given
point r(t1), t1 ∈ I , is defined by s(t1) =

∫ t1
t0
‖r′(u)‖du.

When the curve is regular, s(t) is strictly increasing, and has
therefore an inverse t(s). The curve can be parameterized by
the arc–length by considering r(s) = r ◦ t(s).

The vector T(s) = r′(s) is called the tangent vector.
In the case of planar curves, the normal vector N(s) is
obtained from the tangent vector by a rotation of 90 degrees
in the anti-clockwise sense. The vectors T′(s) and N(s) are
collinear, i.e. there exists a function κ(s) such that T′(s) =

κ(s)N(s), which is called the curvature of the curve at the
point r(s).

The curvature at a point also corresponds to the varia-
tion of the tangent direction with respect to the arc–length:
κ(s) = θ′(s), where θ(s) = ∠(T(s), (1, 0)) is the angle of
the tangent vector with a fixed direction. The sign of κ(s)
indicates whether the curve is locally convex or concave at
point r(s). The curvature k(s) is also the inverse of the ra-
dius of the osculating circle at r(s). When the curve r(t) is
not parameterized by the arc–length, its curvature is given by

κ(t) =
r′ × r′′

||r′||3 (1)

For spatial curve, the tangent vector is again defined by
T(s) = r′(s). The normal vector is defined by N(s) =
r′′(s)/‖r′′(s)‖, and the bi–normal vector is given by the
cross-product of T(s) and N(s), i.e., B(s) = T(s)×N(s).

For spatial curve, the curvature κ(s), also defined by
the formula T′(s) = κ(s)N(s), is always positive. The
torsion is defined by the formula B′(s) = τ(s)N(s). When
the curve r(t) is not parameterized by the arc–length, its
curvature is given by the absolute value of Equation (1) and
the torsion is given by

τ(t) = −
(
r′ × r′′

) · r′′′
||r′ × r′′||2 . (2)

For more details related to curvature and torsion, see [4].

3 Previous and related works
Several methods have already been proposed for estimat-

ing curvature, most of them for planar curves. This section
introduces the most significant ones. All these methods have
been implemented for the comparisons of section 6 Experi-
mental results. They are classified in three groups: the meth-
ods that use gaussian smoothing, the methods that estimate
curvature directly from three points and the methods that use
least squares approximations.

(a) Methods based on gaussian smoothing

The methods considered in this section were developed
for digital curves, but they can be easily adapted to sampled
curves. The first method of [25] computes the curvature at a
point p0 from the convolution of the estimated angle θ̂ with
the derivative of the gaussian kernel (Gσ), as follows:

κ̂ = θ̂ ∗G′σ , with θ̂(j) = tan−1
( yj+1 − yj

xj+1 − xj

)
.

where
G′σ(j) = −2σje−σj2

.

A variation of this method is obtained by making a re-
sampling using linear interpolation and then applying the
method. This variation can be written as

κ̂ =
θ̂ ∗G′σ
1.107

, with θ̂(j) = tan−1
( yr

j+1 − yr
j

xr
j+1 − xr

j

)
,
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where (xr, yr) are the new samples and the constant 1.107
is the re-sampling biais in the digital curve context [25].

The last method of [25] uses Equation (1) to estimate
the first and second derivative directly by the convolution of
the coordinate functions with the derivatives of the gaussian
kernel:

r̂′ = r ∗G′σ , r̂′′ = r ∗G′′σ .

The last method of this group, described in [9], is based
on the Fast Fourier Transform. In the time domain, this
method also corresponds to a convolution with the gaussian
kernel. For this method, one considers the samples r(n) =
(x(n), y(n)), n = 0, ..., N − 1, as a complex signal u(n) =
x(n) + iy(n), where i2 = −1. A basic property of the
discrete Fourier transform is that the derivative of a signal
u(n) corresponds to the multiplication by i of the transform
U(s). Based on this property, the first and second derivatives
of u(n) are estimated in the transform domain and then the
inverse discrete Fourier transform is applied.

In the comparisons of section ?? sec:Experimental results,
these methods will be respectively referred as G1, G2, G3
and G4.

(b) Methods that estimates curvature from three points

The first method of this group, proposed in [6], is based
on the angle variation in a neighborhood of the point. Con-
sidering the points (p−q,p0,pq), the estimated curvature at
p0 is given by

k̂(p0) =
∠(p−qp0,p0pq)
||p−qp0||+ ||p0pq|| ,

where ∠(p−qp0,p0pq) is the angle between the vectors
p0p−q and p0pq .

A variation of this method, proposed in [11], estimates
the curvature from the external angle. The estimated curva-
ture at p0 is given by k̂(p0) = φ0/

(
2l0 cos( φ0

2.1 )
)

, where
φ0 is the external angle (π − ∠(p−qp0,p0pq)) and l0 =
||p−qp0||+ ||p0pq||

2
.

Another method, presented in [7], is based on an approxi-
mation of the osculating circle at a point p0. It approximates
it by the circle circumscribing the triangle (p−q,p0,pq).
The radius R of this circle is given by

R =
||p−qp0|| · ||p0pq|| · ||p−qpq||

4 · area(p−q,p0,pq)
.

The last method of this group, cited in [2], uses the same
three points (p−q , p0, pq) to estimate the first and second
derivatives at p0. These derivatives are computed by

r′ =
pq − p0

||p0pq|| +
p0 − p−q

||p−qp0|| −
pq − p−q

||p−qp0||+ ||p0pq||

r′′ = 2 · (p−q − p0) · ||p0pq||+ (pq − p0) · ||p−qp0||
||p−qp0|| · ||p0pq|| · (||p−qp0||+ ||p0pq||) .

The methods of this group will be respectively referred as
T1, T2, T3 and T4.

(c) Methods that use least squares approximation

The methods presented in this section estimate the curva-
ture from a window of 2q + 1 points around p0, with q ≥ 1.
They use least square approximation and have the advantage
of reducing the effect of noise in the sampling.

Circle fitting

This method fits a circle to the sample points of the
window, using [20], and deduces the curvature from the
inverse of the radius of the fitted circle. The algorithm of [20]
finds the coefficients of the circle equation A(x2 + y2) +
Bx + Cy + D = 0 by least squares approximation. In this
algorithm, the value of A was fixed as 1. Figure 3 illustrates
one circle obtained by this method.

p

Figure 3: Osculating circle estimation at a point p of the curve
r(t) = (sin(t), sin(t) · cos(t)) : t ∈ [π

5
, π

2
] sampled with 30 points

and using a centered window with 5 points.

As mentioned in [20], the restriction A = 1 generates
instability for circles of big radius. This phenomenon can
be observed in Figure 4. If another coefficient is fixed, the
problem for low curvature can be solved, but appears for
other classes of curves. The analysis of the impact of noise
on the curvature approximation is studied in [24].

Figure 4: Circle fitting at a point of very low curvature.

Implicit parabola fitting

In this method, proposed in [5], the curve is described as
a graph of y = f(x) or x = f(y). The variation of x and
y inside the window determines which parameterization to
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use : if the variation of x is bigger than the one of y, the
algorithm takes y = f(x), and vice-versa. As both cases are
similar, only the case y = f(x) will be described next.

In order to simplify the notation, assume that p0 = (0, 0).
The objective is to find f ′0 and f ′′0 that minimize

Ex(f ′0, f
′′
0 ) =

q∑

i=−q

(
yi − f ′0 xi − 1

2 f
′′
0 x

2
i

)2
.

The solution of this least squares problem is given by

f ′0 =
cg − bh
ac− b2 , f ′′0 =

ah− bg
ac− b2 ,

where




a =
∑q

i=−q x
2
i , g =

∑q
i=−q xi yi,

b = 1
2

∑q
i=−q x

3
i , h = 1

2

∑q
i=−q x

2
i yi,

c = 1
4

∑q
i=−q x

4
i .

.

With these estimates, the curvature is then easily computed.
This method is a particular case of [5], where the approxi-
mating polynomial is limited to the second order.

4 Theoretical framework
This section introduces a new approach for the problem

of curvature and torsion estimation.

pjpj−q

pj+q

pj+2

pj−2

σ
σ

σ

Figure 6: Sampled curve with noise.

(a) Model and notations

Consider a collection of samples {pi} of a planar or a spa-
cial smooth curve r, i.e., a finite sequence of sample points
of r, eventually perturbed by a random noise. In this theoreti-
cal analysis, the curve is assumed to be parameterized by the
arc–length. The curvature estimation for planar cuves needs
an approximation of the first and second derivatives of r(s),
while for torsion estimation also needs an approximation of
the third derivatives of r(s).

Consider a fixed sample point p0. The estimatation of the
derivatives of r at p0 will be performed from a window of
2q + 1 points around p0: {p−q,p−q+1, ...,pq}.

The noise at a point pi is modelled by a random vector ηi,
normal to r at pi, and the random variables ηi are assumed to
be independent and identically distributed (i.i.d.), with zero
mean and variance σ2.

Considering that p0 = r(0) is the origin, the second order
approximation can be written as :

r(s) = r′(0) s+ 1
2 r′′(0) s2 + g(s)s3

the third order approximation as :

r(s) = r′(0)s+ 1
2r
′′(0)s2 + 1

6r
′′′(0)s3 + g(s)s4,

with g(s) → 0 when s → 0. Let si be the arc–length corre-
sponding to the sample pi. The second order approximation
can now be written

pi = r′(0) si + 1
2 r′′(0) s2i + g(si) s3i + ηi

and the third order also :

pi = r′(0)si + 1
2r
′′(0)s2i + 1

6r
′′′(0)s3i + g(si)s4i + ηi

(b) The weighted least squares approach

Figure 7: Second–order weighted least square fitting.

The estimates of r′(0), r′′(0) and r′′′(0) are obtained by
a weighted least squares minimisation. The weight wi of
point pi must be positive, relatively large for small |si| and
relatively small for large |si|. For example, one can consider
weights of the form wi = α exp(−βs2i )/sk

i ,, or simply
wi = 1.

The arc–length si can be estimated as follows: let ∆lk
be the length of the vector pkpk+1, where k ranges from
−q to (q − 1). Then, the arc–length from p0 to pi can
be approximated by li =

∑i−1
k=0 ∆lk, when i > 0, and

li = −∑−1
k=i ∆lk, when i < 0.

(c) Curvature Estimators for planar curves

Dependent coordinates method. Consider the case of a
planar curve. The idea of the dependent coordinate method
is to locally fit a parametric curve (x̂(s), ŷ(s)) to the curve,
with one of the coordinate functions, say x̂, being quadratic
in the arc–length: x̂(s) = x0 + x′0 · s+ 1

2x
′′
0 · s2. This coor-

dinate will be called the independent coordinate, as opposed
to the dependent coordinate ŷ whose derivatives will be de-
duced from those of x̂. The dependent coordinate is chosen
according to a simple criterion, for example the angle of the
tangent vector, minimal variance or the χ2 test.

The derivatives x′0 and x′′0 of x̂ can be estimated by
minimizing :

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.
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  < 3.76e-008

  6.6e-006

  1.32e-005

  1.97e-005

  2.63e-005

  3.28e-005

  > 3.94e-005

(a) Parabola fitting of [5]

  < 3.76e-008

  6.6e-006

  1.32e-005

  1.97e-005

  2.63e-005

  3.28e-005

  > 3.94e-005

(b) Dependent coordinate method

  < 3.76e-008

  6.6e-006

  1.32e-005

  1.97e-005

  2.63e-005

  3.28e-005

  > 3.94e-005

(c) Independent coordinate method

Figure 5: The independent coordinate method is rotation invariant: big errors were drawn by wide line, the scale being the same on the three
figures.

Ex(x′0, x
′′
0) =

q∑

i=−q

wi

(
xi − x′0li − 1

2x
′′
0 (li)2

)2
. (3)

The estimates y′0 and y′′0 for the dependent coordinate’s
derivatives y′(0) and y′′(0) are obtained by both the unit
norm of the tangent and the orthogonality of the tangent and
the normal: {

(x′0)
2 + (y′0)

2 = 1
x′0x

′′
0 + y′0y

′′
0 = 0 . (4)

The minimization of Equation ((3)) can be written in
terms of matrix inversion [12], which leads to a direct reso-
lution (see section 5(a) Dependent coordinates method for planar
curves for the implementation):

[
a1 a2

a2 a3

]
·
[
x′0
x′′0

]
=

[
bx,1

bx,2

]
, (5)

where




a1 =
∑q

i=−q wi l
2
i , bx,1 =

∑q
i=−q wi li xi

a2 = 1
2

∑q
i=−q wi l

3
i , bx,2 = 1

2

∑q
i=−q wi l

2
i xi

a3 = 1
4

∑q
i=−q wi l

4
i

Independent coordinates method. A variation of the above
method is to estimate the derivatives of the dependent coor-
dinate function ŷ, in the same way as the derivatives of the
independent coordinate x̂ : the estimations of y′0 and y′′0 are
obtained from the following matrix equation :

[
a1 a2

a2 a3

]
·
[
y′0
y′′0

]
=

[
by,1

by,2

]
, (6)

where
{
by,1 =

∑q
i=−q wi li (yi)

by,2 = 1
2

∑q
i=−q wi (li)2 (yi)

.

The tangent vector T is obtained by normalizing the vector
r′0 = (x′0, y

′
0), while the normal vector is obtained by apply-

ing a rotation of 90 degrees on T.
Whereas both coordinates cannot be exactly quadratic in

the arc–length, the approximation of the independent coor-
dinates method has the advantage of being rotation invariant
(see Figure 5).

(d) Curvature estimator for spatial curves

In the case of spatial curves, a generalization of the inde-
pendent coordinates method for curvature estimation is ob-
tained as follows: The estimators x′0, x′′0 , y′0 and y′′0 are given
by formulas ((5)) and ((6)) respectively. And the estimators
z′0 and z′′0 for the third coordinate derivatives z′(0) and z′′(0)
are given in a similar way by the matrix equation

[
a1 a2

a2 a3

]
·
[
z′0
z′′0

]
=

[
bz,1

bz,2

]
, (7)

where
{
bz,1 =

∑q
i=−q wi li (zi)

bz,2 = 1
2

∑q
i=−q wi (li)2 (zi)

.

Equation ((1)) then gives the curvature using the above
first and second order derivatives estimates.

(e) Torsion estimator for spatial curves

For spatial curves, the torsion estimator fits a cubic para-
metric curve to the sample points. Assuming that p0 =
r(0) = (0, 0, 0), x′0, x′′0 and x′′′0 should minimize

Ex(x′0, x
′′
0 , x

′′′
0 ) =

q∑

i=−q

wi

(
xi−

(
x′0si+

1
2
x′′0s

2
i +

1
6
x′′′0 s

3
))2

.

Considering again li as an approximation of si, the above
equation can be solved by matrix inversion :



a1 a2 a4

a2 a3 a5

a4 a5 a6


 ·




x′0
x′′0
x′′′0


 =



bx,1

bx,2

bx,3


 ,

where





a4 = 1
6

∑q
i=−q wi (li)4

a5 = 1
12

∑q
i=−q wi (li)5

a6 = 1
36

∑q
i=−q wi (li)6

bx,3 = 1
6

∑q
i=−q wi l

3
i (xi)

.

A similar approach is used to compute y′0, y′′0 , y′′′0 , z′0, z′′0
and z′′′0 . Using the above derivatives estimates, equation ((2))
gives the torsion estimate.
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(f) Convergence analysis of curvature estimators

This section analyses the proposed algorithm in term of
their convergence. The first part considers sampled curve
without noise while the second part considers sampled curve
with noise. It is important to mention that there are proofs
of convergence only for curvature estimators, not for the
torsion estimator. Nevertheless, the torsion estimator had
experimentally shown a typical convergence behavior (see
Figure 9(b) and Figure 10(d)).

Sampled curve without noise

Consider the following notation:

δ = max {|l−q| , |lq|}
K0 = max{|κ(s)| ,−δ ≤ s ≤ δ},
K1 = max{|κ′(s)| ,−δ ≤ s ≤ δ},
T0 = max{|τ(s)| ,−δ ≤ s ≤ δ},

where κ(s) is the curvature and τ(s) the torsion of r at s.
The curve regularity and sampling conditions will be for-

mulated as follow. The product K0δ should be small, which
corresponds to dense sampling in high curvature regions. If
not, some samples are too far from p0 to be correctly used in
the estimate of the first derivatives of r at p0. Then, the prod-
ucts K1δ and T0δ should also be small, which corresponds
to dense sampling in regions where curvature is changing
rapidly. If this does not occur, some samples must be con-
sidered too far from the basic point to help in the second
derivatives estimates.

In order to make precise these statements, let

φ1 =
li
4L




q∑

i=−q

wili

q∑

i=−q

wil
4
i −

q∑

i=−q

wil
2
i

q∑

i=−q

wil
3
i




φ2 =
l2i
4L




q∑

i=−q

wil
2
i

q∑

i=−q

wil
2
i −

q∑

i=−q

wili

q∑

i=−q

wil
3
i


 .

Denote also sinc(ε) = sin(ε)
ε , L = a1a3 − a2

2 and:

d1(ε) =
x′(0)(1− sinc(ε/2))

sinc(ε/2)
+

ε

sinc(ε/2)

d2(ε) = x′′(0)
1− sinc(ε/2)2

sinc(ε/2)2
+

ε

sinc(ε/2)2
(1+

x′(0)K0

6
).

Denote by r′0 and r′′0 the estimations obtained for the co-
ordinate derivatives by using the dependent or the indepen-
dent coordinate method. The following proposition is proved
in [15]:
Proposition 1 (a) Assume that K0δ ≤ ε. Then

|r′0 − r′(0)| ≤ φ1

(
d1(ε) +

∣∣∣∣
x′′(0)δ

2

∣∣∣∣
)
.

(b) Assume that K0δ ≤ ε, K1δ ≤ ε and T0δ ≤ ε. Then

|r′′0 − r′′(0)| ≤ φ2d2(ε).

Observe that φ1 and φ2 are homogeneous of degree zero,
i.e., they do not change if all li are multiplied by some con-
stant. The above proposition says that the curvature estima-
tion is convergent in the sense that reducing sufficiently the
value of δ without changing the proportions of the li, the
difference between the real and estimated will be arbitrarily
small.

Sampled curve with noise

This study assumes that the noise at each sample is a ran-
dom vector ηi, orthogonal to the curve at r(si), independent
for each sample, with mean 0 and standard deviation σ. In
order to have a good estimate of the derivatives, one must
assume that the noise is not too big relatively to the distance
between samples.

Denote by δ1 = min (|l1|, |l−1|). If someone wants to
use the above estimations in the noisy case, the ratios σ

δ1
and σ

δ2
1

should be small. If not, the noise is too strong to
guarantee the estimation for r′(0) and r′′(0), respectively.
The following proposition is proved in [15]:

Proposition 2 (a) Assume that σ ≤ γδ1. Then the error of
estimation |r′0 − r′(0)| is bounded by the sum of the errors
of proposition 1(a) and a random variable of zero mean and
variance less than ψ1γ, where

4L
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(b) Assume that σ ≤ γδ1
2. Then the error of estimation

|r′′0 − r′′(0)| is bounded by the sum of the errors of proposi-
tion 1(b) and a random variable of zero mean and variance
less than ψ2γ, where
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Observe that ψ1 and ψ2 also are homogeneous of degree
zero. The above proposition says that the curvature estima-
tion is convergent in the sense that if reducing sufficiently the
noise standard deviation σ without changing the proportions
of the li, the difference between the real and estimated will
be arbitrarily small.

In the particular case where the samples are symmetri-
cally distributed around p0 and the weights wi are equal to
1, then

4
δ1
ψ2

1 =




q∑

i=−q

l2i



−1

and
2
δ21
ψ2

2 =




q∑

i=−q

l4i



−1

.

If q is big, ψ1 = O(q−3/2) and ψ2 = O(q−5/2).

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.
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5 Computational framework
The methods introduced in this work are extremely simple

to implement. The implementations follow directly from the
description of section 4 Theoretical framework.

(a) Dependent coordinates method for planar curves

Before solving the weighted least squares problem, Algo-
rithm 1 computes the coefficients a1, a2, a3, bx,1, bx,2, by,1

and by,2. Then algorithm 2 solves the weighted least squares
problem for the independent coordinate, and deduces the es-
timations of the dependent coordinate. The choice of which
coordinate is dependent is done considering the angle of the
estimated tangent: if |x′0| < |y′0|, the x will be the indepen-
dent coordinate. This algorithm also estimates the tangent
and normal vectors.

Algorithm 1 Set weighted least squares variables
1: l[] = a1 = a2 = a3 = bx,1 = bx,2 = by,1 = by,2 = 0;
2: for i = -q . . . q do
3: l[i]← l[i-1] + ‖pi−1pi‖ ;
4: end for
5: m = l[0];
6: for i = -q . . . q do
7: l[i]← l[i] - m; // Centering l on 0
8: w = weight( l[i] )2;
9: a1 ← a1 + w (l[i])2 ;

10: a2 ← a2 + w
2 (l[i])3 ;

11: a3 ← a3 + w
4 (l[i])4 ;

12: bx,1 ← bx,1 + w (l[i]) (xi-x0) ;
13: by,1← by,1 + w (l[i]) (yi-y0) ;
14: bx,2 ← bx,2 + w

2 (l[i])2 (xi-x0) ;
15: by,2← by,2 + w

2 (l[i])2 (yi-y0) ;
16: end for
17: d = a1a3 − a2

2 ; // determinant

Algorithm 2 Dependent coordinates for planar curves
1: call Set Weighted Least Squares Variables ;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: if |x′0| < |y′0| then // x is the independent coordinate
5: y′0 = sign(y′0)

√
1−T2

x;
6: x′′0 = (a1bx,2 − a2bx,1)/d;
7: y′′0 = −(x′0 x

′′
0)/Ty ;

8: else // y is the independent coordinate
9: x′0 = sign(x′0)

√
1−T2

y ;

10: y′′0 = (a1by,2 − a2by,1)/d ;
11: x′′0 = −(y′0 y

′′
0 )/Tx ;

12: end if
13: κ = x′0 y

′′
0 − y′0 x′′0 ;

14: T = (x′0, y
′
0);

15: N = sign(κ) (−Ty,Tx);

(b) Independent coordinates method for planar curves

Algorithm 3 implements the independent coordinates
method. It computes first x′0, x′′0 , y′0 and y′′0 and then it es-
timates the curvature, the tangent and normal vectors.

Algorithm 3 Independent coordinates method for planar
curves

1: call Set Weighted Least Squares Variables;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: x′′0 = (a1bx,2 − a2bx,1)/d ;
5: y′′0 = (a1by,2 − a2by,1)/d ;
6: κ = (x′0 y

′′
0 − y′0 x′′0)/||(x′0, y′0)||3 ;

7: T = (x′0, y
′
0)/||(x′0, y′0)|| ;

8: N = sign(κ) (−Ty,Tx);

(c) Curvature estimator for space curves

The first step to implement the generalization of the algo-
rithm 4 to estimate the curvature of spatial curves using inde-
pendent coordinates is to modify the routine of algorithm 1
in order to compute bz,1 and bz,2. Algorithm 4 details the
implementation of this method. This algorithm provides an
estimation for the curvature, and also for the tangent, nor-
mal and binormal vectors. The tangent is on the direction of
r′. The normal is obtained by applying a Gram-Schmidt or-
togonalization process to the vectors T and r′′. Finally, the
binormal vector is a cross product of T and N.

Algorithm 4 Independent coordinates method for space
curves

1: call Set Weighted Least Squares Variables;
2: x′0 = (a3bx,1 − a2bx,2)/d ;
3: y′0 = (a3by,1 − a2by,2)/d ;
4: z′0 = (a3bz,1 − a2bz,2)/d ;
5: x′′0 = (a1bx,2 − a2bx,1)/d ;
6: y′′0 = (a1by,2 − a2by,1)/d ;
7: z′′0 = (a1bz,2 − a2bz,1)/d ;
8: κ = ||r′ × r′′||/||r′||3 ;
9: T = r′/||r′|| ;

10: N = r′′ − (r′′ ·T)T ;
11: N = N/||N|| ;
12: B = T×N ;

(d) Torsion estimator for space curves

Similarly to the curvature estimation of space curves, the
algorithm 1 has to be modified in order to also include the
computation of a4, a5, a6, bx,3 by,3 and bz,3. Algorithm 5
then implements the tosion estimator. This algorithm pro-
vides an estimation for the curvature, for the torsion, and for
the tangent, normal and binormal vectors.

Preprint MAT. 16/05, communicated on March 1st, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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(a) Curve trace (b) Curve detail

Figure 8: Noisy spiral curve (1000 samples, σ = 1).
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(a) Curvature estimation without noise (logarithmic scale): q = 2.
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(b) Torsion estimation without noise (logarithmic scale): q = 2.

Figure 9: Tests on spatial curves of Figure 1: convergence in the noiseless case (logarithmic scale) for the curvature and the torsion.

Algorithm 5 Independent coordinates method for space
curves

1: call Set 3D Weighted Least Squares Variables;
2: call SOLVE



a1 a2 a4

a2 a3 a5

a4 a5 a6


·




x′0 y′0 z′0
x′′0 y′′0 z′′0
x′′′0 y′′′0 z′′′0


 =



bx,1 by,1 bz,1

bx,2 by,2 bz,2

bx,3 by,3 bz,3




3: κ = ||r′ × r′′||/||r′||3 ;
4: τ = −((r′ × r′′) · r′′′)/||r′ × r′′||2.
5: T = r′/||r′|| ;
6: N = r′′ - (r′′ ·T)T ;
7: N = N/||N|| ;
8: B = T×N ;

(e) Boundary conditions

The above algorithms compute the curvature at a point p0

using 2q + 1 samples around that point. However, for points
close to the boundary of a curve, or in the specific conditions
such as those of section 7 Applications to compression, those
points cannot be centered on p0. In that case one can either
reduce the width q of the sliding window, or simply compute
the curvature using a non–centered window.

6 Experimental results
In this section the performance of the proposed algo-

rithms will be compared to the previous works mentioned
in section 3 Previous and related works.

(a) Experimental setting

The tests included here were performed on the three pla-
nar curves of Figure 14,15 and Figure 16, and on the five
spatial curves of Figure 1. All of them were uniformly sam-
pled in time. As a consequence, the samples were equally
spaced for the circle, but not for the ellipse and the spiral.
In the noisy case, as proposition 2 showed, it is important to
keep σ/δ21 small for the curvature estimation. Similarly, for
the torsion estimation, the ratio σ/δ31 must be small. There-
fore, the noise was simulated as a uniform random variable
in the normal segment (disc, in the 3D case) of radius σl̄d,

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.
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(a) Curvature estimation with noise: q = 9, σ = 1.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  200  400  600  800  1000  1200

m
ea

n 
er

ro
r

n

Baseball Seam
Clelia

Conical Helix
Cylindrical Helix

Toric Solenoid

(b) Torsion estimation with noise: q = 9, σ = 1.

Figure 10: Tests on spatial curves of Figure 1: behaviour in the noisy case: with σ/δ3
1 fixed, the curvature converges, and the torsion error

stabilizes.

where σ is fixed, d is the derivation order required and l̄ is the
average distance between consecutive samples. The number
of points in the window 2q + 1 was fixed and the sample
density was let to grow until the error become small.

The algorithm has been tested with weights given by the
formula presented in section 4 Theoretical framework and also
for constant weights.

Since the parametric formula was known for the examples
tested, the real curvature was computed using automatic dif-
ferentiation [10]. The absolute error between estimated cur-
vature k̂ and the real value k at a point pj is measured by
E(pj) = ||κ̂(pj)| − |κ(pj)||. The mean error was obtained
as the arithmetic mean of the absolute errors at the consid-
ered points.

(b) Results

In the noiseless case (σ = 0), it was observed that, for
all curves and methods considered, the punctual error E(pj)
increase with q (see Figure 14(c), Figure 15(c), and Fig-
ure 16(c)). This is not surprising, since the curvature esti-
mation should be better when using points closer to the base
point.

In the noisy case, it was observed that the use of more
sample points can improve the estimates. The ideal num-
ber of points q depends on the curve, on the point, on the
sampling and on σ (see Figure 14(e), Figure 15(e) and Fig-
ure 16(e), Figure 14(g), Figure 15(g) and Figure 16(g)).

Consider now the error as a function of the number of
samples with q and σ fixed. This is exactly the context of the
convergence analysis. And the experimental results confirms
the convergence analysis: the mean error is reduced when
the distance between consecutive samples is reduced (see
Figure 14(d), Figure 15(d) and Figure 16(d), Figure 14(f),
Figure 15(f) and Figure 16(f), Figure 14(h), Figure 15(h) and
Figure 16(h)).

The graphs of Figure 14, Figure 15 and Figure 16, and
many other tests that have been performed show that the per-
formance of the methods descibed above are close to the best
among the methods tested, in a great variety of sampling and

noise conditions. Also, the independent coordinates method
has shown consistently better results than the dependent co-
ordinates method.

In the 3D noiseless case, the mean error in the curva-
ture estimation decreases to 0 (see Figure 9(a)), as the theory
predicted. The same occurred for torsion, although theorem
does not include this case (see Figure 9(b)). Figure 10 shows
the convergence of curvature and torsion estimators in the
noisy case. Since the simulated noise has standard deviation
σl̄3, the theory predicts that the errors in the first and second
derivatives tends to 0 when the number of samples points in-
creases. This explains why the error in curvature estimation
tends to 0 (Figure 10(a)) while the error in torsion estimation
remains small but stable (Figure 10(b)). In the 3D case, the
curvature and torsion estimators performed well in the sense
that the obtained errors were small. Instead of comparing
with other methods to confirm this assertion, the next section
will introduce a practical framework to test those methods.

7 Applications to compression
Among the applications of curvature estimation methods,

predictors for lossy geometric compression scheme provide
real challenges. In those applications, the regularity of the
geometric object to be compressed allows predicting the ge-
ometry of a vertex from the previously visited ones. Those
schemes provide a very nice framework for testing the meth-
ods described above in a non-simulated noise environment,
as the performance of the predictor can be directly measured
from the final compression rate. The emphasis will be now
put on two specific geometric predictors: the first one in 2D
for Simplicial Isocontour Compression [13], and the second
one in 3D for the Edgebreaker [21, 14].

(a) Prediction for Simplicial Isocontour Compression

This method aims at encoding a curve by its intersec-
tions with an adapted simplicial grid. The intersection are
first transmitted in a hit/fail manner. Therefore, the decoder
reconstructs the curve considering that it crosses always at
the midpoint of the edges of the simplicial grid. When the

Preprint MAT. 16/05, communicated on March 1st, 2005 to the Department of Mathematics, Pontifı́cia Universidade Católica — Rio de Janeiro, Brazil.
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a

b

c

Figure 11: “Singular” curve: the predictor must guess whether the
curve will traverse edge ac or bc, approximating the real curve
(in red) by the scheme proposed above (blue curve) using only the
points known to the decoder (in blue), i.e. midpoints of the edges
crossing the curve.

decoded curve enters a triangle abc of the simplicial grid by
the edge ab, the predictor must guess whether a curve crosses
the edge ac or bc. The scheme proposed here computes the
parabola approximating the curve around the edge ab as de-
scribed in section 5(b) Independent coordinates method for pla-
nar curves. The predictor considers that the curve crosses the
same egde as the approximating parabola (see Figure 11).

The method of section 5(b) Independent coordinates method
for planar curves is particularly well suited in that case: The
predictor uses an extrapolation of the curve, which is not di-
rectly provided by 3–points methods. Moreover, whereas the
circle fitting method provides a highly accurate approxima-
tion of the curvature, the osculating circle generically crosses
the curve at the approximation point, which could lead to a
bad prediction even in ideal conditions, as the curve must
stay as close as possible to the curve. The independent co-
ordinate method above gives very good results, with a mean
above 80% of success on the benchmark of table 1.

Figure 12: A decompressed implicit sinoide without smoothing
(left) and with the predictor on–the–fly smooting (right).

In a second step, the reconstruction of the curve can be
enhanced by a smoothing operation, moving the intersection
of the curve with the simplicial grid away from the edge mid-
point. This should reduce the distortion of the decoded curve.
In order to perform this operation on–the–fly, the approxima-

# vertices # models //gram curve gain
0- 500 16 6.917 6.841 2.7%

500- 1000 29 6.962 6.830 1.5%
1000- 3000 39 4.519 4.454 2.2%
3000-10000 42 2.118 2.077 2.1%

10000-20000 15 0.867 0.870 −0.5 %
20000-50000 20 0.671 0.665 0.9%

Table 2: Results of the predictor for the Edgebreaker: the results
are compared in terms of mean error with the real vertex coordi-
nates. The approximation is performed with q = 12. The distortion
are in per-thousand.

tion used by the predictor is directly used to compute the new
intersection (see Figure 12). This smoothing behaves well
when the curve is regular and well–sampled (see table 1).

(b) Prediction for the Edgebreaker

As most of the 3D surface encoders, the Edgebreaker
algorithm compresses a triangulated surface by encoding
its connectivity and the position of the vertices. To encode
the coordinates of the vertices more efficiently, a predictor
can be used to guess the position of a vertex from the
former triangle in the compression traversal. The classical
scheme relies on parallelogram prediction [23]. This scheme
has been enhanced in many ways, but this section aims at
testing the method of section 5(d) Torsion estimator for space
curves more than defining another geometric predictor for
the Edgebreaker. Therefore, the objective of the predictor is
to enhance the parallelogram predictor by approximating the
curve formed by the cut of the Edgebreaker (see Figure 13).

The predictor works as follows: The parallelogram–
predicted point p is used to estimate the distance d of
the unknown vertex. The approximation of the cut curve
{c−q, ..c−1, c0} at parameter d gives another point r. The
predicted point will then be the point e, image of p by the
rotation in the plane −→n ,−→c0p of arc d, where −→n is the normal
to the parallelogram (see Figure 13).

The approximation is considered coherent when r and
c−1 are on the same side of the plane of the parallelogram. If
the approximation is not coherent, the parallelogram predic-
tor is used. This predictor enhances the parallelogram pre-
dictor (see table 2), validating the curve approximation of
section 5(d) Torsion estimator for space curves in a real context.

8 Conclusion
This paper proposed curvature and torsion estimators for

sampled curves in the plane and in the space. They are based
on weighted least–squares fitting of parametric curves. It
analysed the convergence of the curvature estimators under
reasonable hypothesis.

The proposed curvature estimators was compared experi-
mentally with some important methods in the literature and
their performance were close to the best. Based on experi-
ments, it has also been observed that they are robust with re-

The corresponding work was published in Computers & Graphics, volume 29, number 5, pp. 641–655. Elsevier, october 2005.
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c
−1

c0

c
−2

p

r

Figure 13: The Edgebreaker cuts the compressed surface along a curve in the space. An extrapolation of this curve is used to enhance the
parallelogram predictor. The predictor uses the parallelogram predictor to guess the distance from the last vertex of the curve, and rotates
this estimation acording to the approximating curve.

Prediction Size (bits) Distortion (10−3)
Curve success direct prediction gain direct prediction gain
bicorn 80.3 % 1479 1014 46 % 2.26 2.52 −10%
circle 80.6 % 1658 1106 50 % 2.38 2.20 8%
cubic 81.4 % 566 324 75 % 3.48 3.99 −13%
ellipse 82.5 % 1430 920 55 % 2.03 1.99 2%
singular 77.9 % 1501 1099 37 % 1.43 1.36 5%
hyperbola 80.2 % 1648 1164 42 % 1.53 1.39 10%
sinoide 84.5 % 2645 1612 64 % 0.91 0.76 20%

Table 1: Results of the predictor for the Simplicial Isocontour Compression: for each one of the implicit curves, the number of successes
over the erroneous guesses of the predictor is around 80%. The gain in the size of the compressed curve is half of the compressed size. The
smoothing induced by the predictor reduces the distortion for most of the case. All the results were obtained as means of the same model over
various resolution of the grid, from 50 to 3000 vertices, with q = 84.

spect to noise and that they behave well under a great variety
of sampling conditions.

A very important advantage is that it can be immediately
generalized for the estimation of curvature and torsion of
spatial curves. Other advantage of the proposed method is
that it can be easily implemented. The program used for
comparison is available at [16].

The authors plan to continue this work in order to de-
velop predictors for other 3D compression schemes. Another
natural extension, would be to develop a new estimator for
geodesic curvature of curves on surface in the space.
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13 Curvature and torsion estimators

(a) Ellipse without noise: n = 1000, σ = 0. (b) Ellipse with medium noise: n = 32, σ = 0.5.
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(c) Punctual error, n = 500, σ = 0.
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(d) Mean error, q = 1, σ = 0.
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(e) Punctual error, n = 500, σ = 0.5.
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(f) Mean error, q = 10, σ = 0.5.
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(g) Punctual error, n = 500, σ = 1.
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(h) Mean error, q = 10, σ = 1.

Figure 14: Tests on the ellipse r(t) = (2 cos(t), 0.5 sin(t)) : t ∈ [−π, π]: (a,b) the original curve noiseless and with medium noise. (c,e,g)
punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error with q fixed and varying n.
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(a) Hypocycloid without noise: n =
1000, σ = 0.

(b) Hypocycloid with medium noise:
n = 32, σ = 0.5.
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(c) Punctual error, n = 500, σ = 0.
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(d) Mean error, q = 1, σ = 0.
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(e) Punctual error, n = 500, σ = 0.5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  200  400  600  800  1000  1200

m
ea

n 
er

ro
r

n

G3
T2
T3
T4

Circle Fitting
Implicit Parabola Fitting
Independent Coordinates

Dependent Coordinates

(f) Mean error, q = 10, σ = 0.5.
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(g) Punctual error, n = 500, σ = 1.
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(h) Mean error, q = 10, σ = 1.

Figure 15: Tests on the hypocycloid r(t) = (4 cos(t) − cos(2t), 4 sin(t) + sin(2t)) : t ∈ [−π, π]: (a,b) the original curve noiseless and
with medium noise. (c,e,g) punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error with q fixed and
varying n.
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(a) Lissajous without noise: n = 1000,
σ = 0.

(b) Lissajous with medium noise: n = 32,
σ = 0.5.
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(c) Punctual error, n = 500, σ = 0.
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(d) Mean error, q = 1, σ = 0.
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(e) Punctual error, n = 500, σ = 0.5.
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(f) Mean error, q = 10, σ = 0.5.
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(g) Punctual error, n = 500, σ = 1.
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(h) Mean error, q = 10, σ = 1.

Figure 16: Tests on the lissajous r(t) = (sin(2t), sin(3t)) : t ∈ [−π, π]: (a,b) the original curve noiseless and with medium noise. (c,e,g)
punctual error with n fixed, varying q at the point pointed out on figures (a,b). (d,f,h) mean error with q fixed and varying n.
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